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1  | INTRODUC TION

Ovarian carcinoma (OV) is one of the most fatal gynaecological 
cancers.1 Although prognosis is improved to a certain degree by 
surgical treatment and platinum-based chemotherapy, the major-
ity of patients eventually die of recurrent tumour and platinum 
drug resistance, and the 5-year survival of advanced patients is 
only 20%-30%.2,3 At present, ovarian carcinoma is mainly treated 
by surgery, chemotherapy, radiotherapy, targeted therapy, and 

endocrine therapy, but current therapies have a certain limited 
efficacy and fail to achieve satisfactory results. Therefore, more 
effective treatment measures are urgently required to improve 
the quality of life and survival of ovarian carcinoma patients. In 
recent years, tumour immunotherapy has attracted more and more 
attention, and it is a therapy that can eliminate cancer cells by en-
hancing the immune function of the human body.4 Compared with 
traditional tumour therapies, tumour immunotherapy mainly acts 
on the immune system or the microenvironment of tumours but 
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Abstract
Ovarian carcinoma has the highest mortality among the malignant tumours in gy-
naecology, and new treatment strategies are urgently needed to improve the clinical 
status of ovarian carcinoma patients. The Cancer Genome Atlas (TCGA) cohort were 
performed to explore the immune function of the internal environment of tumours 
and its clinical correlation with ovarian carcinoma. Finally, four molecular subtypes 
were obtained based on the global immune-related genes. The correlation analysis 
and clinical characteristics showed that four subtypes were all significantly related 
to clinical stage; the immune scoring results indicated that most immune signatures 
were upregulated in C3 subtype, and the majority of tumour-infiltrating immune cells 
were upregulated in both C3 and C4 subtypes. Compared with other subtypes, C3 
subtype had a higher BRCA1 mutation, higher expression of immune checkpoints, 
and optimal survival prognosis. These findings of the immunological microenviron-
ment in tumours may provide new ideas for developing immunotherapeutic strate-
gies for ovarian carcinoma.
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not tumour cells, and it can also promote synergistic antitumour 
actions in combined treatment.5

Acquired immunity generally develops from the innate immune 
system and adaptive immune system and their interactions as well. The 
innate immune system produces immune cells (eg dendritic cells and 
macrophages) to protect the body, while the adaptive immune system 
defends against special threats via specific lymphocytes (B cells and T 
cells) to form immunological memory. Cancer cells disrupt the regula-
tory pathway of T cells, recruit immunosuppressive cells and release 
active cytokines with an immunosuppressive effect by influencing the 
antigen presentation process, thereby impairing the immune system 
and altering immune regulation for the benefit of the tumour cells.6,7 
By the advanced stage, they have developed several mechanisms to 
escape immune surveillance. The stimulation of programmed death-1 
(PD-1) signal transduction in tumour cells facilitates the inhibition of 
T cell activity, and such inhibition can be promoted when the ligand 
CD86 or CD80 binds to CD28 or CTLA4. Thus, the upregulation of 
these immune checkpoint genes can lead to the suppression of the 
immune microenvironment.8 The immune checkpoint inhibitors devel-
oped for PD-1 and CTLA4 can be effective in treating several tumours 
by activating the function of immune cells and normalizing the tumour 
microenvironment.9,10 However, the efficacy of tumour immunother-
apy is affected by the immune microenvironment of tumours, and 
some patients show significant response to tumour immunotherapy, so 
there is marked individual variation in the clinical treatment outcome.11 
The complexity of the tumour immune microenvironment increases 
the difficulty of immunotherapy and affects its effectiveness, but the 
expression pattern of immune checkpoint genes in ovarian carcinoma 
and the potential clinical relationship are still unclear.4 Therefore, it is 
imperative to study in depth the overall immune status of patients, to 
identify the molecular subtypes of cancer, and to improve treatment 
efficacy in advanced OV patients.

