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Developmental exposure to chemicals that can disrupt sex hormone signaling may cause a broad spectrum of
reproductive disorders. This is because reproductive development is tightly regulated by steroid sex hormones.
Consequently, non‐animal screening methods currently used to test chemicals for potential endocrine disrupt-
ing activities typically include steroidogenesis and nuclear receptor assays. In many cases there is a correlation
between in vitro and in vivo data examining endocrine disruption, for example between blocked androgen
receptor activity and feminized male genitals. However, there are many examples where there is poor, or
no, correlation between in vitro data and in vivo effect outcomes in rodent studies, for various reasons. One pos-
sible, and less studied, reason for discordance between in vitro and in vivo data is that the mechanisms causing
the in vivo effects are not covered by those typically tested for in vitro. This knowledge gap must be addressed if
we are to elaborate robust testing strategies that do not rely on animal experimentation. In this review, we
highlight the Hedgehog (HH) signaling pathway as a target for environmental chemicals and its potential
implications for reproductive disorders originating from early life exposure. A central proposition is that, by
disrupting HH signal transduction during critical stages of mammalian development, the endocrine cells of
the testes or ovaries fail to develop normally, which ultimately will lead to disrupted sex hormone synthesis
and sexual development in both sexes. If this is the case, then such mechanism must also be included in future
test strategies aimed at eliminating chemicals that may cause reproductive disorders in humans.
1. Introduction

There is an increasing push towards relying more on alternative,
non‐animal, test methods for chemical hazard identification and risk
assessment than what is currently the case. This is based on well‐
founded arguments and aligns with the 3R principles for animal
experimentation (Replacement, Reduction and Refinement), but there
are also several challenges associated with animal‐free approaches.
This is particularly relevant for chemicals with the potential to
cause reproductive disorders through endocrine disrupting mecha-
nisms, as the endocrine system involves regulatory signaling circuits
between many, and distantly located, organs and tissues. This in
itself makes it difficult to recapitulate the in vivo system in vitro,
albeit not impossible. Another challenge when testing chemicals
for potential endocrine disrupting effects using in vitro methods is
that this often relies on well‐established ‘endocrine modes of action’
such as disrupted steroidogenesis or interference with nuclear recep-
tor activity.
In reproductive toxicology this often means androgen and estrogen
receptors, albeit not limited to these. The potential failure of this
approach is that it does not account for other effect modalities, for
instance disruptions to cell differentiation or tissue integrity caused
by interference with other regulatory pathways. Examples of relevant
pathways include Wingless‐like (WNT), retinoic acid (RA) and Hedge-
hog (HH) signaling, which are evolutionary conserved morphoregula-
tory pathways involved in a plethora of biological processes.
Disruption to these signaling pathways can have severe consequences
for development and function in all tissues and organs. With regard to
the reproductive system, it can result in adverse reproductive out-
comes reminiscent of those caused by disruption of more classical
endocrine modalities such as steroidogenesis and receptor binding/ac-
tivation. Whether or not disrupting these pathways would render a
chemical an endocrine disrupting chemical (EDC), however, would
depend on its mode of action.

In accordance with the World Health Organization (WHO), an EDC
is “an exogenous substance or mixture that alters function(s) of the
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endocrine system and consequently causes adverse health effects in an intact
organism, or its progeny, or (sub) populations” (IPCS, 2002). By defini-
tion, this means that chemicals not directly perturbing classical EATS
(estrogen, androgen, thyroid, and steroidogenesis) modalities, can also
be considered EDCs provided it involves disruption to the endocrine
system. The importance of considering alternative pathways for ED
effects was highlighted by OECD in a Detailed Review Paper back in
2012, albeit not including the HH pathway (OECD, 2012). Especially
when we move towards relying more on non‐animal test methods will
the concept of other effect modalities become highly relevant. Other-
wise we run the risk of not detecting chemicals that will cause repro-
ductive disorders without affecting classical in vitro methods such as
nuclear receptor (ant)agonism.

