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Abstract

Integrated platforms for storage, management, analysis and sharing of large quantities of
omics data have become fundamental to comparative genomics. CoGe (https:/genomevolu
tion.org/coge/) is an online platform designed to manage and study genomic data, enabling
both data- and hypothesis-driven comparative genomics. CoGe’s tools and resources can
be used to organize and analyse both publicly available and private genomic data from any
species. Here, we demonstrate the capabilities of CoGe through three example workflows
using 17 Plasmodium genomes as a model. Plasmodium genomes present unique chal-
lenges for comparative genomics due to their rapidly evolving and highly variable genomic
AT/GC content. These example workflows are intended to serve as templates to help guide
researchers who would like to use CoGe to examine diverse aspects of genome evolution.
In the first workflow, trends in genome composition and amino acid usage are explored.
In the second, changes in genome structure and the distribution of synonymous (Ks) and
non-synonymous (Kn) substitution values are evaluated across species with different levels
of evolutionary relatedness. In the third workflow, microsyntenic analyses of multigene fam-
ilies’ genomic organization are conducted using two Plasmodium-specific gene families—
serine repeat antigen, and cytoadherence-linked asexual gene—as models. In general, these
example workflows show how to achieve quick, reproducible and shareable results using
the CoGe platform. We were able to replicate previously published results, as well as le-
verage CoGe's tools and resources to gain additional insight into various aspects of
Plasmodium genome evolution. Our results highlight the usefulness of the CoGe platform,
particularly in understanding complex features of genome evolution.
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Introduction

During the last decade, ‘omics’ data generation and collec-
tion has grown exponentially and contains valuable infor-
mation about most groups in the tree of life (1-3). ‘Omics’
data are generated in laboratories around the world, and
generally requires multiple tools and databases to analyse
and host increasingly larger amounts of information. The
difficulty of navigating this plethora of publicly available
data can hinder collaborative efforts. Hence, platforms
capable of leveraging large quantities of omics data, tools
for its exploration and analysis and resources to facilitate
reproducible and collaborative research are essential in
comparative genomics. CoGe (https://genomevolution.org/
coge/) is one of several platforms developed to fill this
niche. The CoGe platform combines a variety of intercon-
nected data management, analysis and visualization tools
to facilitate exploratory and hypothesis-driven research of
complex omics data. Though applicable to any biological
group, here we showcase the types of comparative analyses
that can be performed with CoGe’s tools and services by
using Plasmodium genomes as a model.

Advances in high-throughput technologies and a desire
to better understand parasites of the genus Plasmodium,
the causal agents of malaria in humans, lead to a dramatic
increase in publicly available information for the genus (4).
Plasmodium genomes are characterized by a combination
of gene loss and the acquisition of species- or lineage-
specific genes, many of which mediate host—parasite inter-
actions (5). All Plasmodium species have a complex life
cycle involving a vertebrate host and a mosquito vector.
The genomes of Plasmodium parasites are small (between
17 and 28 Mb) in comparison to those of their vertebrate
(1 Gb for birds; 2-3 Gb for mammals) and mosquito (230-
284 Mb) hosts. Plasmodium parasites also have shared
genomic characteristics (e.g. chromosome number, an
apicoplast and a mitochondria) (6). Moreover, in compari-
son to other groups (e.g. plant genomes), their structural
organization and gene content are largely conserved across
species. Nonetheless, despite these conserved features,
Plasmodium species exhibit significant genomic sequence
evolution and different Plasmodium clades have highly dis-
similar DNA GC content. Overall, these characteristics
make Plasmodium parasites a unique group for compara-
tive genomic studies.

Arguably the two most important repositories for mal-
aria research are NCBI/Genbank (7) and PlasmoDB (8).
However, these platforms are somewhat limited in the
ways that they allow users to interact with their data.
Here, we have imported all available Plasmodium genomes
and annotations into CoGe and made them publicly avail-
able. By making these genomes publicly available within

the platform, genomic analyses beyond the scope of this tu-
torial can be developed in situ by interested researchers.
All evolutionary and genomic analyses presented here were
performed using CoGe’s tools and services, with links to
regenerate them. Three model workflows are presented to
showcase the usefulness of CoGe in different aspects of
comparative genomics: (i) an assessment of compositional
bias and amino acid usage, (ii) an evaluation of the fre-
quency and location of chromosomal rearrangements
through whole genome syntenic analyses, and synonymous
and non-synonymous substitution trends between genomes
and (iii) an exploration into the microsyntenic genomic

structural differences in genus-specific multigene families.

The CoGe web-based platform

System requirements

CoGe is an open-access analysis platform that only re-
quires a web browser (Chrome or Firefox are recom-
mended) and a connection to the Internet. For full
operability Flash, Javascript, popups and cookies need to
be allowed.