This study aimed to explore the overall immune status of OV 
patients and its clinical significance. We screened the expression 
data of immune genes from the TCGA database and determined four 
molecular subtypes of ovarian carcinoma. We then compared the 
clinical characteristics, immune score, BRCA1/2 variant status, prog-
nosis and immune checkpoint expression of the different subtypes, 
and finally validated our analysis results using external datasets. Our 
study findings can be helpful for the immunological treatment of 
ovarian carcinoma.

2  | METHODS

2.1 | Data source and processing

We used the GDC (https ://docs.gdc.cancer.gov/API/Users_Guide/ 
Getti ng_Start ed/) API to download the TCGA-OV profile dataset 
containing a total of 374 samples and 5 samples of recurrent tu-
mours, all of which were samples prior to standard treatment after 
diagnosis. Among them, Stage I, Stage II, Stage III and Stage IV have 
1, 21, 292 and 57, respectively. We matched the expression profile 

and the clinical follow-up samples and selected both samples as the 
sample set of the study. Further, we extracted the immune gene sets 
with expression from the expression profiles and selected the ex-
pression levels in each sample to be greater than 0. The sample with 
more than 30% of the genes was included as an immune gene for this 
study. Final inclusion of 1251 genes.

The GSE26193 dataset of the GPL570 platform was downloaded 
using the R package GEOquery, which contained 107 samples, of which 
Stage I, Stage II, Stage III and Stage IV were 21, 10, 59 and 17, respec-
tively, according to the GPL570 annotation information. According to 
the annotation information of GPL570, probe mapping is applied to 
genes. If there are multiple probes corresponding to one gene, take the 
median and delete probes corresponding to multiple genes. Thirteen 
types of immune metagenes were collected from Safonov et al12 We 
downloaded 6 types of immune cells corresponding to each sample of 
OV from Timer (https ://cistr ome.shiny apps.io/timer/ ) and downloaded 
immune genes from ImmPort database (https ://immpo rt.niaid.nih.
gov). We utilized the R package to estimate and calculate the immune 
score and matrix score of each sample.

2.2 | Molecular subtypes screening based on 
immune genes

We made use of the expression profile of immune genes for consist-
ent clustering, just as Zhang et al,13 who used R software package 
ConsensusClusterPlus to screen the molecular subtypes. In the study, 
Euclidean distance was utilized to calculate the similarity distance 
between samples, and K-means was used for clustering. 80% of 
the samples were sampled by resampling scheme. Resampling was 
conducted for 100 times. The optimal number of clusters was de-
termined by the cumulative distribution function (CDF). We further 
utilized the R package sigclust to analyse the clustering significance 
between these subtypes.

2.3 | The relationship between subtypes and 
clinical features

Different clinical features are closely related to the development of 
the disease. The relationship between subtypes and disease devel-
opment can be more clearly recognized by analysing the relationship 
between subtypes and clinical features. We extracted the informa-
tion of age, grade and stage from the clinical follow-up data of the 
patients and observed the relationship between the subtypes and 
age, grade, and stage, respectively.

2.4 | The relationship between 
subtypes and immunity

There are key gene sets involved in the immune process discussed 
in previous studies. We collected 13 types of immune metagenes to 

https://docs.gdc.cancer.gov/API/Users_Guide/Getting_Started/
https://docs.gdc.cancer.gov/API/Users_Guide/Getting_Started/
https://cistrome.shinyapps.io/timer/
https://immport.niaid.nih.gov
https://immport.niaid.nih.gov
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analyse the relationship between these metagenes and subtypes. 
The immune components of tumour tissue are closely related to 
the prognosis of tumour. We analysed the relationship between 
matrix, immune score and molecular subtypes, respectively. The 
score of immune infiltrating cells directly reflects that the degree 
of immune infiltration in tumour tissue is closely related to the oc-
currence and development of tumour. We further utilized variance 
analysis to evaluate the differences in the above scores of different 
subtypes.

2.5 | The relationship between 
subtypes and prognosis

We extracted the follow-up data of patients from the sample follow-
up information and utilized K-M to analyse the prognostic differ-
ences of different subtypes.

2.6 | Other statistical methods

In this study, chi-square test and exact test of Fisher's were uti-
lized for the correlation between molecular subtypes and conven-
tional clinical variables. The OS rates of all molecular subtypes were 
compared using log-rank test and Kaplan-Meier curves. All of the 
statistical tests were two-sided tests. R software was utilized for 
statistical analysis.