In this review, we will focus on the HH signaling pathway. We will
outline what we know about the central principles of how HH signal-
ing is involved in testis, ovary (Fig. 1) and phallus development before
discussing environmental chemicals that can perturb HH signaling; in
particular in the context of gonadal development. Finally, we will dis-
cuss how exposure to HH signal disrupting chemicals potentially can
give rise to reproductive disorders in both sexes. By so doing, we
aim to highlight a need to think differently about how we test and
assess chemicals for endocrine disrupting activities.
Fig. 1. Involvement of HH signaling in the recruitment of endocrine cells of the ova
cells is very similar between testis and ovary, one major difference being when du
DHH, which act by paracrine signaling on PTCH-positive precursor cells. This trig
factors and differentiate into endocrine Leydig cells. B) In the ovary, GDF9 signalin
act by paracrine signaling on PTCH-positive precursor cells. This triggers SMO re
differentiation into endocrine theca cells.
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2. Brief overview of the HH signaling pathway

In mammals, there are three principle HH ligands: Sonic hedgehog
(SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH). The HH
ligands can interact with many surface receptors to promote intracel-
lular signaling, as reviewed elsewhere (Pak and Segal, 2016), with
Patched (PTCH) considered the canonical receptors (Pak and Segal,
2016). In vertebrate cells, the core components of the HH pathway
localizes to the primary cilium; a singular microtubule‐based, non‐
motile organelle extending from the basal body of the cell (Nozawa
et al., 2013; Anvarian et al., 2019). At the primary cilium, and in
the absence of HH ligand, the 12‐transmembrane protein PTCH1 (or
PTCH2) represses the accumulation of the G‐protein coupled receptor
Smoothened (SMO). HH ligand binding leads to endocytic clearance of
PTCH1 from the primary cilium, allowing for the enrichment and
activation of SMO in the primary cilium and, ultimately, activation
of a downstream intracellular signaling cascade culminating in tran-
scriptional regulation of HH target genes. Central to this signaling cas-
cade are the GLI‐Kruppel transcription factors GLI1, GLI2 and GLI3
(Anvarian et al., 2019; Ingham and McMahon, 2001).

HH signaling is involved in the regulation of organogenesis and
body organization, a role that is evolutionary conserved across meta-
ry and testis. The regulatory role of HH signaling in specification of endocrine
ring development the cells are specified. A) In the testis, Sertoli cells express
gers SMO release and activation, followed by activation of GLI transcription
g from the oocyte triggers granulosa cells to express DHH and IHH, which then
lease and activation, followed by activation of GLI transcription factors and
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zoans (Ingham and McMahon, 2001; Briscoe and Thérond, 2013).
Because HH signaling is critical for a broad spectrum of developmental
processes, disrupted HH signaling has also been linked to a large num-
ber of disorders and diseases, from severe birth morbidities to cancers
(Pak and Segal, 2016; Varjosalo and Taipale, 2008). The HH pathway
is also critical for gonad differentiation and reproductive development,
as will be discussed in the following.
3. Gonad sex determination and reproductive development at a
glance

Sexual development initiates during fetal life and completes with
puberty in young adulthood. From conception, the male and female
embryos are morphologically indistinct and develop similarly until
gonadal sex determination. This marks the stage at which the two
sexes diverge down two separate developmental trajectories. With
the expression of the Y chromosome‐specific gene SRY within a subset
of precursor cells of the immature gonads of XY fetuses, testis differen-
tiation is initiated (Svingen and Koopman, 2013). In contrast, the
absence of SRY in XX fetuses allows for an opposing regulatory path-
way to instruct the primitive gonads to differentiate into ovaries
(Nicol and Yao, 2014). Up until this developmental stage, which cor-
responds to around week 7 in humans and mid‐gestation in mice
and rats, sexual development is largely genetically regulated. After-
wards, the bifurcation in developmental trajectories between the two
sexes is heavily influenced by the steroid sex hormone milieu, with
high androgen levels directing a male phenotype and low androgen
levels directing a female phenotype.

Both the testes and ovaries are compartmentalized structures carry-
ing out dual functions, namely sperm or egg production and sex steroid
synthesis. In the testes, the Leydig cells are primarily responsible for
steroid hormone synthesis, whereas in the ovaries both granulosa
and theca cells are the primary source (Svingen and Koopman, 2013;
Nicol and Yao, 2014). In consequence, the whole process of sex
hormone‐dependent development, from fetal life onwards, is inti-
mately linked to the correct differentiation and maintenance of these
endocrine cell lineages within the gonads. Perturbation to their differ-
entiation or function could thus affect all aspects of sexual develop-
ment and function throughout life.
3.1. HH and testis development

In the testis, the Leydig cells are responsible for testosterone syn-
thesis that, during development, is critical for differentiation of sec-
ondary male sex organs and general masculinization of the body.
Leydig cell specification itself is dependent on cues from the Sertoli
cells, which are the first somatic cells to differentiate in the testis
(Svingen and Koopman, 2013). One important Sertoli cell‐derived fac-
tor is DHH, which is required for Leydig cell specification.

