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Abstract: G protein-coupled receptors (GPCRs) are cellular master regulators that translate
extracellular stimuli such as light, small molecules or peptides into a cellular response. Upon
ligand binding, they bind intracellular proteins such as G proteins or arrestins, modulating
intracellular signaling cascades. Here, we use a protein-fragment complementation approach
based on nanoluciferase (split luciferase assay) to assess interaction of all four known human arrestins
with four different GPCRs (two class A and two class B receptors) in live cells. Besides directly tagging
the 11S split-luciferase subunit to the receptor, we also could demonstrate that membrane localization
of the 11S subunit with a CAAX-tag allowed us to probe arrestin recruitment by endogenously
expressed GPCRs. Varying the expression levels of our reporter constructs changed the dynamic
behavior of our assay, which we addressed with an advanced baculovirus-based multigene expression
system. Our detection assay allowed us to probe the relevance of each of the two arrestin binding
sites in the different GPCRs for arrestin binding. We observed remarkable differences between the
roles of each arresting binding site in the tested GPCRs and propose that the distinct advantages of
our system for probing receptor interaction with effector proteins will help elucidate the molecular
basis of GPCR signaling efficacy and specificity in different cell types.
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1. Introduction

Arrestins are cytosolic adaptor proteins, capable of binding to transmembrane proteins, most
notably, G protein-coupled receptors (GPCRs). They obtained their name from their ability to desensitize
GPCRs by arresting the heterotrimeric G protein signaling pathway. Vertebrates have four arrestin
genes: S-arrestin (SAG), arrestin-C (ARR3), β-arrestin-1 (ARRB1) and β-arrestin-2 (ARRB2) [1] S-arrestin
and arrestin-C are also referred to as visual arrestins, due to their selective expression in rod and cone
photoreceptor cells of the retina where they are involved in the desensitization of rhodopsin and cone
opsins [2]. β-arrestin-1 and β-arrestin-2, also called non-visual arrestins, are expressed throughout
the body and bind to a great variety of GPCRs. These receptors can be classified into two groups in
terms of their interaction with β-arrestins: class A, which interact only transiently with arrestins and
show a preference for β-arrestin-2 (like the β2-adrenergic receptor (B2AR), and class B, which have a
prolonged interaction and no apparent selectivity (like the type-2 angiotensin II receptor) [3].
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Besides desensitization of G protein signaling, arrestins also act as multifunctional scaffold
proteins. They are thus involved in endosomal trafficking, vesicle sorting and signal modulation [4].
Internalization and trafficking of GPCRs is initiated by binding of clathrin heavy chain and adaptor
protein AP2 [5]. It has been shown that internalized receptors still contribute to signaling [6] Arrestins
are also scaffolding modules for elements of the MAP kinase pathway, including c-Jun N-terminal
kinase (JNK), ERK1/2 and p38 MAPK. [7]. Further, arrestins have been shown to interact with
c-Src, Ca2+-bound calmodulin, microtubules and E3 ubiquitin ligases. The interaction with ubiquitin
ligases plays an important role in the targeting of internalized receptors for degradation, leading to
desensitization [8].

The GPCR–arrestin interaction has long been used as an indirect measure of ligand binding, not
only in basic research but also in the pharmaceutical industry. Therefore, many assay strategies have
been developed, and various arrestin-receptor interaction assays have been employed, for example,
PathHunter, Tango or assays based on bioluminescence resonance energy transfer (BRET).

The Tango assay is based on a fusion protein of TEV protease with arrestin, releasing a transcription
factor (TF) from a GPCR-TF fusion protein if they are in close proximity after activation. This leads
to expression of a reporter gene in the nucleus. It is an endpoint measurement taken after overnight
incubation with a ligand, meaning that it does not reflect the typical arrestin recruitment, which occurs
within minutes [9]. The PathHunter assay also requires the expression of a modified β-arrestin-2 and a
GPCR, which is C-terminally tagged with a β-galactosidase enzyme fragment [10]. Both Tango and
PathHunter assays have been proven to be useful for high-throughput screening of GPCR ligands
in the pharmaceutical industry [11,12]. Membrane recruitment of a GFP-tagged arrestin after GPCR
stimulation with a ligand can also be quantified using classical fluorescence microscopy and an image
analysis software (Transfluor assay). Nevertheless, it shows merely internalization of arrestin into
endosomes, not direct interactions [13].

BRET assays allow time-resolved measurements of signaling events. BRET assays utilize a
quantum mechanical effect that allows the transfer of energy from a light-emitting donor to an
acceptor fluorophore, given a certain spectral overlap. As the efficiency of this transfer is highly
distance-dependent, it can be used to study protein–protein interactions in living cells in real time. It was
initially used to measure GPCR dimerization, and later to measure recruitment of a β-arrestin2–YFP
fusion protein to B2AR fused to Renilla luciferase (B2AR–Rluc) [14,15]. Recently, BRET assays were
used to study the pluridimensional efficacy (or bias) of ligands, where each pathway activated by the
GPCR is measured independently to gain a more holistic understanding of the signaling profile created
by a ligand [16].