3  | RESULTS

3.1 | Identification of four molecular subtypes of 
ovarian carcinoma based on immune profiles

The optimal number of clustering was determined by CDF. As 
shown in Figure 1A, the clustering results were stable when 4 sub-
types were clustered, which were obtained by the subsequent ob-
servation of the CDF delta area curve in Figure 1B. Finally, k = 4 
was selected and 4 molecular subtypes were obtained. The clus-
tering significance among the 4 subtypes was further analysed 
by “sigclust” in the R software package, and the results indicated 
no significant clustering difference between C1 and C2 subtypes 
(P = 1) but a very significant clustering difference between C1 and 
C3, C1 and C4, C2 and C3, C2 and C4, and C3 and C4 subtypes 
(P = 0). The stable clustering results at k = 4 were chosen on the 
basis of the consensus clustering results. Figure 1C shows that 274 
tumour samples were divided into these 4 subtypes. Furthermore, 
the expression spectra of 356 immune gene sets were used to an-
alyse the differences between different subtypes, and the genes 
with a higher expression level in one subtype compared to other 
subtypes were screened using the Kolmogorov-Smirnov test. Using 
FDR < 0.05 as the threshold, 124, 506, 180 and 162 genes with a 
higher expression level in C1, C2, C3 and C4, respectively, were 

eventually selected, and there was little intersection between 
these genes (Figure 1D). In addition, PCA was performed on the 
expression spectra of the top 100 genes with significantly higher 
expression for each subtype, and the scatter plot of the top 2 com-
ponents is shown in Figure 1E, which indicates the clear clustering 
of the 4 subtypes. The expression profile heatmap of these genes 
is shown in Figure 1F, indicating that various subtypes had a clear 
border and a notable expression pattern in the expression spectra 
of these genes.

3.2 | Relationship between 4 subtypes and clinical 
characteristics

The relationship between the 4 subtypes and age, tumour grade 
and tumour stage was analysed, as shown in Table 1. Four subtypes 
were not significantly correlated with age or grade but showed a sig-
nificant relationship with stage, and Stage II samples of C3 subtype 
were evidently more than those of other subtypes.

3.3 | Relationship between 4 
subtypes and immunity

To analyse the relationship between the 4 subtypes and immunity, 
we collected 13 immune metagenes,12 the scores of tumour im-
mune components (matrix score, immune score and tumour purity) 
and the scores of 6 types of tumour-infiltrating immune cells, and 
we then analysed the relationship between these three immunity-
related scores. The results showed that most of the 13 immune 
metagenes were highly expressed in C3, while a few were highly 
expressed in C3 and C4 (Figure 2A). The immunescore of C3 sub-
type was significantly higher than that of the other subtypes, and 
the matrix score and tumour purity of C4 subtype were clearly 
greater than those of the other subtypes (Figure 2B). Among 3 im-
mune cell infiltration scores, B cell and CD8_cell scores of C3 were 
much higher than those of the other subtypes, and the scores of 
CD4_T cells, neutrophils, dendritic cells and macrophages in the 
C3 and C4 groups were markedly greater than those in the C1 and 
C2 groups(Figure 2C). Generally, most immune signatures in C3 
subtype were upregulated as compared with C1 and C2 subtypes, 
and the upregulation of most tumour-infiltrating immune cells was 
also observed in C3 and C4 subtypes, which indicated that the 
immune microenvironment of C3 and C4 subtypes was enhanced 
(Figure S1). Yang et al14 integrated a large number of ovarian can-
cer chip datasets, using gene set enrichment method to evaluate 
28 kinds of immune cell types, which is more suitable in a variety 
of datasets. We used Yang et al's method to evaluate the enrich-
ment score (ES) of samples in each subgroup among 28 immune cell 
types and found that most of them were highly expressed in C3. A 
few of them are highly expressed in C3 and C4, such as Figure 2D, 
which is consistent with our calculation of 13 immune metagene 
results (Figure 2A).
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3.4 | Analysis of prognostic differences and BRCA 
variant between 4 subtypes