DHH is secreted from Sertoli cells and activates PTCH1 receptors
expressed by precursor cells located in the testis interstitium. Upon
binding and receptor activation, Ptch1‐positive cells differentiate into
fetal Leydig cells that organize themselves in small clusters between
the testis cords. Once differentiated, the Leydig cells start expressing
key enzymes of the steroidogenic pathway such as CYP11, CYP17
and HSD3β, allowing them to synthesize steroid sex hormones. The
Leydig cells also synthesize INSL3, which is required for gubernacular
differentiation and testis descent.

The role for DHH in specifying the fetal Leydig cell population was
first shown in knockout mouse models. By inactivating Dhh, Leydig
cell numbers were markedly reduced, resulting in suboptimal andro-
gen synthesis and ultimately under‐masculinization of the male fetuses
(Yao et al., 2002; Pierucci‐Alves et al., 2001). As in other organs and
tissues, a hallmark of activated HH signaling and SMO recruitment
in the (precursor) Leydig cells, is the upregulation of GLI1 and GLI2
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transcription factors. The activation of both appears necessary in order
to recruit cells to the Leydig cell lineage, but subsequent maintenance
of expression is partly HH independent (Barsoum and Yao, 2011). That
is, in the testis Gli2 expression does not require HH signaling for its
expression, whereas Gli1 does, which is opposite to what is generally
observed in other tissues as far as Gli1 and Gli2 regulation is con-
cerned. Thus, the GLI factors operate somewhat redundantly, and
semi‐independently, of HH in the fetal testis that have already
acquired a Leydig cell population. Although the aforementioned stud-
ies pertain to the mouse, studies involving various gene mutations
have clearly shown the importance of DHH in testis development in
rats (Kawai, et al., 2011), as well as in humans (Canto et al., 2005;
Das et al., 2011; Umehara et al., 2000).

3.2. HH and ovary development

In the ovary, steroidogenesis takes place in a two‐cell system
involving granulosa and theca cells. The theca cells are responsible
for synthesis of androgens, which are subsequently converted into
estrogens by the adjacent granulosa cells (Erickson et al., 1985).
Expression of HH signaling components in the theca and granulosa
cells has been known for the last 15 years (Wijgerde et al., 2005;
Russell et al., 2007) and their potential role in inducing target gene
expression in developing theca cells was suggested early on
(Wijgerde et al., 2005). Morphologically, theca cells appear when fol-
licles reach the secondary stage, having more than one layer of granu-
losa cells around the oocyte (Young and McNeilly, 2010) (see
(Richards et al., 2017) for detailed review on theca cells). In mice, sec-
ondary follicles with a theca cell layer start to develop approximately a
week after birth (Edson et al., 2009), whereas in humans they start to
appear in the beginning of the third trimester (Cole et al., 2006). The
specification of theca cell fate occurs before they are visible around the
secondary follicles (Honda et al., 2007) and require HH signaling by a
mechanism similar to Leydig cell specification in the testis; one appar-
ent difference being that only DHH seems necessary in the testis,
whereas both DHH and IHH seem necessary in the ovary. Females
lacking both DHH and IHH experiences a marked loss of theca cells,
followed by disrupted hormone synthesis and infertility, a phenotype
not observed in single knockouts (Liu et al., 2018, 2015).