Genome data used on these tutorials

Representative genomes from the four major Plasmodium
clades (simian, rodents, Laverania subgenus and birds/rep-
tiles) were obtained from NCBI/Genbank (7), PlasmoDB
(8) and GeneDB (9). Reference genome sequences and an-
notations were imported and made publicly available
within the CoGe platform for usage and analysis. All pub-
licly available Plasmodium genomes used in this study
were organized into a CoGe Notebook: (https://genomevo
lution.org/coge/NotebookView.pl?lid=2155). Notebooks
provide the means to manage collections of genomic, func-
tional genomic (e.g. transcriptomic) and diversity (e.g.
SNP) data. Additionally, a summary table with a list of
species, CoGe’s genome IDs, their respective genome links
in CoGe, their associated publication or bioproject and
their in-text reference has been provided for all species ref-
erenced in the three workflows later (Supplementary File
S1). In addition to using already loaded datasets, re-
searchers may also add their own genomes or related data
into CoGe. User-loaded data can be kept private, shared
with collaborators or made fully public.

Describing CoGe's capabilities with example
workflows

CoGe has a variety of analysis and visualization tools
that can assist in unraveling the evolutionary histories of
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complex genomes. In the three workflows later, we have
outlined step-by-step instructions for addressing key as-
pects of genome evolution, as well as a brief discussion
of the insights gained from each analysis. Links to regener-
ate all analyses are provided in Supplementary File S2.
Although all of the analyses and data may be used an-
onymously, researchers who log into CoGe get additional
features such as automatic tracking of analyses (with links
to regenerate them), the ability to add new data (can be
made public and private) and access to restricted data
(when permission is granted).

Workflow 1: assessment of genome
compositional bias and amino acid usage

Genome nucleotide composition (i.e. GC content) has been
shown to significantly affect codon and amino acid usage
patterns in eukaryotes (10-12). Furthermore, GC content
variations also affect chromosome length (13), gene con-
version rates (14) and protein expression (15). One of the
most noticeable characteristics of Plasmodium parasites
is their variable range of genomic compositions [e.g.
Plasmodium falciparum (18.44%) (16) and Plasmodium
vivax (44.87%) (17)]. Thus, the degree in which changes
in genome composition affect amino acid usage can be
explored in detail by using Plasmodium parasites as mod-
els. Three CoGe’s tools—GenomeList, Genomelnfo and
CodeOn—were used to characterize genome composition
and its effect on amino acid usage for 17 Plasmodium spe-
cies. A diagram of the steps followed in this example work-
flow is included in Figure 1. Genomic attributes for each
species are shown in Figure 2, organized by their phyl-
ogeny (18).

How to use GenomeList, Genomelnfo and CodeOn

1. In your web-browser, navigate to CoGe (https:/
genomevolution.org).

2. Under ‘Tools’, click on OrganismView (https://
genomevolution.org/coge/OrganismView.pl).

3. Type the scientific name of interest in the ‘Search’ box
and select a genome version. Type ‘P. vivax Indonesia I’
and search, select the genome version ‘P. vivax Indonesia
I (PO1) (v1, id32811): unmasked’ (https://genomevolu
tion.org/coge/OrganismView.pl?gid=32811).

4. Select ‘Add to GenomeList’” under the ‘Genome
Information’ section. The selected genome will appear
in a pop out window named ‘Genome List’. To add
additional genomes, select a new organism and/or
genome version, and click on ‘Add to GenomeList’
without closing the ‘Genome List’ window.

5. In the Genome List popup, click ‘Send to GenomeList’
to generate a table of the genomic features and

attributes for each selected genome (https://genomevo
lution.org/r/ts41). The number of display columns can
be modified with the column selection tool.

6. Different genomic features can be calculated by click-
ing on the corresponding column. For average gen-
omic GC content click on ‘Get GC’. For coding
sequence (CDS), GC and third nucleotide position in
the codon GC content click on ‘Get all’ in the respect-
ive columns. These genomes can be downloaded by
choosing the ‘Send selected genomes to’ option at the
bottom of the screen, and clicking ‘Go’.

7. To examine additional genomic features of each in-
dividual genome, return to OrganismView and click
on ‘Genomelnfo’ under the ‘Genome Information’
category.

8. To obtain a full list of a genome’s genomic features,

select the ‘Click on Features’ option under the
‘Features’ menu. Each feature has additional options
that can be further explored. For example, amino acid
usage can be examined for any given genome by se-
lecting ‘Amino acid usage table’ from the list of op-
tions (https:/genomevolution.org/coge/Genomelnfo.
pl?2gid=32811). Predicted amino acid usage under the
standard genetic code will be displayed as a table in a
pop out window. This table will also contain a sum-
mary of amino acid polarity, charge, hydropathy,
%GC and ATP cost to assist with interpretation. To
download genome sequences (FASTA) or annotations
files (GFF), select the corresponding option from
‘Downloads’ in the ‘“Tools” menu.