To determine the relationship between the 4 subtypes and prognosis, 
the prognostic differences between the 4 subtype samples were ana-
lysed by the Kaplan-Meier method (Figure 3A). There was a significant 
difference in prognosis between the 4 subtype samples: the prognosis 
of C4 subtype samples was the worst, and the prognosis of C3 subtype 
samples was markedly better than that of the other subtype samples, 
while a very significant difference was found between C3 and C4 sub-
type samples (Figure 3B). This indicated that the immune-enhanced 
subtypes C3 and C4 in ovarian carcinoma had two opposite clinical 
outcomes in the prognosis. BRCA is a tumour suppressor gene that 
plays an important role in the regulation of cell replication, the repair of 
DNA damage and the normal cell growth. BRCA variant loses tumour 
growth inhibiting function. There are up to 100 types of BRCA variant, 
and all BRCA variants are associated with human cancers, most closely 
with breast cancer followed by ovarian carcinoma. Therefore, we ana-
lysed the relationship of BRCA1 and BRCA2 variants in the 4 subtype 
samples. The data of BRCA1 and BRCA2 variants were extracted from 
SNP data in TCGA using MuTect, and the percentage of BRCA1 variant 
and non-variant samples in the 4 subtype samples was then analysed 
separately (Figure 3C). The percentage of BRCA1 variant samples in 
C3 subtype samples was significantly higher than that in the other sub-
type samples (χ2 test, P = .036). The BRCA2 variant/wild-type ratio in 
the 4 subtype samples was analysed (Figure 3D), and it was greater 

in C4 subtype samples, but the differences with other subtype sam-
ples were not statistically significant (χ2 test, P = .617). Furthermore, 
we analysed the distribution of the number of mutated genes in the 4 
subtype samples and found a significant difference in the frequency of 
gene mutation between the 4 subtype samples; the frequency of gene 
mutation in C4 subtype samples was clearly higher than that in the 
other subtype samples (Figure 3E).

3.5 | Relationship between 4 subtypes and the 
expression of 8 immune checkpoint genes

The relationship of 8 immune checkpoint genes with the 4 subtypes 
was further analyzed. The expression levels of PDCD1, CD274, 
PDCD1LG2, CTLA4, CD86 and CD80 in C3 subtype were signifi-
cantly greater than those in other subtypes, and CD267 demon-
strated a markedly higher expression level in C4 subtype (Figure 4). 
Relationship between 4 subtypes and the expression of 8 immune 
checkpoint genes. The abscissa from left to right is C1, C2, C3 and C4, 
and the ordinate represents expression of 8 immune checkpoint genes, 
comparisons of 4 subtypes were carried out by one-way analysis of 
variance (ANOVA) test with post hoc contrasts by Student-Newman-
Keuls test. The statistical significance for all tests was set at P < .05

3.6 | WGCNA analysis and mining of immune-
enhanced subtype-related modules

The expression profile data of 871 immune genes for the 4 subtypes 
were obtained to further mine the prognostic markers related to the im-
mune microenvironment of ovarian carcinoma. The distance between 
transcripts was then calculated, and the weighted co-expression net-
work was constructed using WGCNA in the R software package.15-18 
Finally, the co-expression modules were screened with the soft thresh-
old of 2. The studies showed that the co-expression network complied 
with the scale-free network; that is, the log(k) of a node with the con-
nectivity being k was negatively correlated with the log(P(k)) of the 
presentation probability of the node, and the correlation coefficient 
was >0.8. To make sure that the network was a scale-free one, β = 2 was 
selected (Figure 5A,B). The expression matrix was converted into the 
adjacency matrix, and the latter was then converted into the topological 
matrix. The genes were clustered on the basis of TOM using the aver-
age-linkage hierarchical clustering method, where the standard of three 
was sheared according to the mixed dynamics, and the minimum num-
ber of genes in each gene (lncRNA) network module was set at 30. After 