DHH and IHH are expressed by granulosa cells and act by paracrine
signaling on interstitial precursor cells, marked by Gli1 expression, to
differentiate into theca cells. The theca precursor cells appear to orig-
inate from two different sources, either the mesonephros or the ovar-
ian mesenchyme, giving rise to two different populations of theca cells.
The mesonephros‐derived cells become the androgen producing cells
located to the basal lamina, whereas the majority of theca cells, includ-
ing smooth muscle cells, surrounding the follicle seem to be originat-
ing from the ovarian mesenchyme (Liu et al., 2015). In mouse
models where both Dhh and Ihh are ablated, both types of theca cells
are compromised as evident by the lack of the smooth muscle cell mar-
ker α‐SMA for the one type, and lack of the steroidogenesis markers
HSD3β and CYP17A1 for the other type (Liu et al., 2015, 2018). Inter-
estingly, constitutive activation of HH signaling in early development
also affects the theca layer, reducing the number of smooth muscle
cells surrounding developing follicles, ultimately leading to ovulatory
failure (Ren et al., 2009, 2012). Additionally, both inhibition and con-
stitutive activation of HH signaling have been implicated in polyovular
follicles (Ren et al., 2012; Terauchi et al., 2020).

As described above, HH pathway components are present in the
somatic cells of the ovaries, but HH signaling seems to be controlled,
at least in part, by the oocyte‐derived factor GDF9. In ovaries depleted
of oocytes, as well as in Gdf9 knockout mice, expression of Dhh, Ihh
and Gli1 is reduced. When GDF9 is supplemented to oocyte‐depleted
ovaries, expression of Dhh, Ihh and Gli1 is increased, showing a role
for GDF9 in stimulating synthesis of the two ligands in the granulosa
cells (Liu et al., 2015).
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As in the testis, the role for HH signaling in specifying the steroido-
genic theca cell lineage in the ovary has been elegantly shown in
mouse genetic models. HH signaling in ovary development and func-
tion is most likely evolutionary conserved across mammalian species,
but there is no clear evidence from human patients similarly to the
association seen in XY gonad dysgenesis. Notably though, disruption
of the HH pathway has been associated with polycystic ovary syn-
drome (PCOS) in women (Makrinou et al., 2020).

3.3. HH and external genitalia development

HH signaling plays a direct role in the development of external gen-
italia. This is most clearly shown with Shh knockout mice, which pre-
sent with complete genital tubercle agenesis (Haraguchi, 2001;
Perriton et al., 2002). HH signaling is also involved in the actual
growth and patterning of the genital tubercle, including urethral clo-
sure, as shown in various mouse studies where compromised signaling
(rather than complete ablation of SHH early on) can lead to phallus
disorders beyond its complete failure in Shh knockouts (Seifert et al.,
2009, 2010; Lin et al., 2009; Miyagawa, et al., 2009). Importantly,
the development of the genital tubercle has two distinct phases with
respect to endocrine influence. The early phase of development is
androgen‐independent whereas the late phase is androgen‐
dependent, but with HH signaling being involved during both phases
(Hyuga et al., 2019; Chew et al., 2014). The direct involvements of
androgens in the late phase of genital tubercle development, including
the induction of hypospadias in response to compromised androgen
signaling, is well established (MacLeod, et al., 2010; Welsh et al.,
2010; Sinclair et al., 2017). The interplay between the HH and andro-
gen signaling pathways during genital tubercle development is not
fully understood, but it is reasonable to assume that chemicals disrupt-
ing HH signaling during the early phase would also affects HH signal-
ing broadly across the body plan, whereas chemicals affecting HH
signaling only during the late phase would be downstream of androgen
signaling and potentially only affect the genital tubercle, or other tis-
sues with an active androgen‐HH signaling axis. In fact, there is strong
evidence for, not least from prostate cancers, that HH signaling itself
can support androgen signaling (Chen, et al., 2009; Chen et al.,
2010; Hyuga, et al., 2019).

Studies on phallus development in the Tammar wallaby, a marsu-
pial species, has shed more light on how HH function directly regulate
phallus differentiation, further illuminating a close relationship with
androgen signaling. As mentioned above, during the early phase of
genital development SHH function appears androgen‐independent,
whereas during late genital development SHH function appears
androgen‐dependent (Hyuga et al., 2019; Chew et al., 2014). Recent
studies in the same marsupial model have revealed a delicate spa-
tiotemporal expression pattern of SHH and IHH during phallus devel-
opment and it is clear that disrupted HH signaling can cause genital
disorders such as hypospadias (Tarulli et al., 1237). As for extrapola-
tions to humans, HH signaling components are expressed in the phal-
lus during urethral closure (Shehata et al., 2011) and polymorphisms
in HH‐related genes are associated with a higher risk for boys being
born with hypospadias (Carmichael et al., 2013). These are not con-
crete cause‐effect relationships, but HH signaling appear to be an evo-
lutionary conserved signaling pathway critical for external genitalia
development across mammalian species.

