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Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence
and impact remain poorly understood. Here, we established that amild tomoderate infection
with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2
strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic
K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the
bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial
outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and
reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at
5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell
activation were largely unchanged after bacterial coinfection. Examining surviving animals
more than a week after infection resolution suggested that immune cell activation remained
high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2
infection alone. These data suggest that SARS-CoV-2 increases susceptibility and
pathogenicity to bacterial coinfection, and further studies are needed to understand and
combat disease associated with bacterial pneumonia in COVID-19 patients.
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INTRODUCTION

Throughout the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), there have been case reports, multi-center
cohort studies, systematic reviews, and meta-analyses assessing the extent and severity of coinfections
with secondary pathogens including viruses, fungi, and bacteria (1–31). Although coinfection rates
org May 2022 | Volume 13 | Article 8945341
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varied across studies, some studies suggested that coinfecting
respiratory bacteria were predictors of severe SARS-CoV-2-
related disease and mortality (23–31). Bacterial pathogens that
were detected included Mycoplasma pneumoniae, Legionella
pneumophila , Chlamydophila pneumoniae , Klebsiella
pneumoniae, Pseudomonas aeruginosa, Haemophilus influenzae,
Acinetobacter baumanii, Staphylococcus aureus, and Streptococcus
pneumoniae (pneumococcus). Pneumococcus, which is a major
cause of community-acquired pneumonia (32–34), was detected
by throat swab in 0.8% (8) to 7.2% (5) of hospitalized COVID-19
patients not requiring intensive care unit (ICU) admission or
invasive respiratory support, while the frequency tended to be
higher [6.5% (24) to 59.5% (4)] in patients with severe respiratory
distress. Because bacterial transmission has largely been
dampened by non-pharmaceutical measures (e.g., masking and
physical distancing), it is important to understand whether SARS-
CoV-2 infection predisposes individuals to bacterial infections
and, if so, what clinical and immunological changes occur as a
result of coinfection.

In general, viral-bacterial coinfections are not uncommon, where
S. aureus and pneumococcus are widely documented as
complicating pathogens during infection with other viruses, most
notably influenza A virus (IAV) [Reviewed in (35–46)]. During
influenza pandemics, 45-95% of the mortality has been attributed to
bacterial coinfections (47–50). Fortunately, the impact of these
complications has appeared to be lower during the SARS-CoV-2
pandemic, but these could increase as novel variants arise and as
SARS-CoV-2 becomes endemic. IAV and SARS-CoV-2 both cause
infections that range from asymptomatic to severe, but SARS-CoV-
2 has a longer incubation period, longer and more varied duration
of viral shedding and symptoms, and more pathological effects on
tissues outside of the respiratory tract [Reviewed in (51–54)].
Although viral burden does not directly correlate to disease (55–
61), both viruses can induce significant lung damage [Reviewed in
(52–54)]. Some host responses also differ in timing and magnitude,
including the delayed type I interferon (IFN-a,b), increased
proinflammatory cytokines like TNF-a and IL-6, and reduced
immune regulation that have been detected in COVID-19
patients (62–66). Further, neutrophils and macrophages, which
are important for efficient bacterial clearance during viral-bacterial
coinfection (67–72), are dysregulated during COVID-19 (73–75).
Thus, the potential for bacterial invasion during SARS-CoV-2
infection may also differ from that observed in influenza infection
with respect to timing and host-pathogen mechanisms.

While the investigation of viral and immune dynamics in the
lower respiratory tract is difficult to assess in humans, they have
been clarified in animal models. One study using SARS-CoV-1
suggested that bacteria can enhance pathogenicity of
coronaviruses (76), and numerous studies of influenza-bacterial
coinfection indicate that susceptibility and pathogenicity of
bacterial coinfections are time-dependent with the greatest
mortality observed when bacteria is initiated at 7 d pvi (77).
The progressive increase in susceptibility to bacterial coinfection
during influenza is largely due to the depletion and/or
dysfunction of resident alveolar macrophages (AMF) during
IAV infection, which is dynamic throughout the infection
(55, 67) and maximal at 7 d pvi (55, 67–69). Following bacterial
Frontiers in Immunology | www.frontiersin.org 2
establishment, dysfunction of neutrophils (78–81), which may be
in part facilitated by bacterial metabolic interactions (82) and type
I IFNs (71, 82, 83), and additional depletion of AMF (55)
contribute to bacterial growth and coinfection pathogenesis
[Reviewed in (39–41, 45, 84, 85)]. Currently, the effect of SARS-
CoV-2 infection on AMFs remains somewhat unclear, although
human, murine, and in vitro data indicate that AMFs become
productively infected with SARS-CoV-2, leading to altered
cytokine production and responsiveness (86–89). In addition,
SARS-CoV-2 seems particularly adept at delaying and avoiding
innate immune responses, resulting in delayed or decreased T cell
responses, accumulation of neutrophils and inflammatory
monocytes, and enhanced lung pathology [Reviewed in (90–
93)]. IAV also has mechanisms of immune evasion [Reviewed
in (94, 95)] but induces a robust CD8+ T cell response in the lungs
that efficiently clears virus. During IAV-pneumococcal
coinfection, CD8+ T cells are depleted (96), and viral loads
rebound (55, 68, 82). Mechanisms for both of these are being
investigated, but direct viral-bacterial interactions (97) that allow
the virus to enter new areas of the lung in addition to a bacterial-
mediated increase in virus production (55, 68, 98) contribute to
the increased viral loads. However, these effects are overshadowed
by the robust bacterial growth and bacterial-mediated effects on
host responses. Given these potential mechanisms and the
reported myeloid dysfunction (73–75), delayed IFN responses
(62–66), and CD8+ T cell depletion (99–103) during SARS-CoV-
2, a better understanding of the potential for bacterial invasion
and the effects of coinfection on immune cell, viral, and
pathological dynamics is needed and the focus of this study. To
assess bacterial susceptibility during COVID-19 and determine
whether a synergism exists between SARS-CoV-2 and
pneumococcus, we infected K18-hACE2 mice with a low dose
of SARS-CoV-2 to initiate a mild-moderate infection and
coinfected the animals 3, 5, or 7 days later with pneumococcus.
Bacteria were unable to establish at 3 d post-virus infection (pvi),
but coinfections at 5 or 7 d pvi resulted in increased lethality in a
sex-independent manner. Although viral dynamics and lung
pathology were unchanged within the first 24 h of coinfection,
select immune cells and proinflammatory cytokines were
decreased in the lungs of animals coinfected at 5 d pvi but not
at 7 d pvi. These findings support the increased susceptibility of
SARS-CoV-2-infected individuals to bacteria and highlight
numerous distinct features from other viral-bacterial coinfections.
RESULTS