F I G U R E  1   Identification of OV subtypes based on the immune genes. A, CDF curve; different colours reflect different cluster numbers, 
the horizontal axis represents the consensus index, the vertical axis stands for cumulative distribution function (CDF), and a bigger AUC 
indicates better clustering. B, CDF delta area curve of consensus clustering, indicating the relative change in area under the cumulative 
distribution function (CDF) curve for each category number k compared with k − 1. The horizontal axis represents the category number 
k, and the vertical axis represents the relative change in area under CDF curve. C, Heatmap of sample clustering at consensus k = 4; D, 
Intersection Venn diagram of significant high-expression genes of various subtypes; E, Expression profile PCA of top 100 significant high-
expression genes, and scatter plot of top 2 components; F, gene expression heatmap of top 100 significant high-expression genes in four 
subtypes. Red represents high expression, and blue represents low expression

TA B L E  1   Relationship between 4 subtypes and clinical 
characteristics (χ2 test)

 C1 C2 C3 C4 P value

Age

>60 59 48 29 33 .9207

≤60 65 62 38 40  

Grade

G1 0 0 0 1 .6647

G2 12 14 7 9  

G3 106 93 59 62  

G4 1 0 0 0  

Stage

Stage I 1 0 0 0 .0257

Stage II 9 1 9 2  

Stage III 100 86 48 58  

Stage IV 14 22 9 12  
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the determination of gene modules with the dynamic shear method, 
the eigengene of modules was calculated in sequence, and the modules 
were then subjected to clustering analysis, The adjacent modules were 
merged into the new modules, and the setting of height = 0.25, deep-
Split = 2 and minModuleSize = 30 was done. Totally, 5 modules were 
obtained (Figure 5C), and it should be noted that the grey module could 
not be clustered into the gene sets of other modules. The transcript 

statistics of various modules are shown in Table S1, and 458 transcripts 
were divided into 4 co-expression modules. The eigengenes of 5 mod-
ules and their correlations with the 4 subtypes were determined sepa-
rately (Figure 5D); the blue module correlated positively with C1 but 
negatively with C2, the brown module and yellow module correlated 
with C3 and C4, respectively (average correlation coefficient > 0.65). 
The number of transcripts in the 3 modules was 115, 100 and 61, 

F I G U R E  2   Immune profiles of the four molecular subtypes in the TCGA-OV cohort. A, Gene expression score of 13 groups of immune 
metagenes in 4 molecular subtypes of ovarian cancer. In the heat map of gene expression, red represents high expression and blue 
represents low expression. B, Gene expression score of the tumour stroma scores, the immune scores and the tumour purity in 4 molecular 
subtypes of ovarian cancer. C, Gene expression score of 6 types of tumour-infiltrating immune cells in 4 molecular subtypes of ovarian 
cancer. D, Gene expression score of 28 immune cell types in 4 molecular subtypes of ovarian cancer
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respectively, and a total of 276 genes were included. The functions of 
genes in the modules related to the 4 subtypes were further analysed, 
and KEGG enrichment analysis was conducted using clusterProfiler in 
the R software package at a significance level of FDR < 0.05. Among 
three modules, there were 42 pathways in the brown module (Table S2), 
30 pathways in the yellow module (Table S3), 94 pathways enriched in 
the blue module (Table S4) (Figure 5E). The relationship of pathways 
enriched in these three modules was analysed, and a total of 121 path-
ways were enriched in three modules, where the pathways in the yellow 
modules overlapped mostly with those in the other two modules.

3.7 | Validation of external datasets

We selected the genes in the gene co-expression modules (blue, brown 
and yellow) closely related to various subtypes and then extracted the 

expression spectra as a training set. The classification model was es-
tablished using support vector machine (SVM), and the samples were 
then classified with an accuracy of 100%. To further validate the 4 
subtypes, GSE26193 standard data including a total of 107 samples 
were downloaded from the GEO database, and thereafter, the expres-
sion spectra of genes in the blue, brown and yellow modules were 
extracted and substituted into the model for sample classification. 
There were 51 samples of C1 subtype, 15 samples of C2 subtype, 24 
samples of C3 subtype and 17 samples of C4 subtype predicted. We 
first analysed the expression distribution of 13 immune metagenes in 
the 4 subtypes (Figure 6A) and found a high expression of most im-
mune metagenes in C3 subtype, which was consistent with the train-
ing set. Next, we further analysed the immune scores of the samples 
(Figure 6B) and observed that the immune score in C3 subtype was 
significantly higher than that in the other subtypes and that the matrix 
score and tumour purity in C4 subtype were clearly greater than that 