9. To examine the distribution of coding %GC per
amino acid, return to OrganismView and click on
‘CodeOn’.

10. An amino acid usage table, binned by the overall
%GC of each CDS, will be generated. The relative
percent usage of any amino acid for that %GC bin
will be color-coded according to the percentage usage
of all other cells on the table (red, for cells with the
highest usage respect to other cells; and purple, for
cells with the lowest usage respect to other cells)
(https://genomevolution.org/coge/CodeOn.pl?
dsgid=32811). Note that due to its intensive compu-
tational nature users need to login into CoGe to use
CodeOn.

Workflow 1 results

In a single analysis, we quickly replicated previous reports
(19) showing that species closely related to P. falciparum
(subgenus Laverania) have AT-rich genomes (Figure 2,
blue box). Additionally, we observed increased genomic
GC content in Plasmodium species of the rodent clade
(21.28-23.64%; Figure 2, red box) (20, 21), and even
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Figure 1. Example Workflow 1. The displayed numbers match the steps indicated in the workflow section of the text. Colors represent the different

tools used in the example Workflow 1: Genomelnfo (orange), CodeOn (pink)
provided within the step-by-step instructions found in the text.

higher GC values in species closely related to P. vivax
(25.12-40.96%; Figure 2, green box) (22-25). Genomic
GC content values have been independently reported
for Plasmodium species, with only two studies (26, 27)
presenting genomic GC content across several species.

and Genomelist (purple). Links to regenerate these screen captures are

Nonetheless, to our knowledge, no other study has thor-
oughly compared GC content variation or done so in as
many species as the ones included here.

We simultaneously assessed inter- and intra-clade vari-
ations of GC content in both the entire codon and specifically
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Genomic GC Coding GC Wobble GC

Length (bp)  content (%) content (%) content (%)

(b) (e)
P, vivax 24,214,674 43.20 46.22 56.39
_E P cynomolsi 22728335 4096 42.63 49.96
P inui 27,405,027 40.37 43.63 49.63
P. coatneyi 27,685,530 39.64 41.95 48.83
Simian _l: P kmowlesi 23,462,187 37.54 40.23 45.56
Rodent P. fragile 15,914,542 360.48 42.11 46.71
P. malariae 29,539,458 25.12 29.16 26.27
P. ovale curtisi 20,709,934 32.83 33.33 32.19
Laverania
FP. chabaudi 18,394,972 23.64 25.49 18.53
—1 P, vinckei petteri 18,931,523 22.85 25.08 19.92
_|_ P. vinckei vinckei 18,221,643 22.43 24.66 1929
Bird/reptiles P. berghei 18,607,862  22.06 23.76 18.92
_: P, yoelii 20260639  21.28 23.62 18.16
P, falciparum 23,264,338 18.44 23.76 17.38
_|: P, reichenowi 21,462,512 18.76 23.34 18.81
P gaboni 18,878,758 17.85 22,25 15.69
P. relictum 22,607,426 18.30 21.57 16.92
-1|o jlﬁ 25 :is ! :I) o

Figure 2. Genomic features across sequenced Plasmodium species from four different clades. (a) screen capture of Genomelist analysis (https://genome
volution.org/r/ts41) showing statistics on two genomes including histograms of CDS GC content and third nucleotide position GC content; (b) cladogram
of Plasmodium species with colors demarking different clades: simian clade (green), rodent clade (red), subgenus Laverania (blue) and bird/reptile clade
(yellow) and (c) table of genomic features for each Plasmodium species. Links to regenerate these analyses are in Supplementary File S2.

on the third nucleotide position. In our Plasmodium model,
GC content in the entire codon and the third nucleotide
position were strongly GC biased in GC-rich genomes
and strongly AT biased in AT-rich genomes (Figure 2).
Nonetheless, we identified species where GC content in the
third nucleotide position was less GC biased than coding GC
content (e.g. Plasmodium malariae and Plasmodium ovale
curtisi). These differences were only evident by performing
simultaneous multispecies comparisons. Though small, they
may suggest unique long-term evolutionary trends of P.
malariae and P. ovale curtisi with respect to other primate-
infecting Plasmodium species from the simian clade.

CodeOn clearly showed a change in amino acid usage
trends across species with different coding GC content
(Figure 3). Amino acids at the ends of the GC composition
spectrum (those coded by codons that are GC-rich or

GC-poor) had the biggest change in usage across species,
while amino acids in the middle of the spectrum (~50%
GC-rich) showed little to no preference (Figure 3). Despite
similarities in amino acid usage, differences in the way
these amino acids are coded (codon usage bias) have been
reported, even in comparisons between closely related spe-
cies (Plasmodium vivax vs. Plasmodium knowlesi) (28).