Time-Dependent Increases in
Lethality During SARS-CoV-2-
Pneumococcal Coinfection
To examine the susceptibility and pathogenicity of
pneumococcus coinfection during SARS-CoV-2 infection, K18-
hACE2 mice (male and female, 10 to 13 weeks old) were infected
with 250 PFU of SARS-CoV-2 or PBS followed by 103 CFU of
pneumococcal strain D39 (coinfected) or PBS (mock coinfected)
at either 3, 5, or 7 d pvi. During mock coinfection, the selected
May 2022 | Volume 13 | Article 894534
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viral dose was lethal in 35% of mice (Figure 1A) and caused
weight loss from 5 to 11 d pvi with maximum weight loss
(average 7%) at 8 d pvi (Figure 1B) and clinical scores peaking
at 6 d pvi (Figure 1C). In the absence of viral infection, the
selected bacterial dose was lethal in 1/6 mice (17% lethality) at 4
d post bacterial infection (pbi) (Figure S1A) and caused only
mild, transient weight loss (~3%) (Figure S1B) and increased
temperatures (Figure S1C) after 1 to 2 d pbi.

When the bacterial coinfection was initiated at 3 d pvi,
lethality was not enhanced (P = 0.73) (Figure 1A).
Frontiers in Immunology | www.frontiersin.org 3
Interestingly, weight loss in coinfected animals was reduced at
1 d (P = 0.03) and 2 d (P = 0.04) pbi (Figure 1B) and the
cumulative clinical score was lower at 2 d pbi (P = 0.03)
(Figure 1C) compared with mock coinfected controls. In
addition, the temperature of coinfected animals was higher at 2
d (P = 0.003) and 3 d (P = 0.01) pbi and lower at 5 d (P = 0.02)
and 8 d (P = 0.045) pbi (Figure 1D). A coinfection initiated at 5 d
pvi was slightly more lethal than the SARS-CoV-2 infection
alone, where additional mortality was observed at 5 to 6 d pbi,
but this was not statistically significant (P = 0.14) (Figure 1A).
A

B

C

D

FIGURE 1 | SARS-CoV-2-pneumococcal coinfection in K18-hACE2 mice. Kaplan-Meier survival curves (A), percent weight loss (B), cumulative clinical score (C),
and temperature (D) of mice infected with SARS-CoV-2 (250 PFU; white circles, solid lines) followed by 103 CFU D39 at 3 d (yellow diamonds, dotted lines), 5 d
(magenta squares, dashed lines), or 7 d (cyan triangles, dash-dotted lines) pvi. Data are shown as the mean ± standard deviation (SD) and significant differences are
indicated by *,P < 0.05; **,P < 0.01 for comparisons between SARS-CoV-2 infection and SARS-CoV-2-pneumococcal coinfection.
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The average weight loss was reduced (P = 0.01) and temperature
was increased (P = 0.001) at 1 d pbi in the coinfected animals
(Figures 1B, D). Coinfected animals lost more weight than
animals infected with SARS-CoV-2 alone at 5 d pbi (P = 0.03)
(Figure 1B), but no significant difference in their clinical scores
was detected (Figure 1C). Comparatively, a coinfection at 7 d
pvi was significantly more severe than SARS-CoV-2 infection
alone (P = 0.03) and resulted in additional lethality at earlier
times than the coinfection at 5 d pvi, with additional animals
succumbing to the infection within 1, 3, or 4 d pbi (Figure 1A).
Significantly more weight loss at 3 d (P < 0.001) and 4 d
(P = 0.002) pbi (Figure 1B) and higher clinical scores at
3 d pbi (P = 0.01) (Figure 1C) occurred without altering
temperature (Figure 1D).
Frontiers in Immunology | www.frontiersin.org 4
SARS-CoV-2 Coinfection Increased
Bacterial Loads but Not Viral Loads
To evaluate whether SARS-CoV-2-bacterial coinfection alters
pathogen burden, we measured viral loads in the lung and
bacterial loads in the lung and blood of infected animals. In
mice infected with bacteria alone or with SARS-CoV-2 followed
by bacteria at 3 d pvi, no bacteria were recovered from the lungs
of 7/8 mice at 24 h pbi (Figures 2A, S1D). However, when the
bacteria was introduced at 5 d pvi, bacterial loads in the lung
remained at a level similar to the inoculum in 7/8 mice and was
cleared in 1/8 mice (Figure 2A). Bacteria were not detected in the
blood of mice infected with bacteria alone (data not shown) or
SARS-CoV-2-bacteria coinfected at 3 or 5 d pvi (Figure 2B).
However, in mice coinfected at 7 d pvi, significant bacterial
A CB