Alternatively, intramolecular arrestin BRET sensors can be used for monitoring conformational
changes, thereby indirectly measuring activation and recruitment to a receptor. For example,
β-arrestin-2 was fused to Renilla luciferase and yellow fluorescent protein at its N- and C-termini,
respectively [17]. Another approach uses FlAsH-BRET, where a tetracysteine motif that binds to a
fluorescent dye was incorporated into β-arrestin-2. The motif was incorporated at different positions
to report different structural changes. A luciferase fused to the β-arrestin-2 N-terminus served in this
case as the BRET donor. [18,19]. These intramolecular BRET sensors do not simply detect binding of
arrestin to a GPCR, but rather its activation state. This is a crucial difference, as arrestin remains in its
activated conformation even after its interaction with the GPCR [20].

These described assays have all the disadvantages that both the GPCR and the arrestin have to
be genetically modified with fluorescent proteins or other reporter entities (e.g., luciferases), which
can affect their function. The issue of tagging can be partially solved by an indirect approach. In this
case, a green fluorescent protein (EGFP) was fused either to a polyprenylation domain, localizing it to
the plasma membrane, or to an FYVE domain, localizing the EGFP to early endosomes. Expressed
together with a luciferase tagged arrestin, activation of the GPCR-arrestin complex can be observed,
even if the GPCR remains untagged [21].



Int. J. Mol. Sci. 2020, 21, 4949 3 of 14

Many studies based on luminescence used Renilla and firefly luciferases. They have the advantage
that the color of the emitted light can be varied by different substrates or the species from which
the luciferase originates [22,23]. NanoLuc is a bright, small luciferase, that was originally isolated
from Oplophorus gracilirostris. This luciferase can be split into two parts: 11S and 114. Both parts are
inactive on their own, but when brought into close proximity, their enzymatic activity is restored,
leading to luminescence in the presence of a substrate (Figures 1a and 2a). The complementation of the
two subunits is reversible, allowing the detection of protein interaction kinetics or transient protein
complexes [24,25].
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Figure 1. Direct arrestin recruitment assay showing the recruitment of all four human arrestins to 
various G protein-coupled receptors (GPCRs). (a) Principle of the assay. The large subunit of NanoLuc 
(11S) is expressed as a fusion protein with the GPCR. The small subunit (114) is linked to the N-
terminus of arrestin. Upon GPCR stimulation, arrestin is recruited to the GPCR, and NanoLuc is 
reconstituted and becomes active. After 10 min of baseline recording, GPCRs were stimulated with 1 
µM of their respective agonist (isoproteronol, DOTA-TOC, AMBA), or in the case of rhodopsin with 
light of 485 nm. (b) B2AR mainly recruits b-arrestin-2 (β-Arr2). (c–e) Somatostatin receptor type 2 
(SSTR2), GRPR and rhodopsin recruit S-arrestin (S-Arr), β-arrestin-1 (β-Arr1) and β-arrestin-2 at 
similar levels. (e) Rhodopsin recruits arrestin faster than other GPCRs recruit their respective ligands. 
The inset shows data from the standard data collection method (dark blue) and one with a higher 
temporal resolution (light blue). (f) Arrestin-C (Arr-C) recruitment is lower, but similar kinetics as for 
other arrestins was observed. Shown are time courses of the mean ± SD of a representative 
experiment. Data were normalized to the maximum response generated by a given GPCR. 

The direct assay (Figure 1a) has the disadvantage that GPCRs are modified with a tag. This has 
a strong impact on GPCRs that possess a PDZ binding motif at their C-terminus that is relevant for 
endosomal trafficking and sorting. Instead of fusing the 11S split-luciferase subunit directly to a 
transmembrane receptor, we attached this subunit to a CAAX polyprenylation motif localizing it to 
the plasma membrane (Figure 2a). This setup does not directly detect the interaction of arrestins with 
GPCRs, but rather the translocation of arrestins from the cytoplasm to the plasma membrane. This 
indirect assay allows the measurement of label-free receptors without possible steric interference of 
fused protein tags on the receptor and allows studying endogenously expressed GPCRs from 
primary cells. A similar approach was taken by Cao et al. [32] to establish a BRET-based assay. 

We used this assay to determine binding of all four human arrestins to the unlabelled B2AR, 
which again showed the strong preference of the class A receptor towards β-arrestin-2 (Figures 1a 
and 2b). Unlabelled SSTR2 and GRPR were also tested (Figure 2c,d). A higher baseline was observed, 
which could be caused by unspecific arrestin recruitment to the membrane. This leads to a lower 
signal-to-baseline ratio after stimulation with agonist compared to the direct assay (Figure 1c,d). 
Stable HEK293 cell lines expressing both the 11S-CAAX membrane sensor and either S-arrestin, β-
arrestin-1 or β-arrestin-2 were developed. All cell lines showed increased chemiluminescence after 
transient transfection of untagged GRPR, demonstrating their functionality (Figure 2e). These three 
cell lines can be used as a basis for a ligand screen of any untagged GPCR by expressing the receptor 
either transiently or stably. 