Workflow 2: whole genome comparisons,
synonymous (ks) and non-synonymous (kn)
substitutions

Genome organizational changes have significant implica-
tions in coordinated gene expression (29), genome-specific
specialization, (30) and the discovery of orthologous genes
(31). CoGe’s provides powerful tools for exploring changes
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Figure 3. Amino acid usage table binned by the GC content of each CDS. CodeOn results for three Plasmodium species are shown: P. vivax (green;
https://genomevolution.org/coge/CodeOn.pl?dsgid=32811), Plasmodium chabaudi (red; https://genomevolution.org/coge/CodeOn.pl?dsgid=32902) and
P. falciparum (blue; https://genomevolution.org/coge/CodeOn.pl?dsgid=19306). Color-code indicates percent usage compared with all cells in the table
(purple < blue < green < yellow < orange < red) Links to obtain amino acid usage values for each species are in Supplementary File S2.

in genome structure and sequence evolution across mul-
tiple species, and making inferences on the evolutionary
mechanisms and forces behind them.

SynMap

SynMap (32, 33) was used to identify large-scale changes
in genome organization amongst Plasmodium species
(Supplementary File S2). Specifically, whole genome pair-
wise comparisons were performed using default SynMap
parameters across species pairs with different levels of evo-
lutionary relatedness (i.e. sister taxa, closely related species
and distantly related species). Briefly, SynMap (i) identifies
putative syntenic gene pairs using a sequence comparison al-
gorithm (LAST by default), (ii) identifies and filters tandem
duplicated using a program called blast2raw and (iii) uses
DAGChainer to find collinear series of homologous genes
or sequences and identify syntenic pairs. SynMap uses
CodeML (34) to calculate the non-synonymous (Kn) and
synonymous (Ks) substitution rates for all syntenic gene
pairs identified in each pairwise comparison, which can
then be used to draw further evolutionary conclusions such
as age of duplication events and acting selection. Briefly,
CodeML’s workflow in CoGe is to (i) identify syntenic gene
pair, (ii) extract out DNA CDS, (iii) translate to protein
sequence, (iv) perform a global sequence alignment of the
protein sequence using the Needleman—Wunsch global se-
quence alignment algorithm (https://pypi.python.org/pypi/
nwalign/) and the BLOSOM®62 scoring matrix, (v) back-
translate the protein alignment to a codon alignment and
(vi) feed the codon alignment into CodeML for Kn, Ks esti-
mation. This workflow is detailed in the documentation for
SynMap (https://goo.gl/L2XVZE). A diagram of the steps
followed in this example workflow is included in Figure 4.

How to use SynMap
1. Find SynMap on CoGe’s main page (https://genomevo
lution.org/CoGe/SynMap.pl).

2. Search for and select the desired genome for Organisms
1 and 2 [e.g. type Plasmodium in the ‘Search’ box
for Organism 1 and select P. falciparum 3D7 (vS5,
1d19306), select Plasmodium reichenowi strain CDC
(v2,1d32904) for Organism 2].

3. Click on ‘Generate SynMap’ to run the analysis.

4. There are additional SynMap features to change the
visualization of the dot plot. To change the main visual-
izer, select the Display Option tab and click on
“Visualizer Select’. Use SynMap2, to dynamically
zoom-in or -out of specific dotplot regions (https://
genomevolution.org/r/wi4i). Use SynMap Legacy, to
access additional visualizing options. For example, to
order chromosomes by name in the dot plot, find the
Legacy options menu and select ‘Sort Chromosomes
by: Name’ (https://genomevolution.org/r/pmde).

5. To add synonymous substitution information to the dot
plot, find the option to use CodeML under the Analysis
Options tab and click on ‘Calculate syntenic CDS pairs
and color dots: substitution rate(s)’. Start by selecting
Synonymous (Ks) and click on Generate SynMap
(https://genomevolution.org/r/pmdf). A SynMap show-
ing the Ks value of each syntenic gene-pair and a histo-
gram of the distribution of logl0 transformed Ks
substitutions will be generated. On SynMap2, the histo-
gram can be generated for a given set of syntenic genes
by selecting and dragging the cursor over any dotplot
region. The same analysis can be performed for the Kn
and Kn/Ks values. The analysis results can be down-
loaded by selecting the ‘click to view options’ next to
‘Download Results’, and then selecting the ‘Results
with synonymous/non-synonymous rate values’.

SynMap results

Broad-scale genome organization was largely maintained
for the sister taxa (Plasmodium cynomolgi; https://genome
volution.org/r/lquj) and closely related species (P. knowlesi;
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Figure 4. SynMap, CodeML and SPA sections of example Workflow 2. The displayed numbers match the steps indicated in the workflow section of
the text. Colors represent two of the SynMap tools used on the example Workflow 2: SynMap’s SPA tool (teal) and SynMap’s CodeML tool (orange).
Links to regenerate these screen captures are provided within the step-by-step instructions found in the text.

https://genomevolution.org/r/lquk) to P. vivax (Figure 5).
The same pattern was observed for the sister taxa
(Plasmodium  reichenowi; https://genomevolution.org/r/
ljhj) and closely related species (Plasmodium gaboni
P falciparum