D

F

E

FIGURE 2 | Dynamics of pathogen loads during SARS-CoV-2 infection and pneumococcal coinfection. Lung bacterial loads (CFU/lung) (A), blood bacterial loads
(B), and lung viral loads (PFU/lung) (C) in female (circles) and male (triangles) mice infected with SARS-CoV-2 (250 PFU; white) followed 103 CFU D39 at 3 d (yellow),
5 d (magenta), or 7 d (cyan) pvi. Each symbol represents a single mouse and the mean ± standard deviation (SD) are for combined male and female groups.
Significant differences are indicated by ns, not significant; *P < 0.05; ****P < 0.0001. For bacterial titers, comparison was with the inoculum (dotted line). (D, E)
Representative immunohistochemical (IHC) staining for SARS-CoV-2 nucleocapsid protein in whole lung sections following (24 h pbi) infection with SARS-CoV-2 (250
PFU) then PBS or 103 CFU D39 at 3 d (D) or 5 d (E) pvi. (F) Representative lung sections stained with H&E, SARS-CoV-2 nucleocapsid protein, or pneumococcus
from infection with SARS-CoV-2 (250 PFU) followed by 103 CFU D39 at 5 d pvi. Lesions with perivascular inflammatory cell infiltration are indicated by arrows; blood
vessel (BV). Scale bar = 100 µm.
May 2022 | Volume 13 | Article 894534
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growth occurred in the lungs of all animals (P = 0.02; Mann-
Whitney test) and the blood of some animals (3/7) with titers
reaching 4.4 to 7.9 log10 CFU/lung (Figure 2A) and 4.1 to 6.6
log10 CFU/mL (Figure 2B), respectively, within 24 h pbi.

Pulmonary viral loads were unchanged by bacterial
coinfection whether coinfection was initiated at 3 d (P = 0.12)
or 5 d (P = 0.18) pvi (Figure 2C) and the amount and
distribution of viral antigen in the lung tissue were also
unchanged (Figures 2D, E). Although some areas of the lung
contained colocalized virus and bacteria, both intracellular and
extracellular bacterial antigen were detected in areas containing
no viral antigen (Figure 2F). The virus had cleared by 8 d pvi in
the groups that were mock coinfected or bacterial coinfected at 7
d pvi (Figure 2C). No significant differences were found in viral
or bacterial loads between males and females.
Select Changes in Pulmonary Immune
Responses After SARS-CoV-2-
Pneumococcal Coinfection
To investigate whether bacterial coinfection altered immune
response dynamics, several immune cells, cytokines, and
chemokines were quantified in the lung 24 h after mock
coinfection or bacterial coinfection in SARS-CoV-2 infected
mice (Figures 3, 4, S3, S6). In animals infected with SARS-
CoV-2 only, natural killer (NK) T cells (Figure S3D) and total
CD19+ B cells (Figure 3E) were reduced at 4 d pvi compared with
naïve (P = 0.007 and P = 0.018, respectively). The absolute
numbers of other cells were unchanged at this time point
(Figures 3, S3); however, increases in the proportion of
activated (CD69+) immune cells were evident (Figure S4).
SARS-CoV-2 infection also resulted in many cytokines and
chemokines above baseline levels (all P < 0.05) throughout the
infection, including IFN-g, IL-1b, IL-4, IL-28, CXCL10, GM-CSF,
LIF, CCL2, CCL7, MIP-1a, MIP-1b, RANTES, IFN-a, and IFN-
b. IL-5, IL-6, IL-15, IL-18, M-CSF, and TNF-a were elevated at
both 4 d and 6 d pvi while CXCL5, CXCL1, G-CSF, IL-3, IL-13,
and IL-17A were increased only at 6 d pvi. MIP-2a, IL-2, and IL-
22 were elevated at 6 d and 10 d pvi, and increased IL-10 and IL-
23 were detected only at 8 d pvi (absolute values of cytokines are
in Figure 4, S5; log2 changes over naïve in Figure S6).

As expected, a significant influx of CD45+ immune cells was
evident at 6 and 8 d pvi in animals infected with SARS-CoV-2
only (both P < 0.001) (Figure S3A), including neutrophils
( L y 6G h i ; b o t h P < 0 . 0 1 ; F i g u r e 3A ) , t h e F 4 /
80midCD11cmidCD11b+ monocyte/macrophage subset (both P
< 0.001; Figure 3B), inflammatory macrophages (F4/
80hiCD11chiCD11b+, iMF ; P = 0.02 and P < 0.001,
respectively; Figure 3C), F4/80midCD11c- cells (both P < 0.001;
Figure S3B), NK cells (both P < 0.001; Figure S3C), CD4+ T cells
(P = 0.02 and P < 0.001, respectively; Figure 3F), and CD8+ T
cells (both P < 0.001; Figure 3G). Unlike the pathogen loads,
some of the immune cells were different between males and
female that were mock coinfected at 5 d pvi, including
neutrophils (P = 0.047), resident alveolar macrophages (F4/
80hiCD11chiCD11b-MHC-IIlow/-, AMF; P = 0.047), CD4+ T
Frontiers in Immunology | www.frontiersin.org 5
cells (P = 0.02), NK cells (P = 0.03), and NK T cells (P = 0.02),
which were higher in females than males.