F I G U R E  3   Survival analysis of the four ovarian cancer subtypes. A, KM curves showing prognostic relationship of 4 subtypes; The P-
value was calculated using the log-rank test, by comparing the overall survival of 4 subtypes. The abscissa represents survival time (d) and 
the ordinate represents survival probabilities. B, KM curve showing prognostic difference between C3 and C4 subtypes. C, BRCA1 variant 
type/wild-type ratio in 4 types of samples; D, BRCA2 variant type/wild-type ratio in 4 types of samples; the abscissa from left to right is C1, 
C2, C3 and C4, and the ordinate represents ratio. E, Distribution of the number of mutated genes in 4 types of samples (ANOVA, P = .02). 
The abscissa from left to right is C1, C2, C3 and C4, and the ordinate represents number of mut genes
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in the other subtypes, which was coincident with the training set. The 
analysis of the expression distribution of 8 immune checkpoint genes 
is shown in Figure 6C, and 6 of 8 genes demonstrated an expression 
distribution consistent with the training set. On the basis of the analy-
sis of prognostic differences (Figure 6D), the differences in prognosis 
between 4 subtypes were marginally significant (P = .065), and the 
prognosis of C4 subtype was markedly poorer than that of the other 
subtypes; as shown by further analysis, the prognosis of C3 subtype 
was clearly better than that of C4 subtype (Figure 6E), which was con-
sistent with the validation dataset.

3.8 | Data analysis flow chart

To make our study better understand. The workflow of the proposed 
method was developed as shown in Figure 7.

4  | DISCUSSION

In recent years, an increasing number of studies have focused on 
exploring the molecular subtypes of epithelial ovarian cancer based 
on genomewide profiles or multi-omics to promote the realization of 
personalized treatment and improve the survival rate in patient19-22; 
however, the achievements of molecular subtypes remain in the ini-
tial phase.

The immune process plays a key role in the carcinogenesis and 
progression of solid tumours. It is believed that the newly nascent 
transformed cells can be initially eliminated by the host immune 
system based on innate immunity and adaptive immunity, and the 
destroyed cells then release various tumour antigens, further stimu-
late adaptive immunity and activate T/B lymphocytes. Studies have 
shown that tumour lymphatic infiltration and better survivability 
of patients have a strong correlation,23-25 suggesting that patients 

F I G U R E  4   Validation of external datasets. A, Expression distribution of 13 immune metagenes in 4 subtypes in the validation set; B, Gene 
expression score of the tumour stroma scores, the immune scores and the tumour purity in the validation set; C, Expression distribution of 8 
immune checkpoint genes in 4 subtypes in the validation set. The abscissa from left to right is C1, C2, C3 and C4, and the ordinate represents 
expression of 8 immune checkpoint genes (ANOVA); D, prognostic differences between 4 subtypes in the validation set; The P-value was 
calculated using the log-rank test, by comparing the overall survival of 4 subtypes. E, Prognostic difference between C3 and C4 subtypes. The 
abscissa represents survival time (d) and the ordinate represents survival probabilities

F I G U R E  5   WGCNA analysis and mining of immune-enhanced subtype-related modules. A, Evaluation of the scale-free model at 
different soft thresholds; a larger value indicates better compliance with the features of the biological network. B, Mean connectivity at 
different soft thresholds; the horizontal axis represents the soft threshold, and the vertical axis represents the mean connectivity analysis of 
network topology for various soft-thresholding powers; C, Gene dendrogram and module colours; different colours represent the genes in 
different modules. D, Module-feature correlation; the row represents the eigengenes of each module and the column represents the feature 
information of the samples. Red to green represents a high to low correlation coefficient. The digit in each grid indicates the correlation 
coefficient between gene modules and the corresponding features, and the digit in the bracket represents the P value. E, Enriched pathways 
associated with co-expressed genes in blue module, yellow module and brown module. The diamond represents different modules, and the 
ellipse represents the path of enrichment
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with ovarian cancer may benefit from immunotherapy. Therefore, 
screening for immune molecular subtype based on ovarian cancer is 
of great clinical significance.