We conclude from our findings that all four human arrestins are able to differentiate between 
the active and inactive conformation of all tested GPCRs in both the indirect and direct assay. The 
results also reveal strong specificities of all receptors towards certain arrestins. The measured 

Figure 1. Direct arrestin recruitment assay showing the recruitment of all four human arrestins to
various G protein-coupled receptors (GPCRs). (a) Principle of the assay. The large subunit of NanoLuc
(11S) is expressed as a fusion protein with the GPCR. The small subunit (114) is linked to the N-terminus
of arrestin. Upon GPCR stimulation, arrestin is recruited to the GPCR, and NanoLuc is reconstituted
and becomes active. After 10 min of baseline recording, GPCRs were stimulated with 1 µM of their
respective agonist (isoproteronol, DOTA-TOC, AMBA), or in the case of rhodopsin with light of
485 nm. (b) B2AR mainly recruits b-arrestin-2 (β-Arr2). (c–e) Somatostatin receptor type 2 (SSTR2),
GRPR and rhodopsin recruit S-arrestin (S-Arr), β-arrestin-1 (β-Arr1) and β-arrestin-2 at similar levels.
(e) Rhodopsin recruits arrestin faster than other GPCRs recruit their respective ligands. The inset
shows data from the standard data collection method (dark blue) and one with a higher temporal
resolution (light blue). (f) Arrestin-C (Arr-C) recruitment is lower, but similar kinetics as for other
arrestins was observed. Shown are time courses of the mean ± SD of a representative experiment. Data
were normalized to the maximum response generated by a given GPCR.

Here we show an enzyme complementation assay based on the split NanoLuc that enables
time-resolved monitoring of recruitment of all four human arrestins to both ligand- and light-stimulated
GPCRs. This allows the characterization of both receptor selectivity towards arrestins and interaction
dynamics. Additionally, an indirect measurement setup allows studying untagged or endogenously
expressed GPCRs. BRET- and protein complementation-based systems require the coexpression of at
least two components. For this, we used multigene expression systems that allow expression from a
single plasmid with different promoters for each expression cassette [26–28].
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normalized to the maximum response observed. Shown are time courses of the mean ± SD of a 
representative experiment. 
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TOC) (Figure 3a). The maximum response (Emax) was set to 100% for all tested GPCRs individually 
since the absolute light emission cannot be compared among GPCRs. The concentration–response 
curves comparing the direct and indirect assay showed that the assays are comparable (Figure 3a). 
We obtained similar potency values in both the direct and indirect assay for B2AR (145 ± 10 nM vs. 
161 ± 12 nM) and SSTR2 (61 ± 8 nM vs. 80 ± 15 nM). Only for GRPR (583 ± 65 nM vs. 344 ± 63 nM) did 
we see a significantly (p < 0.05) increased potency in the indirect assay compared to the direct assay 
(Figure 3a). This might be explained by the differences of these two assays. With the indirect assay, 
we only detect receptors–arrestin interactions specifically at the plasma membrane and not during 
the internalization process [21,33]. Therefore, the GRPR probably behaves differently during the 
internalization process compared to the other tested receptors. 

To further validate the direct assay, we compared the recruitment efficacies of different β-
arrestin-2 mutants to the B2AR in the direct assay and a classical BRET-based approach and 
compared the results obtained from both assays. The function of these arrestin mutants was described 
before [34,35]. No significant difference between the results of the two assays could be observed, 
providing evidence that the direct assay reports accurate measurements for relative binding strength 

Figure 2. Indirect arrestin recruitment assay showing the recruitment of all four human arrestin
isoforms to various GPCRs. (a) Principle of the assay. The large subunit of NanoLuc is expressed with
a prenylation signal (11S-CAAX) localizing it to the plasma membrane. The small subunit (114) is
linked to the N-terminus of arrestin. These components are either transiently transfected (b–d) or stably
expressed (e) in HEK293 cells. Upon stimulation with ligand, arrestin is recruited to GPCRs at the
plasma membrane and chemiluminescence is enhanced. (b) B2AR mainly recruits β-arrestin-2 (β-Arr2).
(c,d) SSTR2 and GRPR recruit S-arrestin (S-Arr), β-arrestin-1 (β-Arr1) and b-arrestin-2. Recruitment
of arrestin-C (Arr-C) is low with all tested GPCRs. (e) Stable HEK293 cell line expressing 11S-CAAX
and S-arrestin, β-arrestin-1 or β-arrestin-2. Untagged GRPR was transiently cotransfected. Data
collected from each receptor were normalized to the maximum signal generated from the recruitment of
β-arrestin-2 to that receptor. For the stable cell lines data from each time course was normalized to the
maximum response observed. Shown are time courses of the mean ± SD of a representative experiment.