In the groups coinfected with bacteria at 3 d pvi, no changes
were observed in the absolute number (Figures 3, S3) or activation
(Figure S4) of any quantified immune cell subset or the amount of
cytokines and cytokines (Figures 4, S5) within 24 h pbi compared
with mock coinfection. A bacterial coinfection at 5 d pvi resulted
in fewer total CD45+ cells (P = 0.03; Figure S3A), including
neutrophils (Figure 3A), CD19+ B cells (Figure 3E), CD8+ T cells
(Figure 3G), and F4/80midCD11c- cells (Figure S3B) (all P < 0.05)
compared with the mock coinfected groups. In addition, iMF (P =
0.01) and AMF (P = 0.047) were again higher in females than
males following coinfection at 5 d pvi (Figures 3C, D). The extent
of activation was not different between the mock coinfection and
bacterial coinfection at 5 d pvi (Figure S4), but reduced IL-6, IL-
18, LIF (all P = 0.04), and IL-15 (P = 0.02) was observed at 24 h pbi
(Figures 4A-D).

Coinfection at 7 d pvi induced a significant increase in
neutrophils at 24 h pbi (P < 0.001) (Figure 3A) without
altering the number or activation of any other immune cell
quantified (Figures 3, S3, S4). AMF were reduced in the mock
coinfected group compared with naïve animals (P = 0.001) but
were not different between the mock coinfection and bacterial
coinfection (P = 0.29) (Figure 3D). Absolute cell numbers and
activation did not differ between male and female mice following
coinfection at 7 d pvi (Figures 3, S3, S4). Perhaps unexpectedly,
none of the measured cytokines were significantly different
between animals that were mock coinfected and animals that
were bacterial coinfected at 7 d pvi (Figure 4 and Figure S5).

Pneumococcal Coinfection Resulted in
Sustained Increases in Pulmonary Immune
Responses After Recovery
To investigate whether bacterial coinfection altered immune cell
dynamics and activation in recovered animals, pulmonary
immune cells, cytokines, and chemokines were quantified at 17
d pvi following mock coinfection or bacterial coinfection at 3, 5,
or 7 d pvi. The number of iMF (P = 0.01) (Figure 3C) and CD8+

T cells (P = 0.02) (Figure 3G), as well as the activated proportion
of iMF (P = 0.004), CD8+ T cells (P = 0.001), CD4+ T cells P
0.001), and CD19+ B cells (P = 0.005) (Figure S4), remained
increased above naïve levels in the lungs of animals that
recovered from SARS-CoV-2 infection alone. These changes
were accompanied by elevated IFN-g, CXCL10, and RANTES
(P = 0.01, P = 0.03, and P = 0.04, respectively) at 17 d pvi
compared to naïve (Figures 4, S5, S6). However, many measured
cytokines and chemokines were below naive levels at 17 d pvi in
the lungs of animals infected with SARS-CoV-2 only, including
eotaxin, IL-2, IL-3, IL-17A, IL-22, IL-27, IL-28, M-CSF, and
MIP-2a (all P < 0.05) (Figures 4, S5, S6).

A sustained increase in immune cell accumulation and
activation was evident in animals that recovered from SARS-
CoV-2-pneumococcal coinfection. At 17 d pvi, an increased
absolute number and act ivated proport ion of F4/
80midCD11cmidCD11b+ monocytes/macrophages (P = 0.01;
Figures 3B, 4B), iMF (P = 0.01; Figures 3C, S4C), and CD4+
May 2022 | Volume 13 | Article 894534
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and CD8+ T cells (P = 0.03 and 0.02, respectively; Figures 3F, G,
S4F, G) were present in coinfected mice compared with mock
coinfected mice. Comparison between the coinfected groups
indicated that more CD8+ T cells were present at 17 d pvi in
Frontiers in Immunology | www.frontiersin.org 6
mice that were coinfected at 3 d or 7 d pvi than those coinfected
at 5 d pvi (both P = 0.02; Figure 3G). In addition, animals that
recovered from a coinfection at 7 d pvi had more activated
neutrophils or iMF than those who recovered from a coinfection
A B

C D

E F

G

FIGURE 3 | Immune cell dynamics during SARS-CoV-2 infection and pneumococcal coinfection. Total neutrophils (A), F4/80midCD11cmidCD11b+ monocytes/
macrophages (B), inflammatory macrophages (iMF) (F4/80hiCD11chiCD11b+) (C), alveolar macrophages (AMF) (F4/80hiCD11chiCD11b-MHC-IIlow/-) (D), CD19+ B
cells (E), CD4+ T cells (F), and CD8+ T cells (G) in the lungs of female (circles) and male (triangles) mice infected with SARS-CoV-2 (250 PFU; open symbols)
followed by 103 CFU D39 at 3 d (yellow), 5 d (magenta), or 7 d (cyan) pvi. Each symbol represents a single mouse and the mean ± standard deviation (SD) are for
combined male and female groups. Significant differences are indicated by *,P < 0.05; **,P < 0.01; ***,P < 0.001 for comparisons between indicated groups and by
†,P < 0.05 for differences between males and females within a group or between coinfection times within 17 d group.
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at 3 d pvi (P = 0.04) or 5 d pvi (P = 0.03), respectively (Figures
S4A, C). These changes were accompanied by higher levels of
CXCL-10 (P < 0.001), MIP-2a (P = 0.04), IL-3 (P = 0.001), IL-22
(P < 0.008), IL-28 (P = 0.01), and RANTES (P < 0.001) in the
lungs of mice that had recovered from a bacterial coinfection
compared with those recovered from SARS-CoV-2 alone (17 d
pvi; Figure 4E–J). In addition, select cytokines and chemokines
were reduced in animals that recovered from bacterial
coinfection compared with those that were mock coinfected,
Frontiers in Immunology | www.frontiersin.org 7
including CXCL-1 (P = 0.01), IL-1a (P = 0.04), IL-6 (P = 0.03),
IL-9 (P = 0.03), IL-10 (P < 0.001), IL-13 (P < 0.001), IL-15
(P = 0.001), IL-18 (P < 0.001), G-CSF (P = 0.03), and TNF-a
(P =0.02) (17 d pvi; Figures 4, S5). These cytokines, except for
IL-1a (P = 0.19) and IL-18 (P = 0.09), were also below baseline
levels (all P < 0.05). In addition, IL-2 (P = 0.02), IL-5 (P = 0.02),
IL-17A (P = 0.04), and eotaxin (P = 0.01) were below baseline in
both the bacterial coinfected and mock coinfected groups
(Figures 4, S5).
A CB