(Figure 5). On the other hand, several large-scale genome

https://genomevolution.org/r/ljhl)  to

rearrangement events were evident when distantly related
species (i.e. P. vivax and P. falciparums; https://genomevolu

tion.org/r/ttfp) were compared (Figure 5). Although previ-
ous studies have hinted at a certain degree of organizational
conservation between Plasmodium species (6, 22), these re-
sults clearly show that genome organization is largely de-
pendent on the evolutionary relationships within the genus.
Species-specific substitution trends were characterized
in closely to distantly related species (Figures 2 and 5) as a
mean to assess relations between genome organization and
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Figure 5. Syntenic dot plots between P. vivax, P. falciparum and related species. Top left: syntenic dot plot of pairwise comparisons in species with
different levels of relatedness to P. falciparum (sister species, P. reichenowi; closely related species, P. gaboni). Top middle: syntenic dot plot of pair-
wise comparison between distantly related species P. falciparum and P. vivax. Top right: syntenic dot plot of pairwise comparisons in species with
different levels of relatedness to P. vivax (sister species, P. cynomolgi; closely related species, P. knowlesi). Middle (a-e): histograms of Ks values for
syntenic genes between species pairs: a P. falciparum vs. P. reichenowi (https://genomevolution.org/r/ljhj); b P. falciparum vs. P. gaboni (https://
genomevolution.org/r/ljhl); ¢ P. falciparum vs. P. vivax (https://genomevolution.org/r/ttfp); d P. vivax vs. P. knowlesi (https://genomevolution.org/r/
Iquk) and e P. vivax vs. P. cynomolgi (https://genomevolution.org/r/lquj). Bottom (f-j): histograms of Kn values for syntenic genes between species
pairs: f P. falciparum vs. P. reichenowi (https://genomevolution.org/r/Isz2); g P. falciparum vs. P. gaboni (https://genomevolution.org/r/Isz5); h P. falcip-
arum vs. P. vivax (https://genomevolution.org/r/ttft); i P. vivax vs. P. knowlesi (https://genomevolution.org/r/norf) and j P. vivax vs. P. cynomolgi
(https://genomevolution.org/r/nore). Links to regenerate these analyses are in Supplementary File S2.

evolution at the nucleotide level. Synonymous (Ks) and
non-synonymous (Kn) substitution rates were calculated
between syntenic gene pairs using CodeML. Although
intra-clade variation was observed in both the simian clade
and Laverania subgenus, in general, Ks and Kn values
varied slightly more amongst parasites of the subgenus
Laverania than in their simian clade counterparts
(Figure 5a, b, d—g, i, j). The highest Ks (Figure 5¢) and Kn
(Figure 5h) values were found in comparisons between
human-infective parasites [P. vivax and P. falciparum; ~35
Mya. (18)].

The distribution of Ks values between P. vivax and
P. cynomolgi [~3.25-3.77 Mya. (18)] and between
P. vivax and P. knowlesi [5.42-6.43 Mya. for Southern
Asian parasites (18)], suggest that there are no consider-
able changes in mutation rates between these species
at a genome-wide level. In contrast, differences in Ks

and Kn values were more prevalent in comparisons

between species of the Laverania subgenus, perhaps
as a result of slightly older intra-clade divergence times
[~5.28-5.93 Mya. for P. falciparum/P. reichenowi
(18) and ~7-9 Mya. for P. falciparum/P. gaboni
(19, 35)].

The high Ks and Kn values observed between P. vivax
and P. falciparum likely reflect unique biological character-
istics and species-specific adaptations. Genes coding for
proteins with at least partly extracellular motifs are
thought to evolve faster than other genes, even amongst
closely related Plasmodium species (17). Such patterns are
largely believed to be the result of the host immune system
targeting extracellular peptides, forcing those genes to
evolve faster to evade host defenses (17). Thus, the high Ks
and Kn values seen between P. vivax and P. falciparum
likely reflect both independent long-term responses to
host—parasite interactions, and differences in CDS compos-
ition (17).
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Syntenic path assembly

Although some model species have fully assembled gen-
omes, for most groups in the tree of life only incomplete
genome assemblies are available. CoGe’s syntenic path as-
sembly (SPA) tool can help overcome some of the chal-
lenges posed by incomplete assemblies by ordering and
orienting contigs from an incomplete assembly based on
synteny to a reference genome (Supplementary File S3).
Here, we reoriented and reorganized a complete (P. falcip-
arum) and an incomplete (Plasmodium inui) genome as-
sembly with SPA, using a P. vivax genome as a reference.
In addition, the SPA can help make whole genome synteny
of assembled genomes easier to visualize (Supplementary
File S3). A diagram of the steps followed in this example
workflow is included on Figure 4.