The advantage of current study mainly aimed to investigate the 
global immune profiles, which could provide more details about the 
immune landscape in ovarian cancer. We identified four gene expres-
sion subtypes based on the global immune genes in the TCGA-OV 
cohort. It is verified in the external dataset GSE26193.

Among the four molecular subtypes, the overall immune pro-
files of subtypes C3 and C4 were significantly higher than in com-
parison with that of subtypes C1 and C2. However, there were also 
differences between C3 and C4. Most of the 13 kinds of immune 
metagenes and immune cell infiltration score (immunity) were highly 

expressed in C3 subtype (Figure 3A,B), and the immune cell infiltra-
tion score (matrix and tumour purity) of C4 subtype was significantly 
higher than those of other subtypes (Figure 3B). The scores of mul-
tiple types of immune-related cells such as B_cell and CD8_cell in 
C3 subtype were significantly higher than those in other subtypes.

These findings indicate that the immune microenvironment of C3 
and C4 subtypes was strengthened. C1 and C2 subtypes had lower 
immunoreactive expression with lower immune scores. In the compar-
ison of overall survival, the prognosis of C1 and C2 subtypes was poor 
and consistent. It was noted that the poorest prognosis was found 
in C4 subtype, while C3 subtype had significantly better prognosis 
than the other subtypes. This suggests that the immune-enhanced 
subtypes may not respond to the best prognosis in ovarian carcinoma.

F I G U R E  6   Validation of external datasets. A, Expression distribution of 13 immune metagenes in 4 subtypes in the validation set; 
B, Gene expression score of the tumour stroma scores, the immune scores and the tumour purity in the validation set; C, Expression 
distribution of 8 immune checkpoint genes in 4 subtypes in the validation set. The abscissa from left to right is C1, C2, C3 and C4, and the 
ordinate represents expression of 8 immune checkpoint genes (ANOVA); D, prognostic differences between 4 subtypes in the validation set; 
The P-value was calculated using the log-rank test, by comparing the overall survival of 4 subtypes. E, Prognostic difference between C3 and 
C4 subtypes. The abscissa represents survival time (d) and the ordinate represents survival probabilities
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BRCA1/2 is a tumour suppressor gene and encodes BRCA1/2 
protein, which plays a critical role in regulating essential cellular activ-
ities, such as normal cell growth, repair, transcription and activation 
of DNA damage, and inhibition of chromatin remodeling.26 Mutated 
BRCA1/2 gene loses its normal physiological functions, so that the 
wrong non-homologous recombination occurs in cells, resulting in 
the progression of cancer.27 Our analysis on the correlations between 
the 4 subtypes and BRCA1/2 mutation showed that BRCA1 muta-
tion percentage in C3 subtype samples was significantly higher than 
that in the other subtype samples. Some studies have demonstrated 
that pathways involving BRCA1/2 play a very important role in the 
process of cisplatin resistance; the nucleotide excision repair path-
way during DNA repair is little associated with cisplatin resistance, 
but such drug resistance could be enhanced by the upregulation of 
the homologous recombination repair pathway.28 BRCA1/2 directly 
or indirectly participates in DNA excision and repair. Meanwhile, 
BRCA1/2 absence or mutation can increase the sensitivity of cells 
to DNA crosslinkers (eg cisplatin), and the capacity of cisplatin drugs 
to damage DNA double strands will be enhanced if BRCA protein ac-
tivity is lost.29 It has been shown that the 5-year survival of patients 
with BRCA1 mutation is increased with cisplatin and paclitaxel com-
bination chemotherapy,30 which may explain why C3 subtype with 
the highest BRCA1 mutation rate had a good prognosis in our study.