2. Results and Discussion

2.1. Direct and Indirect Recruitment of Arrestins to GPCRs

Nanoluc enzyme complementation was previously used to measure β-arrestin-2 recruitment to
B2AR and vasopressin receptors. This assay is based on β-arrestin-2 that is modified at its N-terminus
with the small subunit of NanoLuc (114) and a GPCR with the large subunit (11S) at the C-terminus [29].
We expanded this strategy by using all four human arrestins (Figure 1). We fused the NanoLuc subunits
using flexible glycine-serine linkers of 14 and 16 amino acids for arrestins and GPCRs, respectively. We
verified the function of the assay using several GPCRs: the B2AR as a prototypical class A receptor
that preferentially binds β-arrestin-2, gastrin-releasing peptide receptor (GRPR) and somatostatin
receptor type 2 (SSTR2) as examples of peptide receptors, and human rhodopsin (hRho), one of the
best-studied light-sensitive receptors. We detected recruitment of all four arrestins to all tested GPCRs
upon ligand stimulation, suggesting that our arrestin probes are able to distinguish between the active
and inactive state of all tested GPCRs. The B2AR showed a strong selectivity for β-arrestin-2 over all
other arrestins, as was expected from its class A nature (Figure 1b) [30]. GRPR and SSTR2 showed
binding of both β-arrestins, indicative of a class B behavior. In addition, they recruited S-arrestin
(Figure 1c,d). Rhodopsin was stimulated with light flashes and showed a strong interaction with
its native binding partner S-arrestin (Figure 1e) as well as both β-arrestins. Arrestin-C consistently
generated weak signals, both before and after stimulation of the receptor (Figure 1f). This may be due
to low affinity of arrestin-C for the tested GPCRs or low expression of the construct.

It is notable that the baseline signal prior to stimulation of the different GPCRs and arrestins are
not equal, which may be indicative of constitutive receptor activity. β-arrestin-2 consistently generated
the highest baseline values among all four receptors studied. This is not surprising, as β-arrestin-2
was reported to exist in a pre-activated form in contrast to other arrestins, making it much more
promiscuous [31].
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The kinetics of arrestin recruitment appears mainly determined by the receptor and not by the
arrestin. All four arrestins share similar interaction dynamics for a tested GPCR. B2AR is supposed to
only transiently interact with arrestins, and indeed, measured receptor–arrestin interactions weaken
over the recorded time course of 40 min. SSTR2 and GRPR showed similar interaction with all arrestins
over time, as expected form their class B behavior (Figure 1c,d). Rhodopsin showed a very rapid
increase in signal, after which the complex decayed with a half-time of 100 to 180 s, depending on the
arrestin tested (Figure 1e). This is in line with its biological function: the rapid acquisition of visual
information from the environment at high frequency. Rhodopsin uses 11-cis-retinal as a cofactor that
is rapidly released after light-induced isomerization to its all-trans form. The resulting rhodopsin
apoprotein seems to quickly dissociate from arrestin. Furthermore, we did not detect any difference
in baseline signal when all-trans or no retinal was added to the cells instead of 11-cis retinal, and no
response was detected after stimulation with light under these conditions (data not shown).

The direct assay (Figure 1a) has the disadvantage that GPCRs are modified with a tag. This has
a strong impact on GPCRs that possess a PDZ binding motif at their C-terminus that is relevant
for endosomal trafficking and sorting. Instead of fusing the 11S split-luciferase subunit directly to
a transmembrane receptor, we attached this subunit to a CAAX polyprenylation motif localizing it
to the plasma membrane (Figure 2a). This setup does not directly detect the interaction of arrestins
with GPCRs, but rather the translocation of arrestins from the cytoplasm to the plasma membrane.
This indirect assay allows the measurement of label-free receptors without possible steric interference of
fused protein tags on the receptor and allows studying endogenously expressed GPCRs from primary
cells. A similar approach was taken by Cao et al. [32] to establish a BRET-based assay.

We used this assay to determine binding of all four human arrestins to the unlabelled B2AR,
which again showed the strong preference of the class A receptor towards β-arrestin-2 (Figures 1a
and 2b). Unlabelled SSTR2 and GRPR were also tested (Figure 2c,d). A higher baseline was observed,
which could be caused by unspecific arrestin recruitment to the membrane. This leads to a lower
signal-to-baseline ratio after stimulation with agonist compared to the direct assay (Figure 1c,d). Stable
HEK293 cell lines expressing both the 11S-CAAX membrane sensor and either S-arrestin, β-arrestin-1
or β-arrestin-2 were developed. All cell lines showed increased chemiluminescence after transient
transfection of untagged GRPR, demonstrating their functionality (Figure 2e). These three cell lines
can be used as a basis for a ligand screen of any untagged GPCR by expressing the receptor either
transiently or stably.