D FE

G

J

IH

FIGURE 4 | Pulmonary cytokines and chemokines during SARS-CoV-2 infection and SARS-CoV-2-pneumococcal coinfection. Total IL-6 (A), IL-18 (B), LIF (C), IL-
15 (D), CXCL10 (E), RANTES (F), IL-3 (G), IL-22 (H), IL-28 (I), and MIP-2a (J) in the lungs of female (circles) and male (triangle) mice infected with SARS-CoV-2
(250 PFU; white) followed by infection with 103 CFU D39 at 3 d (yellow), 5 d (magenta), or 7 d (cyan) pvi. Each symbol represents a single mouse and the mean ±
standard deviation (SD) are for combined male and female groups. Significant differences are indicated by *,P < 0.05; **,P < 0.01; ***,P < 0.001 for comparisons
between indicated groups. Plots depicting additional cytokine and chemokine quantities (absolute log10 picograms) are in Figure S5 and a heatmap representing the
normalized quantity (average log2 change over naïve) is in Figures S6.
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Bacterial Coinfection Did Not Enhance
Lung Pathology
To examine whether lung pathology was enhanced during SARS-
CoV-2-pneumococcal coinfection, we assessed seven
pathological features (endothelial hypertrophy/margination,
peribronchiolar/perivascular lymphoid cells, interstitial
inflammation/septal thickening, alveolar inflammation, alveolar
edema/hemorrhage, the extent of alveolar involvement, and
consolidation (Figure 5). There were no significant differences
in any of these measurements between mock coinfected animals
and those coinfected with bacteria at 3 or 5 d pvi at either 24 h
pbi or 17 d pvi.
DISCUSSION

Currently, clinical data suggests variable, but moderate,
frequency of bacterial coinfections in hospitalized COVID-19
patients (1–29). The wide range of reported rates is, at least in
part, due to heterogeneous study designs, variability in the
disease severity, age, and/or comorbidities of each cohort, the
collection and detection methods used, and the panel of
pathogens screened. Further, the reduced transmission of
many pathogens (104–108) might have kept the rates of SARS-
Frontiers in Immunology | www.frontiersin.org 8
CoV-2-related bacterial pneumonia at an artificially low level
during the COVID-19 pandemic. The results from this study
suggest that we might expect more complications from bacterial
pathogens going forward even in mild SARS-CoV-2 scenarios,
which are becoming more common due to vaccine availability
(109–111).

Here, we used the K18-hACE2 mouse model to establish that
SARS-CoV-2 infection increases the risk of bacterial coinfection
in a time-dependent manner with increased disease severity,
pulmonary bacterial burden, bacteremia, and neutrophilia. This
time dependency is similar to that of influenza-bacterial
coinfections, but the lethality during the SARS-CoV-2-
pneumococcal coinfect ion (Figure 1) was delayed
comparatively (77) and some animals survived. In contrast,
influenza-pneumococcal coinfections at similar doses
consistently result in 100% lethality within 1-3 d pbi (77).
Although further studies are needed to assess the potential for
more severe coinfections at later time points, this may indicate a
larger window for administration of antibacterial therapies in
coinfected patients.

Mechanisms that contribute to increased risk and severity of
bacterial coinfection during acute pulmonary diseases are
complex and varied [Reviewed in (36, 39–41, 45, 84, 85, 112)].
While the mechanisms for SARS-CoV-2-bacterial coinfections
remain unknown, the similar time-dependent susceptibility
A B C

D E F

FIGURE 5 | Lung pathology during SARS-CoV-2 infection and pneumococcal coinfection. Average endothelial hypertrophy (A), peribronchiolar/perivascular
lymphoid cells (B), interstitial inflammation/septal thickening (C), alveolar inflammation (D), extent of alveolar involvement (E), and consolidation (F) in lungs of mice
infected with SARS-CoV-2 (250 PFU; open bars) followed by 103 CFU D39 at 3 or 5 d pvi (filled bars). Plots represent the mean ± standard deviation (SD) bars for
combined male and female groups.
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during influenza may yield insight. We and others have shown
that viral-induced changes to the number (67, 69, 70) or
functionality (70, 72, 113–115) of AMFs, which may be
mediated by IFN-g (55, 115, 116), render these cells less
capable of clearing bacteria. Here, SARS-CoV-2-pneumococcal
coinfection did coincide with a virally induced reduction in
AMF (Figure 3), which may suggest a contribution of these
cells to the acquisition of bacteria during COVID-19 particularly
when paired with evidence of a dysfunctional myeloid response
in patients with severe infections (75). Further studies to
determine how a productive SARS-CoV-2 infection of AMF
alters infection dynamics, their production of IFN, and their
phagocytic capacity (86–89) are needed. In addition, IFN-
independent mechanisms of macrophage dysfunction should
also be investigated because some studies suggest that RSV
coinfection severity is mediated by Gas6/Axl polarization of
AMF to non-antibacterial (M2) type cells (117). Other
mechanisms, including viral-mediated changes in bacterial
receptor expression and binding (77, 118–121) and the
degradation of epithelial tight junction integrity (122, 123) may
also promote bacterial adherence during IAV or RSV infections,
and some evidence suggests that these also occur during SARS-
CoV-2 infection (124–126). However, the limited colocalization
of pneumococcus with SARS-CoV-2 suggests a limited
role (Figure 2).