How to use SPA

1. Find the Display Options tab and select either
SynMap2 or SynMap Legacy on the Visualizer Select
menu from a previously generated SynMap (https://
genomevolution.org/r/ttee). Locate the SPA tool and se-
lect it by clicking on the check mark next to ‘SPA?’
(SynMap2;
SynMap Legacy https:/genomevolution.org/r/tteh).

https://genomevolution.org/r/weuq  or

2. SynMap Legacy the SPA tool has additional visualiza-
tion options. For instance, you can check the ‘Hide con-
tigs without synteny?’ option to eliminate non-syntenic

which
(https://genomevolution.org/r/ttei).

regions, simplifies SynMap’s visualization

SPA results

When comparing broad-scale genome organization be-
tween two complete assemblies (P. vivax vs. P. falciparum),
reorientation with SPA aids in the interpretation of puta-
tive structural changes (e.g. identifying genome inversion).
Alternatively, the organization of non-assembled contigs
(P. vivax vs. P. inui) using SPA can be useful in identifying
evolutionary complex regions (e.g. highly repetitive re-
gions). It is, however, important to note that SPA can result
in loss of identified structural changes as it enforces order
by a reference genome.

GEvo

Detailed microsynteny analyses of the regions identified by
whole genome syntenic comparisons can aid in the identifi-
cation of genome-specific characteristics or in finding dis-
crepancies between assemblies. CoGe’s GEvo tool can be
used to analyse and visualize local genomic organization
and genomic features for microsynteny (differences in local
genome organization are inferred by the collinear arrange-
ment of homologous genes). This tool can be accessed via
SynMap, by zooming in and selecting a gene-pair of

interest or by searching specific Gene IDs in GEvo. Here,
the P. vivax (Salvador-1 and PO1) strains were compared
with P. cynomolgi using SynMap and identified break-
points were further evaluated using GEvo. A diagram of
the steps followed in this example workflow is included on
Figure 6.

How to use GEvo

1. Find GEvo on CoGe’s main page (https://genomevolu
tion.org/coge/GEvo.pl).

2. Type a specific Gene ID on the ‘Name’ for each
Sequence box (e.g. write PVX_095410 for Sequence 1
and PV01_0314000 for Sequence 2). Add another se-
quence box by clicking on the ‘+ Add Sequence’ button
and type a third Gene ID (e.g. PCYB_032190 for
Sequence 3).

3. Click on ‘Run GEvo’ with default parameters to display
the local syntenic region between the compared gen-
omes (https://genomevolution.org/r/pcvb).

4. Under the Sequence Submission tab, change the length
of the microsyntenic region analysed by changing the
‘Left sequence’ and ‘Right sequence’ Genome View to
50000. For Plasmodium parasites this will amount to
genomic regions containing ~25 genes (https:/genome
volution.org/r/pcvc).

5. Modify the graphical output display by selecting the
‘Only draw high-scoring sequence pairs (HSPs) be-
tween adjacent regions’, ‘Color GC content green’ and
‘Color wobble codon GC content’ options on the
Results Visualization Options tab (https:/genomevolu
tion.org/r/pcvd).

GEvo results

Synteny between the P. wvivax (Salvador-1) genome
and the P. cynomolgi was maintained with the exception
of two previously reported (22) inversion events on
Chromosomes 3 (~20 000bp) and 6 (~50 000 bp).
SynMap comparisons of P. vivax (P01) to P. cynomolgi re-
vealed that P. vivax (PO1) (https://genomevolution.org/r/
Iquj) lacked these inversion events (https://genomevolu
tion.org/r/lj12) (Figure 7a). A microsynteny assessment of
the breakpoint regions using GEvo showed syntenic re-
gions of inverted genomic order on both Chromosome 3
(https://genomevolution.org/r/pho0) (Figure 7b) and in
Chromosome 6 (https://genomevolution.org/r/phgb) in the
P. vivax (Salvador-1) genome. Nonetheless, in both cases
proximal regions of low sequence quality were observed
only for P. vivax Salvador-1 (Figure 7b). Such regions are
often filled with ‘N’ in the genomic assembly and are col-
ored orange in GEvo. Given the improvements in sequenc-
ing and assembly technologies used in the PO1 strain (36)
with respect to those used on the Salvador-1 strain (17),
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Figure 6. GEvo section of example Workflow 2. The displayed numbers match the steps indicated on the workflow section of the text. Links to regen-
erate these screen captures are provided within the step-by-step instructions found in the text.

it is likely that these regions represent assembly errors in
the Salvador-1 genome.

Workflow 3: finding multigene family members

Whole genome duplication and gene gain/loss events are
prominent mechanisms for gene content variation (37).
Evolutionary comparisons of gene content have been used
to describe lineage-specific events [e.g. the degradation of
metabolic pathways (38)], gene turnover rates between
closely related species (39) and to study the role of duplica-
tions on evolutionary adaptation and innovation (40).
CoGe’s tools can be used to explore these unique patterns
in gene content evolution.