We conclude from our findings that all four human arrestins are able to differentiate between the
active and inactive conformation of all tested GPCRs in both the indirect and direct assay. The results
also reveal strong specificities of all receptors towards certain arrestins. The measured interaction
dynamics were determined by the receptor and not the arrestin, indicating that the receptor determines
the lifetime of the complex and therefore the speed of desensitization independent of which arrestin
is bound.

2.2. Comparison of Different Assay Types

The direct and indirect assays were compared by performing concentration–response experiments
with a reference agonist of B2AR (isoproterenol), GRPR (AMBA) and SSTR2 (DOTA-TOC) (Figure 3a).
The maximum response (Emax) was set to 100% for all tested GPCRs individually since the absolute
light emission cannot be compared among GPCRs. The concentration–response curves comparing
the direct and indirect assay showed that the assays are comparable (Figure 3a). We obtained similar
potency values in both the direct and indirect assay for B2AR (145 ± 10 nM vs. 161 ± 12 nM) and
SSTR2 (61 ± 8 nM vs. 80 ± 15 nM). Only for GRPR (583 ± 65 nM vs. 344 ± 63 nM) did we see a
significantly (p < 0.05) increased potency in the indirect assay compared to the direct assay (Figure 3a).
This might be explained by the differences of these two assays. With the indirect assay, we only detect
receptors–arrestin interactions specifically at the plasma membrane and not during the internalization
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process [21,33]. Therefore, the GRPR probably behaves differently during the internalization process
compared to the other tested receptors.
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Figure 3. Comparison of different arrestin recruitment assays. (a) β-arrestin-2 recruitment was
measured for B2AR, GRPR and SSTR2 stimulated with different concentrations of their respective
agonist in both the direct and indirect assay approach. Dose response was determined by calculating
the area under the curve (AUC) from the time point of agonist addition to the end of the experiment.
All responses were normalized to the maximum response generated by each receptor. Data from three
independent experiments ±SEM are shown. Potency was calculated from dose–response curves for
each assay type using a four-parameter nonlinear regression and compared using an unpaired t-test.
*: p < 0.05, ns: not significant. (b) Comparison of NanoLuc complementation and a bioluminescence
resonance energy transfer (BRET)-based arrestin recruitment assays. For the NanoLuc complementation
assay, efficacies were calculated from concentration–response curves using isoproteronol in at least
three independent experiments and normalized to β-arrestin-2. For the BRET arrestin recruitment assay,
HEK293 cells transiently co-expressing β2AR-RLuc8 and GFP-βArr2 WT and mutant constructs were
treated with the luciferase substrate coelenterazine 400A and stimulated with increasing concentration
of isoproterenol. The area under curve (AUC; t = 0–20 min) was plotted as a function of isoproterenol
concentrations, and normalized Emax values are plotted (black bar). For βArr2-R170E, it was not
possible to determine an Emax value (n.d.). Data represent mean ± SEM of two to six individual
experiments carried out in duplicate. No significant differences in efficacies between the two assay
types were observed.

To further validate the direct assay, we compared the recruitment efficacies of different β-arrestin-2
mutants to the B2AR in the direct assay and a classical BRET-based approach and compared the
results obtained from both assays. The function of these arrestin mutants was described before [34,35].
No significant difference between the results of the two assays could be observed, providing evidence
that the direct assay reports accurate measurements for relative binding strength (Figure 3b). All assay
types lead to similar results, suggesting that they really measure the GPCR–arrestin interaction and
not artifacts of the detection system.

2.3. The C-Tail of GPCRs Modulates Arrestin Selectivity

GPCRs have two binding sites for arrestins. The first site is composed of cytoplasmic loops,
mostly the intracellular loop 3 that interacts with the central crest of arrestin, and also a cavity created
in the transmembrane bundle by the outward movement of helix V and VI after ligand binding. This is
often referred to as the “core interaction” [36]. This interaction occupies a similar binding area as the
α-subunit of the G protein, leading to a direct competition between arrestins and G proteins for active
GPCRs [37–39]. The second binding, called the “tail interaction”, occurs between the cytosolic tail of a
GPCR and N-terminal domain of arrestin [40] and has been shown to modulate arrestin activity [41].
Molecular simulations indicated that both sites are able to activate arrestin independently, and binding
of arrestin to either core-deficient or C-tail truncated GPCRs could be shown [42].