Recent studies have suggested that immune checkpoints 
play an important role in the immune escape of cancer,31 so we 
further analysed the relationship between the 4 subtypes and 8 
immune checkpoint genes (PDCD1, CD274, PDCD1LG2, CTLA4, 
CD86, CD80 and CD267). These genes mainly encode high-inter-
est therapeutic targets, including PD-1, programmed death-ligand 
1, programmed death-ligand 2, cytotoxic T lymphocyte-associ-
ated antigen-4 (CTLA-4), CD86, CD80 and 13b protein (a mem-
ber of tumour necrosis factor receptor superfamily). Currently, 
the monoclonal antibodies developed for PD-1 and its ligands are 
successfully applied in clinical practice and approved for several 
cancers (eg melanoma, non-small cell lung carcinoma, renal cancer, 
and bladder cancer).32 Clinical studies have shown that the combi-
nation of anti-PD-1/PD-L1 antibody and CTLA-4 inhibitor can im-
prove the treatment effect of patients with advanced melanoma, 

and it has been approved by the FDA for treating BRAF V600E 
wild-type patients with unresectable or metastatic melanoma.9,10 
A recent phase-II clinical trial (CheckMate 069) revealed that com-
pared with monotherapy with ipilimumab (a CTLA-4 inhibitor), the 
combination therapy of ipilimumab and nivolumab (a PD-1 inhibi-
tor) improved therapeutic efficacy in patients with advanced mel-
anoma, and the 2-year survival of monotherapy and combination 
therapy was 53.6% and 63.8%, respectively.33 Our study results 
suggested that PDCD1, CD274, PDCD1LG2, CTLA4, CD86 and 
CD80 were highly expressed in the samples of the C3 immune-en-
hanced subtype. Many studies have confirmed that some immu-
nosuppressive molecules (eg PD-L1) are overexpressed when 
tumours invade the lymph nodes, and this process is called “adap-
tive immune resistance.” Therefore, the high expression of immu-
nosuppressive molecules such as PD-L1 and CD274 is not only the 
result of the mutations of tumour cells, but also possibly induced 
during immune cell invasion of tumours. Such high expression in 
the microenvironment of tumour lesions means a strong tumour 
immune attack, which is the reason for good prognosis in the pa-
tients with C3 immune-enhanced subtype characteristics.

Next, we used WGCNA to explore the functions involved in genes 
in the four molecular subtypes of the ovarian cancer immune microen-
vironment. The results showed that the C3 subtype was significantly 
positively correlated with the brown module (r = .72, P = 8e−62), while 
the gene of the brown module was mainly enriched in the Antigen pro-
cessing and presentation signal pathway (Table S2). The role of these 
pathways is closely related to malignant neoplasms, autoimmune 
reaction and inflammation. And the C4 subtype is also significantly 
positively correlated with the yellow module (r = .64, P = 6e−44). The 
related genes are significantly enriched in MAPK signalling pathway 
and PI3K-Akt signalling pathway (Table S3); The blue module gene is 
significantly enriched in Axon guidance and EGFR tyrosine kinase in-
hibitor resistance signalling pathway (Table S4).

The results of the validation set showed that the overall immune 
profiles of subtypes C3 and C4 were significantly higher than in com-
parison with that of subtypes C1 and C2, and most of the immune 
checkpoint genes were highly expressed in the C3 and C4 subtypes, 
consistent with the training set. The reliability of the C3/C4 subtype 
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as an enhanced subtype of the ovarian cancer immune microenvi-
ronment was further demonstrated.

5  | CONCLUSION

From the above discussion, the conclusion can be reached that we 
identified two immune-enhanced subtypes using gene expression 
profiles of global immune genes through large databases of TCGA 
and GEO. The two subtypes are distinct in immune checkpoint mol-
ecules, immune function, BRCA mutation and clinical prognosis. 
These findings of the immune microenvironment may shed new light 
on the strategy of immunotherapy in ovarian cancer. With the de-
velopment of internet and big data era coming, constructing data-
bases34-36 and establishing powerful webserver37,38 will provide the 
convenience to most scholars.
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