Several studies have found that neutrophil dysfunction
contributes to pathogenicity of IAV-pneumococcal coinfection,
and this seems to be mediated by bacterial metabolism (82) and
type I IFNs (71, 83, 127). However, unlike IAV-pneumococcal
coinfections, type I IFNs were unchanged after SARS-CoV-2-
pneumococcal coinfection (Figure S5) and neutrophil
infiltration was only observed in coinfection at 7 d pvi
(Figure 3A), suggesting that there may be different
mechanisms underlying the enhanced pathogenicity of SARS-
CoV-2 pneumococcal coinfection. This may, in part, be related
to the low dose used here, where some studies have found that
the SARS-CoV-related alterations to the IFN and iMФ responses
occur during more severe infections (128). It was intriguing to
see here that cytokine production was largely unchanged at 24 h
pbi (Figures 4, S5), which is in contrast with the robust
proinflammatory cytokine/chemokine production during other
viral-bacterial coinfections (39–41, 45, 84, 85). Perhaps
unexpectedly, several cytokines associated with severe COVID-
19 and damaging cytokine overproduction (IL-6, IL-15, and IL-
18) (129, 130) were reduced following coinfection at 5 d
pvi (Figure 4).

Although coinfections are typically thought to be
hyperinflammatory with enhanced disease severity, tissue
inflammation does not seem to be altered during SARS-CoV-
2-pneumococcal (Figure 5) or influenza-pneumococcal (55)
coinfections even with large neutrophil infiltrations (55, 82)
(Figure 3A), at least within the first few days of coinfection.
This may be owed to the nonlinearities between host immune
responses, tissue inflammation, and disease severity (55, 56).
Although the pathogenicity was increased during the
coinfections at 5 d and 7 d pvi, there seemed to be little
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contribution from SARS-CoV-2, where the burden and
distribution did not change within the first 24 h pbi (Figure 2)
despite reduced CD8+ T cells in some groups (Figure 3G). In
IAV-pneumococcal coinfections, invading bacteria result in
robustly increased viral loads (55, 68, 82, 131–133) regardless
of timing (55) and viral dissemination in the lung is increased by
30-50% (55). Our prior work (55) suggests this is due to a
combination of direct viral-bacterial interactions (97) that lead to
viral access to new areas of the lung in addition to increased virus
production rates (68) that may be mediated by alterations to the
antiviral IFN response (98). The lack of detection of SARS-CoV-
2 in new areas of the lung and the lack of significant
colocalization of virus and bacteria (Figure 2) may suggest that
SARS-CoV-2 cannot as readily attach to pneumococcus like
other viruses (97, 134), which is positive news given that
pneumococci easily invade the blood [Reviewed in (135)] and
SARS-CoV-2 affects numerous other organs (51–54).

Although the long-term effects of viral-bacterial coinfections
are not well studied, these data suggest they may be important
where the SARS-CoV-2-bacterial coinfection resulted in lasting
immunologic changes in recovered individuals. The higher
macrophages and T cells (Figure 3) and their associated
cytokines (Figures 4, S5) at 17 d pvi in animals recovered
from bacterial coinfection is intriguing and suggests sustained
immunopathology (55, 56, 136, 137). Many of the elevated
responses are indicators of acute respiratory distress syndrome
(ARDS) (138, 139) and are upregulated to promote tissue
recovery and reduce pathology (140–143). This was reflected in
the slightly greater interstitial inflammation 17 d pvi (Figure 5)
in coinfected animals. However, several cytokines were lower in
animals that had recovered from bacterial coinfection with some
below that of a naïve animal (Figures S5 and S6), which may
support a remodeling environment induced, in part, by
hyporesponsive epithelial cells downregulating inflammatory
cytokine production to minimize local immune activation
[Reviewed in (144)]. In addition, the reductions in Th2
cytokines (e.g., IL-13, IL-5, and IL-9) may be an attempt to
improve lung function (145–148) while limiting hyperreactivity
and further damage. Nevertheless, our results suggest a lengthy
recovery of the lung from both SARS-CoV-2 and SARS-CoV-2-
related secondary bacterial infections.

Vaccinating against SARS-CoV-2 is likely to prove important
for reducing the incidence and severity of bacterial coinfections
as it has for influenza (149). The robust efficacy of the
SARS-CoV-2 vaccines is encouraging (150–153), but infection
is still possible with viral replication in the nasopharynx in some
vaccinated individuals (154–157). This could present an
opportunity for bacterial pathogens to invade and worsen the
infection. With few vaccines available for coinfecting bacteria
(149), the interactions within the nasopharynx between this virus
and both commensal and pathogenic bacteria will be important
to study.

In summary, we used the transgenic K18-hACE2 mouse
model (158) to establish that a low dose SARS-CoV-2 infection
increases the risk of pneumococcal coinfection in a time-
dependent manner. The data importantly highlight many
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differences with other viral-bacterial coinfections and the need
for further studies to clarify the host-pathogen interplay that
enhance susceptibility and pathogenicity during SARS-CoV-2-
bacterial coinfection. This information may be crucial going
forward, particularly because a sustained immune activation
following coinfection suggests an increased risk of developing
ARDS even in patients with mild COVID-19. In addition, as new
SARS-CoV-2 variants emerge and nonpharmaceutical measures,
such as wearing masks and physical distancing, become less
common, we might anticipate an increase in risk of bacterial
transmission and acquisition in COVID-19-infected individuals.
MATERIALS AND METHODS