To investigate the dynamics of the core binding site of arrestin, we created C-tail truncated versions
of both B2AR (B2AR∆C) and GRPR (GRPR∆C) [43,44]. β-arrestin-2 showed a stronger recruitment
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shortly after agonist addition to both the B2AR∆C and GRPR∆C (Figure 4a,b). However, this enhanced
recruitment is rapidly lost within 10 min after stimulation. The B2AR∆C declines to recruitment levels
equal to those of the full-length receptor after 10 min. For GRPR∆C, the loss of recruitment is much
more pronounced with the signal plummeting to less than 50% of the initial response within 10 min
after stimulation. This suggests that the unphosphorylated tail of a GPCR acts as an inhibitor in an
early phase of recruitment of β-arrestin-2 and that in this phase the binding is based on the core
interaction. In a later phase, especially GRPR relies on its C-tail.
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Figure 4. Core interaction with a GPCR is sufficient for arrestin recruitment. (a) C-tail truncated
variants of the β2AR and GRPR were compared to their wild-type forms using the direct split luciferase
assay. (a) Recruitment of either β-arrestin-1 or -2 to full-length B2AR-11S or B2AR-11S with a deletion
of the cytoplasmic tail (B2AR-∆C). (b) Recruitment to full-length GRPR-11S or GRPR-11S without
cytoplasmic tail (GRPR-∆C). Data collected for each receptor were normalized to the maximum signal
generated from the recruitment of β-arrestin-2 to the wild-type form of that receptor. Shown are time
courses of the mean ± SD of a representative experiment.

β-arrestin-1 binding showed receptor-specific effects: in the case of the B2AR, binding to the C-tail
deficient variant was increased compared to full-length receptor during the duration of the assay, while
for the GRPR, β-arrestin-1 binding to the truncated version was reduced (Figure 4a,b). This suggests
that the C-tail of B2AR prevents β-arrestin-1 recruitment and that this inhibitory function plays a
role in the arrestin specificity of class A GPCRs. For GRPR, a class B GPCR, the reduced binding
points to an important contribution of the C-tail for β-arrestin-1 recruitment, suggesting a more equal
contribution of both binding sites.

2.4. Influence of Expression Level on Arrestin Recruitment

Gene dosage experiments were performed to test how the expression levels of the individual
binding partners affect arrestin recruitment. We varied expression levels of both GPCR-11S and
114-β-arrestin-2 fusion proteins by transfecting different ratios of plasmids encoding β-arrestin-2
or receptor. The total amount of DNA was kept constant. We observed that the baseline of each
GPCR/arrestin complex prior to stimulation depends on expression level ratios (Figure 5a–c, left
column). A Job plot was created by plotting the baseline luminescence of all conditions against the
fraction of receptor-encoding plasmid used. The highest baseline was observed in the case of a 1-to-1
mixture of plasmids. Two linear fits are shown in each Job plot, each fitted to all values either below or
above the GPCR fraction of 0.5. A high binding affinity would cause a nonlinear, flattened curve [45].
The strong linear trends observed indicate a low affinity of β-arrestin-2 binding to the inactive receptors
and of the attached luciferase subunits to one another. The low affinity of the 11S to the 114 subunits
has been reported previously [29].

For B2AR we observed differences in dynamic behavior after stimulation with agonist, depending
on the ratio of plasmids used (Figure 5a, left column). Differences are best visualized when displaying
the fold change after stimulation, thereby normalizing to the baseline (Figure 5a, right column). Using
an excess of plasmid encoding β-arrestin-2, we see a short, transient response that decays rapidly within
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10 min. This time course likely indicates that all receptor on the plasma membrane is internalized
by an excess of arrestin within a short time. With a lower amount of β-arrestin-2-encoding plasmid
and a high amount of receptor, we see a prolonged response that persists and decays slowly over the
recorded time span. The prolonged signal is likely due to the continuous recruitment of arrestin due to
a large number of receptors on the plasma membrane. SSTR2 shows a similar behavior (Figure 5b).
In contrast, GRPR shows no change in its dynamic behavior regardless of the transfection condition
used (Figure 5c). This is possibly due to a prolonged interaction of GRPR with β-arrestin-2, even
after internalization.
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Figure 5. Influence of expression levels. (a–c) Gene dose experiments. Different ratios (indicated
on the right side of the panels) of expression plasmids for B2AR-11S, GRPR-11S or SSTR2-11S were
transiently co-transfected with an expression construct for 114-β-arrestin-2 in HEK293 cells. Cells
were stimulated with 1 µM of the respective agonist after 10 min of baseline measurement. Data
were normalized to the maximum response generated (left). Job plots were generated by plotting
the recorded baseline luminescence against the molar fraction of receptor (middle). Fold change of
activation was calculated by dividing each signal by the corresponding baseline (right). Shown are time
courses of the mean ± SD of a representative experiment. (d,e) MultiPrime plasmids encoding both
the GRPR-11S and 114-β-arrestin-1 or -2 were transiently transfected into HEK293 cells. Two different
promoters were used to control the expression levels of the biosensors: cytomegalovirus (CMV) and
phosphoglycerate kinase (PGK) promoter (right). After 10 min of baseline measurement, transfected
cells were stimulated with 1 µM of AMBA. Data are either normalized to the maximum response
generated (left, a–c), raw chemiluminescence (left, d,e) or fold change. Shown are time courses of the
mean ± SD of a representative experiment.
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Transient cotransfections lead to a heterogeneous cell population with different expression ratios
in individual cells. To overcome this problem, we expressed both expression cassettes from the
same plasmid, which leads to a more constant expression ratio between cells [26]. In addition,
expression of each cassette is driven by a separate promoter. We used either the strong cytomegalovirus
(CMV) promoter or the approximately 15-fold weaker phosphoglycerate kinase (PGK) promoter [27].
Constructs were created containing the GRPR as well as either β-arrestin-1 or -2. All possible promoter
combinations were tested (Figure 5d,e, right column). Constructs expressing both cassettes under
control of the CMV promoter showed the highest signal, but the baseline was also clearly increased
(Figure 5d,e, left column). Using the PGK promoter in one or both expression cassettes led to a
decreased luminescence. However, absolute signal strength is not the only determinant of an assay’s
output. A large signal-to-baseline change is desirable especially when different ligands are compared,
for example, in a ligand screen for pharmaceutical measurements. Expressing arrestin under the
PGK promoter and GRPR under the CMV promoter decreases the fold change after stimulation,
as previously shown in the gene dosage experiment (Figure 5c, right column), while expressing both
cassettes under the PGK promoter leads to an increased signal fold change after stimulation.