Hypospadias is the most common birth defect observed in newborn
boys after cryptorchidism, and has a prevalence rate of approximately
1 in 250 (Springer et al., 2016). It is thus possible, based on what has
been discussed above, that disruption to HH signaling is involved in a
fair proportion of cases involving phallus dysmorphologies. It is, how-
ever, important to distinguish between direct HH signal disruption and
indirect disruption to androgen signaling via HH signal disruption. The
former would most likely also manifest as body‐wide effects down-
stream of perturbed HH signal transduction whereas the latter could
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be more limited to androgen sensitive tissues. And this would also sug-
gest that, for disorders limited to the reproductive system caused by
HH signal disrupting chemicals, the phallus would be the most sensi-
tive organ since HH expression and action in the developing phallus
is itself sensitive to androgens and estrogens in mice (Zheng et al.,
2015) and wallabies (Tarulli et al., 1237; Chen, et al., 2018).

With respect to gonadal dysmorphologies caused by HH signal dis-
ruption, the most likely outcome would be disrupted development of
the endocrine cell lineages that subsequently would result in compro-
mised sex hormone synthesis and all the downstream effects that
would entail. However, as these effects would likely result from sex
hormone‐independent mechanism, they would likely then also result
in body wide effects in all tissues and organs that are dependent on
HH signaling. Nevertheless, the jury is still out with regards to gonadal
disruption in response to HH‐disrupting chemicals and what down-
stream effects they may cause.
4. HH disrupting chemicals

One of the better known examples of how an environmental com-
pound can cause severe birth defects by HH signal disruption dates
back to the 1950s. Notably, Hedgehog wasn’t identified until 1980 by
a genetic screen in fruit‐flies (Nüsslein‐Volhard and Wieschaus,
1980) and its mammalian orthologs even later, in the early 1990s as
reviewed by (Briscoe and Thérond, 2013); but nevertheless, the case
in question has become closely linked to what severe consequences
exposure to HH‐disrupting compounds can have on normal develop-
ment. In 1957, sheep farmers in Idaho (USA) started reporting on
strange cases of lambs being born with one eye in the middle of the
forehead, known medically as cyclopia (DeSesso, 2020). After a dec-
ade of work by scientists, the root cause of this birth defect was traced
back to ewes gracing on poisonous corn lily (Veratrum californicum)
containing a steroidal alkaloid that later became known as cyclopa-
mine. The definitive proof that the teratogenic defect was caused by
cyclopamine interfering with SHH came decades later (Cooper et al.,
1998).

The number of chemicals now known to interfere with HH signal-
ing include potential cancer drugs (Galperin et al., 2019) or other
pharmaceuticals such as acetazolamide (Schreiner et al., 2009) and
itraconazole (Tiboni et al., 2006), and aspirin (Ming et al., 2017),
but also environmental chemicals. Not surprisingly, fetal rat testes
exposed ex vivo to cyclopamine show significant downregulation of
HH pathway genes and other Leydig‐cell specific genes, also indicating
a general loss if differentiated Leydig cells (Brokken et al., 2009).
Other examples include the insecticide synergist piperonyl butoxide
(Wang, et al., 2012), the photolytic compounds of the insecticide
methoprene (Smith et al., 2003) and the biocide tributyltin (Zhang
et al., 2012), which all have been shown to inhibit HH signaling and
cause severe developmental defects in fish. In rats, developmental
exposure to DEHP was recently shown to downregulate Shh in male
offspring, causing impaired neuromotor development (Fu et al.,
2019), whereas intrauterine exposure to DBP can inhibit HH signaling
and impair male reproductive development (Kim et al., 2010). In
humans, maternal smoking is associated with suppressed DHH expres-
sion in the fetal testis and lead to impaired masculinization (Fowler,
et al., 2008). Using the human endometrial cancer cell line RL95.2,
bisphenol A exposure suppressed components of the HH pathway via
upregulation of miR‐107 (Chou et al., 2017).
5. HH disrupting chemicals and reproductive disease