Mice
Adult (10-13 week old) male and female K18-hACE2 transgenic
mice (B6.Cg-Tg(K18-ACE2)2Prlmn/J) were obtained from
Jackson Laboratories (Bar Harbor, ME). Mice were housed in
groups of 4 in solid–bottom polysulfone individually ventilated
cages (Allentown BCU) in rooms maintained on a 12:12-hour
light:dark cycle at 22 ± 2°C with 30-70% humidity in the
Regional Biocontainment Laboratory (animal biosafety level 3
facility) at UTHSC (Memphis, TN). Mice were acclimated for 1
day before being lightly anesthetized with 2% inhaled isoflurane
(Baxter, Deerfield, IL) and implanted subcutaneously with an
IPTT300 transponder (Bio Medic Data Systems, Seaford, DE) for
identification and temperature monitoring, followed by an
additional 3 days of acclimation before inclusion in the
experiments. Envigo irradiated rodent diet (catalog no. 7912)
and autoclaved water were available ad libitum during the
acclimation and study periods; gel food and hydrogel were
provided at the time of infection. All experimental procedures
were performed under protocol 20-0132 approved by the
Institutional Animal Care and Use Committee at University of
Tennessee Health Science Center (UTHSC) under relevant
institutional and American Veterinary Medical Association
(AVMA) guidelines and were performed in a animal biosafety
level 3 facility that is accredited by the American Association for
Laboratory Animal Science (AALAS).

Infection Experiments
All experiments were done using 2019-nCoV/USA-WA1/2020
(BEI Resources NR-52281) (SARS-CoV-2) and type 2
pneumococcal strain D39. The viral infectious dose [plaque
forming units (PFU)] was determined by plaque assay of serial
dilutions on Vero E6 cells. Virus seed stocks were sequenced
using next-generation sequencing with ARTIC primers on the
Illumina MiSeq. Bacterial infectious dose [colony forming units
(CFU)] was determined by using serial dilutions on tryptic soy
agar plates supplemented with 3% sheep erythrocytes (TSA).
Doses of virus and bacteria were selected that elicited mild-
moderate disease independently to ensure that changes in disease
severity following coinfection would be evident. Frozen stocks
were diluted in sterile PBS and administered intranasally to
groups of 4 mice, lightly anesthetized with 2.5% inhaled
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isoflurane (Baxter, Deerfield, IL) in a total volume of 50 µl (25
µl per nostril). Mice were inoculated with either PBS or SARS-
CoV-2 at day 0 then with 103 CFU of D39 or PBS, either 3 or 5
days later. Assessment of symptom severity was performed twice
daily after the onset of symptoms by assigning a score (scale 0-3)
to clinical features, including weight loss (0, <15%; 1, 15-20%; 2,
21-25%; 3, >25%), temperature change (0, >34°C; 1, 34-31°C; 2,
30-26°C; 3, <26°C), body condition/appearance (0, normal; 1,
roughened fur; 2, roughened fur, hunched posture, mild grimace,
active; 3, roughened fur, hunched posture, grimace, inactive,
conjunctivitis, head-tilt), respiratory effort (0, normal; 2,
increased respiratory rate and effort; 3, weak, intermittent
breathing), behavior (0, normal; 1, slow, unprovoked
movement; 2, slow, provoked movement; 3, minimal response/
unresponsive or spinning), and dehydration (0, normal; 1, ≤ 2
second skin tent, mildly sunken eyes; 2, 2-3 second skin tent,
sunken eyes; 3, > 3 second skin tent, sunken eyes). Mice were
euthanized if they lost >25% of their starting body weight or
became moribund based on clinical scores (a score of 3 in any
single category or a cumulative score of ≥9 in respiratory effort,
dehydration, temperature reduction, behavior, body
condition/appearance).

Harvest and Processing of Lungs
and Blood
Mice were euthanized by 33% isoflurane inhalation. Lungs were
aseptically harvested, washed in PBS, and fixed in 10% neutral
buffered formalin for histology or digested with collagenase (1
mg/ml, Sigma C0130) and physical homogenization against a 40
µm cell strainer for immune cell staining. Lung digest
supernatants were used to quantify cytokines and chemokines
and to determine viral and bacterial titers as above; bacterial
titers were also measured in peripheral blood. Following red
blood cell lysis, lung cells were washed in staining buffer (PBS,
5mM EDTA, 10mM HEPES, and 0.5% bovine serum albumin),
counted with trypan blue exclusion using a Cell Countess System
(Invitrogen, Grand Island, NY), and prepared for flow
cytometric analysis as described below.

Flow Cytometric Analysis
Flow cytometry (BD FACSAria; San Jose, CA) was performed on
single cell suspensions after Fc receptor blocking (TruStainFcX,
Biolegend) and viability staining (Zombie Violet Fixable
Viability, Biolegend), 25 min surface staining, and fixation (BD
Cytofix). The followed anti-mouse antibody panels were used for
cell subset analysis: CD45 (clone 30-F11, Pe-Cy7, Biolegend),
CD3e (clone 145-2C11, FITC, Biolegend), CD4 (clone RM4-5,
V500, BD Biosciences), CD8a (clone 53-6.7, PerCP-Cy5.5,
Biolegend), CD19 (clone 6D5, PE, Biolegend), CD335 (clone
29A1.4, APC-Fire750, Biolegend), and CD69 (clone H1.2F3,
APC, Biolegend) or CD45 (clone 30-F11, Pe-Cy7, Biolegend),
Ly6G (clone 1A8, PerCP-Cy5.5, Biolegend), F4/80 (clone BM8,
PE, eBioscience), CD11b (clone M1/70, V500, BD Biosciences),
CD11c (clone N418, APC-Fire750, Biolegend), MHC-II (clone I-
A/I-E, FITC, eBioscience), and CD69 (clone H1.2F3, APC,
Biolegend). The data were analyzed using FlowJo 10.7.2 (Tree
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Star, Ashland, OR). Data were cleaned using the flowAI
application (159) followed by gating viable cells from a
forward scatter/side scatter plot, singlet inclusion, and viability
dye exclusion. CD45+ cells were selected for further analyses.
Neutrophils (Ly6Ghi), alveolar macrophages (AMF) (F4/
80hiCD11chiCD11b-MHC-IIlow/-), inflammatory/exudate
macrophages (iMF) (F4/80hiCD11chiCD11b+MHC-IImid/hi),
o t h e r mon o c y t e /m a c r o p h a g e p o p u l a t i o n s ( F 4 /
80midCD11cmidCD11b+ and F4/80midCD11c-CD11b+/-), NK
cells (CD3e-CD19-CD335+), CD4 T cells (CD3+CD8-