2.5. Transduction of Cells with Baculoviruses

Transfection of plasmids into mammalian cells, especially primary cells, is usually an inefficient
process. Baculoviruses are attractive vectors for transduction because they transduce mammalian cells
with high efficiency and little toxicity. For our purpose, they are well suited because they can carry
multiple expression cassettes [26,27].

First, we used a virus that expresses B2AR-11S and 114-β-arrestin-1 or -2 (Figure 6a). A clear
increase in signal after stimulation of B2AR with isoproterenol can be seen. As observed before,
the arrestin recruitment response for β-arrestin-2 is much stronger than for β-arrestin-1. Next, we
transduced the components of the indirect assay consisting of either B2AR, as well as 11S-CAAX
and 114-β-arrestin-1, or 2 using a single virus (Figure 6b). The observed response after stimulation
indicates successful transduction of the HEK293 cells with up to three different constructs from a single
viral vector. Importantly, we showed the recruitment of both β-arrestins to untagged GPCRs using
baculovirus transduction. This would allow the measurement of arrestin recruitment in primary cells
expressing endogenous GPCRs.
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Figure 6. Transduction of mammalian cells with arrestin recruitment reporter systems. (a) Transduction
of HEK293 cells with a baculovirus expressing B2AR-11S and 114-β-arrestin-1 or 114-β-arrestin-2.
(b) Transduction of HEK293 cells with a baculovirus expressing untagged B2AR, 11S-CAAX and
114-β-arrestin-1 or 114-β-arrestin-2. In both assays, preferential recruitment of β-arrestin-2 was
observed as for the assays with transient transfection. Shown are time courses of the mean ± SD of a
representative experiment. Data were normalized to the maximum response generated with each virus.

3. Conclusions

We successfully developed and verified arrestin recruitment assays for all four human arrestins,
showing their ability to bind to a variety of both ligand- and light-stimulated GPCRs. Our results
reveal that the expression levels of GPCRs and arrestins play a crucial role for signal strength and
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kinetics. The assays can be further improved by controlling expression levels, e.g., from a single
plasmid with different promotors. For an appropriate modeling of signaling processes in the future,
methods for measuring intracellular protein concentrations have to be included. These concentrations
can be obtained either by Western blotting or quantitative mass spectroscopy. Alternatively, GPCRs
and arrestins could be labeled by an additional fluorophore as a measure for their expression level.

4. Materials and Methods

4.1. Molecular Biology

Coding regions of proteins were obtained as geneblocks from IDT (Integrated DNA Technologies,
Inc., Coralville, IA, USA). Fragments were amplified by PCR using Phusion® High-Fidelity DNA
Polymerase (HF or GC, NEB, Cat. No M0530). Sequences of geneblocks and primers are given in
Supplementary Figure S1. Fragments were digested using SapI (or its isoschizomer LguI), separated
using TAE agarose gels and then purified using a QIAquick gel extraction kit (Qiagen, Cat. No.: 28104,
Düsseldorf, Germany). PCR fragments were cloned into plasmids pSI-AGR10, pSI-AKR1, pSI-DSZ2cx,
or pSI-DAZ2, which have been described previously [26,27]. The integrity of all constructs was tested by
restriction mapping and sequencing. The GFP-β-Arr-2 coding sequence was kindly provided by Hans
Bräuner-Osborne (Copenhagen, Denmark) and was re-cloned into a pEGFP (Clonetech) expression
vector. The β2AR-RLuc8 plasmid was a kind gift of Nevin Lambert (Augusta University, Georgia).