The above‐mentioned studies have examined effects of chemicals
on HH signaling in various tissues and organs, even vastly different
organisms. They clearly show that chemical exposure can disrupt HH
signal transduction and cause adverse effects in intact organisms, but
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only some of them show effects on the reproductive system, and even
fewer show clear evidence for an endocrine mode of action. There is
good evidence that HH signal disruption can impact phallus develop-
ment directly, as already discussed, but evidence that it can cause
gonadal dysgenesis and subsequent reproductive disorders remain
owing. This, broadly speaking, would point to one of two scenarios:
i) disruption to HH signaling is not a mechanism underpinning repro-
ductive disorders caused by chemical exposure or ii) chemicals can dis-
rupt HH signaling and cause reproductive disorders, but there has not
been enough studies aimed at characterizing this mode of action.

Although direct evidence remains scarce with respect to chemically
induced HH signal disruption in the gonads, we suggest that the sec-
ond scenario is likely. This opinion is based on the known role for
HH in gonad development and function, as well as a rat study showing
the disruption of HH signaling and Leydig cell function in explanted
testes exposed to the AR antagonist flutamide (Brokken et al., 2009).
The mechanism for the effect caused by flutamide in this instance is
still unclear, but the authors propose that flutamide suppresses Dhh
expression in Sertoli cells with subsequent consequences for Leydig
cell differentiation. This is a reasonable assumption since HH ligand
expression is sensitive to androgens and estrogens in various tissues
and cells (Chen, et al., 2009, 2018; Gowda et al., 2013; Koga, 2008),
but it remains to be seen if an AR blocker can suppress Dhh expression
directly, or if it is by an indirect or secondary mechanism. Another
intriguing relationship between androgens and HH was recently
shown in a Gli3 mutant mouse model (Kothandapani, et al., 2020).
These mutant mice display both cryptorchidism and hypospadias,
Fig. 2. Proposed Adverse Outcome Pathway (AOP) network for disrupted Hedgeh
what is currently known about the involvement of HH signaling in gonadal devel
elaboration. The numbers (purple circles) in the developmental pathway correspond
towards the adverse outcome (AO), but the upper developmental pathway is far fro
and tissues. Being pragmatic descriptions of pathways between initial molecular pe
for predicting toxic effects from effects on upstream events only; meaning, mole
applicable for chemical risk assessment. (For interpretation of the references to colo
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which can be attributed to impaired Leydig cell differentiation and
subsequent INSL3 and testosterone synthesis. This is in line with what
was described above for testis development. Surprisingly, though, by
supplementing the mutants with androgens, cryptorchidism was par-
tially rescued whereas hypospadias was not. This, again, shows that
androgens and HH signaling work in parallel to ensure proper phallus
development, and not simply up‐ or down‐stream of each other
(Kothandapani, et al., 2020).

Notably, it appears that there exists a significant degree of intrinsic
compensatory, or redundant, mechanisms for HH signaling across tis-
sues and organs. In the gonads, this is evident by, for instance, the
Gdf9 knockout mouse (upstream regulator of HH ligands) causing
more severe female reproductive outcomes than the Dhh/Ihh double
knockout, which itself result in more severe phenotypes than the
Dhh or Ihh single knockouts (Liu et al., 2015). Thus, many chemicals
with HH signal‐disrupting activity would perhaps not cause obvious
reproductive effects in in vivo toxicity studies at doses below general
maternal toxicity, or severe embryonic teratogenicity. But again, these
are speculations that need further empirical validation beyond the fact
that more subtle effects on the reproductive organs can give rise to
compromised reproductive function in adult life.