CD4+CD335-), CD8 T cells (CD3+CD8+CD4-CD335-), NK T
cells (CD3e+CD335+), B cells (CD3e-CD19+), and recently
activated subsets thereof (CD69+) were gated as in Figure S2.

Cytokine and Chemokine Quantification
Cytokines G-CSF (CSF-3), GM-CSF, IFN-g, IL-1a, IL-1b, IL-2, IL-
3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-15/IL-15R, IL-
17A (CTLA-8), IL-18, IL-22, IL-23, IL-27, IL-28, IL-31, LIF, MCP-
3 (CCL7), M-CSF, TNF-a) and chemokines (ENA-78 (CXCL5),
eotaxin (CCL11), GROa (CXCL1), IP-10 (CXCL10), MCP-1
(CCL2), MIP-1a (CCL3), MIP-1b (CCL4), MIP-2a (CXCL2),
RANTES (CCL5) were measured in lung supernatant by Luminex
and ELISA (IFN-a,b). Before use, cell debris and aggregates were
removed by centrifugation at 4°C, 400 x g. ProcartaPlex magnetic
bead cytokine/chemokine plates (Invitrogen) were prepared
according to the manufacturer’s instructions. Data were
acquired using a MagPix (Luminex) with Luminex xPonent
software (v4.2) and analyzed with the ProcartaPlex Analysis
App (ThermoFisher Connect). ELISAs for IFNa and IFNb (PBL
Assay Science) were prepared according to the manufacturer’s
instructions, read at 450 nm, and analyzed using GraphPad Prism
9.2.0. Mean concentrations of duplicate samples were calculated
by the construction of standard curves using a weighted 5PL and
4PL regression for the ProcartaPlex and ELISA data, respectively.
Absolute quantities of each cytokine/chemokine were calculated
based on the mean concentration of replicate samples normalized
to the lung supernatant volume collected during tissue processing.
Internal plate controls were used to adjust values obtained between
plates and fold changes in cytokine and chemokine quantities were
calculated for each animal, normalized to the average of naïve
controls (pooled males/females).

Histology
Following euthanasia and tissue removal as above, lungs were
continually fixed in 10% neutral-buffered formalin solution (NBF;
ThermoFisher Scientific, Waltham, MA) before being embedded
in paraffin, sectioned at 4mm, and mounted on positively charged
glass slides (Superfrost Plus; Thermo Fisher Scientific, Waltham,
MA). Tissue sections were stained with hematoxylin and eosin
(H&E) or subjected to immunohistochemical (IHC) staining to
detect SARS-CoV-2 antigen or pneumococcus. Tissue sections
were deparaffinized and rehydrated before undergoing antigen
retrieval in a citrate-based solution (pH 6.0) at 97°C for SARS-
CoV-2 detection or a tris-based solution (pH 9.0) for
pneumococcal detection (Vector Laboratories, Burlingame, CA).
For IHC, a primary monoclonal antibody against SARS-CoV-2
nucleoprotein (NP) (Sino Biological, Wayne, PA) or a rabbit
Frontiers in Immunology | www.frontiersin.org 11
polyclonal antibody against pneumococcus (Novus Biologicals,
Littleton, CO) was used at 1:1000 followed by a biotinylated anti-
rabbit antibody (Vector Laboratories, Burlingame, CA) at 1:200,
the Vectastain Elite ABC-HRP kit (Vector Laboratories,
Burlingame, CA), and 3,3’-Diaminobenzidine (DAB) solution
development. Stained sections were counterstained with
hematoxylin, dehydrated, and examined by a pathologist blinded
to the experimental group assignments. Pathology was scored on a
scale from 0-5, where 0 = normal, no tissue affected; 1 = minimal:
rare or inconspicuous lesions; 2 = mild: multifocal or small, focal,
or widely separated, but conspicuous lesions; 3 = moderate:
multifocal, prominent lesions; 4 = marked: extensive to
coalescing lesions or areas of inflammation with some loss of
structure; 5 = severe: diffuse lesion with effacement of normal
structure. Intermediate severity grades were assigned where
necessary. To quantify the extent of viral infection in the lungs,
digital images of whole lung sections stained for viral antigen were
first captured using the Aperio ScanScope XT Slide Scanner
(Aperio Technologies, Inc., Vista, CA). The areas of both the
entire lung parenchyma (alveoli and bronchioles) and the virus-
positive regions were outlined manually with areas determined using
ImageScope software (Aperio Technologies, Inc.). Representative
images and quantitative analyses of viral spread and lung pathology
during infection are shown in Figures 2, 5, respectively.

Statistical Analysis
Significant differences in Kaplan-Meier survival curves were
calculated using the log-rank test. Linear values of lung and
blood bacterial loads, viral loads, immune cells, and cytokines/
chemokines were compared using an unpaired t test with Welch
correction except where the Mann-Whitney test was used due to
unequal variances (GraphPad Prism 9.2.0 and Rv4.0.3). The
confidence interval of significance was set to 95%, and P ≤ 0.05
was considered significant.
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