SynFind
SynFind (41) can identify the location of regions syntenic
to a query gene, the syntenic depth (number of times a

region is syntenic to target genome regions) and the num-
ber of genes in each syntenic region. Briefly, SynFind iden-
tifies homologous gene pairs using LAST (42) or LASTZ
(43) for identifying sequence similarity. Later, a window of
genes up and downstream from the query gene is selected by
the researcher in which a minimum number of genes must be
found to define a region as syntenic. The final syntenic score
is based on the number of genes found within the window
passing the minimum number of genes’ threshold. In add-
ition, a research may a scoring function whereby matches
within a window are collinear or just present (density).
These results can then be utilized to generate genome-
wide lists of syntenic gene sets or be sent to GEvo for
microsyntenic analysis. In Plasmodium spp., differences in
gene content are often associated with changes in multi-
gene family size and organization observable at the inter-
and intra-specific levels (22, 44, 45). Here, we used two
Plasmodium-specific multigene families [serine repeat
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Figure 7. Analysis of breakpoint regions in P. vivax (Salvador-1). (a) SynMap pairwise comparisons of P. vivax strains Salvador-1 (https:/genomevolu
tion.org/r/lj12) and PO1; (https://genomevolution.org/r/lquj) with P. cynomolgi. Orange circles show apparent inversions in P. vivax (Salvador-1).
(b) Microsynteny analysis of the third chromosome’s shows breakpoint region close to region of poor sequence quality in orange (black arrow)
(https://genomevolution.org/r/pho0). Wedges formed between adjacent genomes show regions of sequence similarity, a colinear set being used to
identify syntenic blocks. Links to regenerate these analyses are in Supplementary File S2.

antigen (SERA) (45) and cytoadherence-linked asexual
gene (CLAG) (46)] as models for the analysis of multigene
family evolution and gene content change. Plasmodium
falciparum SERA-5 (PlasmoDB ID: PF3D7_0207600), a
putative vaccine candidate (47) and P. falciparum CLAG-9
(PlasmoDB ID: PF3D7_0935800), a gene implicated in
cytoadherence of infected erythrocytes (48) and solute
transport (46) were used as family-specific gene queries.
A diagram of the steps followed in this example workflow
is included on Figure 8.

How to use SynFind

1. Find SynFind on CoGe’s main page (https://genomevo
lution.org/CoGe/SynFind.pl).

2. Type an organism’s name in the Select Target Genomes
‘Search’ box. Organisms and genomes with names

matching the search term will be displayed on the
Matching Organisms menu (e.g. type Plasmodium).
Note that SynFind requires genomes to have CDS (pro-
tein CDS) structural annotations.

3. Select the genomes of interest and click on ‘+ Add’.

The genomes will appear on the Selected Genomes
menu [e.g. select P. falciparum 3D7 (id 19306 NCBI
unmasked v5) from the list of available genomes].
Alternatively, all genomes of interest can be selected
from any saved Notebook by clicking on ‘Import List’.

4. Type the Gene Name, Annotation or Organisms on

the ‘Specify Features’ section and click on ‘Search’.
All matches to the search term and the genome where
they have been found will appear in a new menu. Select
the relevant match and its reference Genome (e.g.
type SERA-5 under ‘Name’ and Plasmodium under
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Figure 8. SynFind section of example Workflow 3. The displayed numbers match the steps indicated in the workflow section of the text. Screen cap-
ture of results from SynFind analysis: (a) summary table of syntelogs and genes proxy by regions; (b) syntenic depth table and (¢) summary table of
syntenic depth for all evaluated species. Links to regenerate these screen captures are provided within the step-by-step instructions found in the text.

‘Organism’). Change the SynFind general parameters
(i.e. comparison algorithm) or synteny finding param-
eters (i.e. gene window size, minimum number of genes
and maximum syntenic depth) before starting the ana-
lysis if needed.

Click on ‘Run SynFind’ to start the analysis (https:/
genomevolution.org/r/ohlf). Results can be selected and
exported from the ‘Download’ menu.

SynFind results

SynFind identified a unique number of syntelogs (syntenic
gene copies) and regional proxies (syntenic regions missing
the query gene and thus potential evidence of duplication
followed by loss) when PfCLAG-9 (https://genomevolu
tion.org/r/ohll) or PfSERA-5 (https://genomevolution.org/
r/ohlf) were queried (Supplementary File S4). At least
one PfCLAG-9 syntelog or regional proxy was found for
all analysed Plasmodium species. In contrast, multiple
PfSERA-5 syntelogs or regional proxies were identified in
each species, with some exceptions. These analyses show
the distinctive evolutionary patterns of both families, with
many SERA paralogs having conserved synteny while
CLAG paralogs do not.