6. From biology to chemical risk assessment

The central modality proposed in this review is that chemicals can
cause adverse reproductive outcomes by disrupting the HH pathway.
The adverse outcomes caused by HH signal disruption may be similar
og (HH) signaling during development leading to reproductive disease. From
opment, testes and ovaries, it is possible to extract putative AOPs for further
to events that are believed to be essential to progress the cause-effect pathway
m a complete description of the HH signaling pathway as it takes place in cells
rturbation to an AO in an intact organisms, the AOP serve as reference points
cular initiating events (MIE) and key events (KE) should be measurable and
ur in this figure legend, the reader is referred to the web version of this article.)
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to those typically associated with classical EDCs: disrupted steroidoge-
nesis or androgen/estrogen receptor signaling can lead to short AGD,
hypospadias, cryptorchidism, and reduced fertility in male offspring
(Skakkebaek et al., 2016), and irregular cyclicity, reduced oocyte
reserve and reduced fertility in female offspring (Johansson et al.,
2017). But even though the adverse outcomes are the same, they are
caused by very different effect modalities. HH signal disruption, as
proposed herein, will for instance involve the failure of endocrine cells
of the gonads to differentiate and function properly, so that reduced
sex hormone synthesis or hormone signaling are secondary to pertur-
bation pathway. Illuminating such cause‐effect relationships between
chemical exposure and adverse reproductive disorders is of paramount
importance if we are to facilitate the current push towards animal‐free
toxicity testing of chemicals. This, because we need to know what to
test for in vitro to accurately predict what will happen in vivo in the
absence of animal testing.

To reiterate the argument; if we only test and assess chemicals
using in silico or in vitro approaches using steroidogenesis or nuclear
receptor assays only, some chemicals would appear safe based on neg-
ative results, whereas they could cause adverse outcomes in the intact
organisms, including humans. This is not an issue if chemicals are
tested in vivo, but a worrying scenario if only alternative test methods
not covering HH signal disruption are used for testing. Therefore, we
encourage future work looking at the relationship between HH signal-
ing, environmental chemicals, and adverse reproductive outcomes to
make use of the Adverse Outcome Pathway (AOP) framework
(Ankley and Edwards, 2018). This would not only facilitate increased
knowledge about how environmental chemicals can harm human
reproductive health through HH signal disruption, but also facilitate
the development of alternative test assays should the HH signaling
pathway prove to be of relevance for chemical hazard identification
and risk assessments.

A description of the AOP concept is outside the scope of this
review, but suffice to say it involves pragmatic descriptions of linear
cause‐effect relationships from initial perturbation to adverse out-
comes in an intact organism (OECD, 2018). Of note, these descriptions
are not meant as detailed descriptions of regulatory pathways covering
all the molecular and cellular interactions actually taking place in the
organism, but instead focusing on those key events that are essential
for progression of the pathway toward the adverse outcome; and that
are, at the same time, measurable; i.e. of use for regulatory toxicology.
To exemplify this line of thought, we have constructed a smaller AOP
network for HH pathway perturbation leading to reproductive disor-
ders (Fig. 2). This small, putative AOP network present three individ-
ual pathways originating from three molecular initiating events. These
would be considered separate AOPs since each individual event could
in itself lead to the first downstream event: ‘decreased HH signal trans-
duction’. The HH signaling pathway itself is much more complex than
this representation, which is why it is of value from a risk assessment
point of view. It is a question of ‘pragmatic essentiality’.
7. Perspectives

The idea that EDCs can cause adverse reproductive outcomes by
mechanisms not classically considered EDC modes of action is sup-
ported by other studies. For example, when exposing pregnant rats
to phthalates such as DBP or DEHP, fetal testosterone levels are signif-
icantly reduced which ultimately result in undervirilizaion of male
fetuses (reviewed by (Schwartz et al., 2019). Because of the clear rela-
tionship between Leydig cell steroidogenesis and testosterone levels, it
is natural to conjecture that phthalates disrupt steroidogenesis. This
remains a prevailing notion, even though it remains unclear by what
mechanisms phthalates reduces testosterone levels in rodents. An
equally likely scenario is that phthalates disrupt Leydig cell differenti-
ation or maintenance, which consequently lead to compromised
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androgen production. Recent studies suggests that phthalates, and
indeed several other EDCs, can disrupt Leydig cell gap junctions and
intercellular signaling (Yawer et al., 2020; Di Lorenzo et al., 2020).
This ultimately means that it can be the Leydig cells themselves that
are rendered dysfunctional by phthalate exposure and not steroidoge-
nesis per se. With respect to HH pathway disruption, similar modalities
could be what causes reproductive disorders. But despite studies sug-
gesting this to be the case, as discussed in this review, it remains to
be thoroughly examined and proven or disproven. To do so, we need
more cross‐disciplinary interactions between experts from basic biol-
ogy, toxicology and chemical risk assessors. And, as recently advocated
(Draskau et al., 2020), the AOP framework is a very good platform to
facilitate such endeavors.
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