CoGeBLAST

CoGeBLAST uses the BLAST suite of search algorithms
(49) or LASTZ (43) to query any set of genomes in CoGe
and further extends the base functionality of BLAST by
incorporating useful genome visualizations into the search
results. CoGeBLAST’s visualization can be used to identify
patterns of gene organization (e.g. the organization of
Plasmodium multigene families SERA and CLAG). In add-
ition, CoGeBLAST results can be sent to GEvo for micro-
synteny analysis, enabling closer examination of local
genome organization near query genes, as well as extracting
the sequences of genes with significant BLAST hits for add-
itional downstream analyses (e.g. inferring phylogenetic re-
lationships). CoGeBLAST was used to perform sequence
similarity searches across Plasmodium genomes and further
explore differences in gene content. A diagram of the steps
followed in this example workflow is included in Figure 9.

How to use CoGeBLAST

1. Find CoGeBLAST on CoGe’s main page (https://
genomevolution.org/coge/CoGeBlast.pl).

2. Type a scientific name in the Organism ‘Search’ box.
All genomes with names matching the search term will
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Figure 9. CoGeBLAST section of example Workflow 3. The displayed numbers match the steps indicated in the workflow section of the text. Screen
capture of results from CoGeBLAST analysis: (a) HSP table; (b) genomic HSP visualization and (c) details of hits obtained for each evaluated species.
Links to regenerate these screen captures are provided within the step-by-step instructions found in the text.

appear under the ‘Matching Organisms’ menu [e.g.
type Plasmodium and select P. vivax Indonesia 1 (P01)
Ensemble: (id 32811) vl unmasked 24 214 674 nt].
Sets of genomes may be imported from any saved
Notebook by clicking ‘Import List’.

3. Select all the genomes of interest and click ‘+ Add’. The
genomes will appear in the ‘Selected Genomes’ menu.

4. Enter your query sequence in FASTA format
(Supplementary File S5). Change the BLAST param-
eters before starting the analysis if needed (e.g. specify-
ing nucleotide or protein query sequence).

5. Click on ‘Run CoGeBLAST’ (https://genomevolution.
org/r/ohl6). Results can be selected and exported from
the ‘Download’ menu.

CoGeBLAST results

The number of significant CoGeBLAST (E-value < 1e™*,
quality >20%) hits varied across species for both P/SERA-5
and PfCLAG-9. These analyses can be reproduced using the
sequences found in Supplementary File S5 and the parameters
selected on the following CoGe links: PfSERA-S (https:/
genomevolution.org/r/ohl6) and PfCLAG-9 (https://genome

volution.org/r/ohlj). Microsynteny analyses of the genome
region containing four of the highest-ranking BLAST hits
(HSP 1) for the SERA (https://genomevolution.org/r/peel)
and CLAG families (https://genomevolution.org/r/z36¢)
(Figure 10) demonstrated unique patterns of multigene
family organization. Both families have had significant
lineage-species contractions and expansions. However,
SERA family members are arranged in tandem (44, 45);
while not all CLAG members display a clustered genome

distribution (46).

Conclusions

The data presented herein is intended to serve as a demon-
stration of how CoGe’s tools and services can be used to
assess genome-wide evolutionary patterns, further charac-
terize sequenced genomes and perform different types of
comparative genomic analyses. It should be noted that
only a fraction of the tools and services available on CoGe
have been covered here. Tools related to exploration of
complex evolutionary patterns (e.g. codon change matri-
ces) and features that allow group collaboration and data
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Figure 10. GEvo analysis using the CoGeBLAST's output. Independent analyses are shown for the SERA (https:/genomevolution.org/r/pee1) and

the CLAG multigene families (https://genomevolution.org/r/z36¢c). Wedges formed between adjacent genomes show regions of sequence similarity
in four Plasmodium species, a colinear set being used to identify syntenic blocks. Red arrow on top shows the location of the CLAG-9 and SERA-5
paralogs on P. vivax (Salvador-1). Note that SERA-5 exists in a tandem gene cluster, which results in having many overlapping regions of sequence
similarity showing matches to each member of tandem gene cluster. Links to regenerate these analyses are in Supplementary File S2.

sharing have not been discussed. Furthermore, though we
described CoGe tools using publicly available Plasmodium
data; the instructions, tools and resources shown here are
applicable in studies investigating any number of genomes
from any species.

It is important to note that all analyses made in CoGe
are reproducible, with links given to regenerate each ana-
lysis. Although CoGe is open for public and anonymous
use for all publicly available genomes, for researchers that
choose to get an account, CoGe will automatically track
each analysis the researcher does and list them in their User

page (Supplementary File S6). In addition, having a CoGe
user account lets researchers add in their own data, keep
them private and share them with collaborators. For com-
putationally savvy researchers, CoGe also has a REST ap-
plication programming interface that allows researchers to
write programs to retrieve data, run analyses and integrate
CoGe’s features into their programs. As more genomic
data are generated, open computational platforms such as
CoGe lets researchers easily manage and analyse their data
without the needs to stand up the entire computational in-
frastructure required to support large-scale analyses.
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