4.2. Cell Culture

Human Embryonic Kidney (HEK293) cells were cultured in DMEM with high glucose (Bioconcept,
Allschwil, Switzerland, Cat. No 1-26F03-I) containing 10% fetal calf serum (FCS). Cells were incubated
at 37 ◦C in a humidified atmosphere containing 5% CO2. Transfections were performed in 6-well
format using Lipofectamine 3000 transfection reagent (ThermoFisher, Cat. No L3000015, Waltham,
MA, USA) according to the manufacturer’s recommendations and using 2 µg of DNA for each well.
For gene dosage experiments, one of the encoding plasmids was diluted with carrier DNA so that
the concentration of the other plasmid in the transfection mix was kept constant. The molar fraction
was calculated by the amount of GPCR-encoding plasmid used divided by the total amount of
transfected DNA (excluding carrier). The combinations of plasmids used for transfection can be found
in Supplementary Figure S2.

4.3. Split Luciferase Assay

HEK293 cells were cultured in DMEM high glucose (Bioconcept, Cat. No 1-26F03-I, Allschwil,
Switzerland) containing 10% FCS. Twenty-four hours after transfection, cells were seeded into a 96-well
format with 80,000 cells in each well (Perkin Elmer, #6005181, Waltham, MA, USA). Twenty-four hours
after seeding (48 h after transfection) the media was exchanged to DMEM w/o phenol red (Bioconept
Cat. No 1-26F23-I, Allschwil, Switzerland), supplemented with 20 mM HEPES pH 7.0, 1% furimazine
and 19% LCS dilution buffer (Promega, Nano-Glo® Live Cell Assay System, Cat. No N2012, Madison,
WI, USA). A white cover was attached to the transparent bottom of the 96-well plate. Luminescence
was measured using a PHERAstar FSX (BMG Labtech, Offenberg, Germany). Cells were stimulated
with 1 µM of agonist unless noted otherwise. To measure opsins, 1 µM of 11cis-retinal was added to
the cell media after seeding the cells into a 96-well format. During and after retinal addition, cells were
always protected from light of wavelengths below 600 nm. Stimulation of opsins was performed with
the built-in 20 mW flashlamp of the PHERAstar, delivering 500 flashes lasting 2 µs each over a time of
approximately 2 s to each 96-well, with a wavelength centered at 485 nm (+/−5 nm). Luminescence
time courses are representative experiments shown as mean ± SD of at least three replicates.
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4.4. BRET Assay

The arrestin recruitment assay is based on bioluminescence resonance energy transfer (BRET).
To prepare BRET, donor and acceptor constructs β-arrestin-2 and B2AR were modified as followed:
B2AR was C-terminally tagged with RLuc8 (BRET donor) and the β-arrestin-2 WT and mutants
were N-terminally tagged with GFP (BRET acceptor). The luciferase RLuc8 catalyzes oxidation of its
substrate (Coelenterazine 400A), which results in the emission of photons (λmax = 410 nm), which
will excite the GFP if it is in close proximity. HEK293 cells were transiently co-transfected with BRET
donor and BRET acceptor constructs with Lipofectamine2000 according to manufacturer’s protocol.
Briefly, HEK293 cells were seeded at a density of 500k cells/well in a cell culture 6-well plate; 24 h
later, cells were transfected using 2 µg total DNA, 6 µL Lipofectamine2000, 150 µL OptiMEM/6-well.
The ratio of BRET acceptor construct to BRET donor construct was 1:10. The cells were transferred
into a poly-L-Lysine-coated, white, sterile 96-well microplate at a density of 50 k/well 24 h after
transfection and cultured overnight. Cells were incubated in 90 µL HBSS (supplemented with 20 mM
HEPES, pH 7.4 and 50 µM Coelenterazine 400A), and baselines were measured on a PHERAstar
FSX from BMG Labtech (Ortenberg, Germany). Cells were stimulated with isoproterenol from
0.01 nM to 10 µM. The isoproterenol-induced recruitment of GFP-β-arrestin-2 WT and mutants to
the β2AR-RLuc8 brings GFP into close proximity of the BRET donor, which results in its excitation
and emission of light at 515 nm. BRET ratios (515 nm/410 nm) were detected with the optic module
BRET2 plus (515–530 nm, 410–480 nm) and plotted as a function of time. Emax values were calculated
from concentration–response curves with area under the curve (AUC) vs. ligand concentrations
plotted in GraphPad Prism 8. The concentration–response curves with area under the curve (AUC)
vs. ligand concentrations were fitted using the nonlinear regression “log (inhibitor) vs. response
(three parameters)” in GraphPad Prism 8 to calculate the Emax values. Emax values for GFP-β-arrestin-2
mutants were normalized to the Emax value of GFP-β-arrestin-2 WT recruitment.

4.5. Data Analysis

Data shown are either the mean ± SD of three replicates measured in a single experiment or
mean ± SEM of at least three different experiments. Fold change was calculated by dividing all
measured values from a single well by the last value recorded before stimulation. The results of
several wells are then displayed as mean ± SD. Area under a curve was calculated by subtracting the
time courses of unstimulated wells from that of all stimulated wells. Net area was calculated using
GraphPad Prism.

4.6. Baculovirus Generation

Baculovirus used to infect mammalian cells was produced as described previously (Mansouri
et al., 2016) [27]. In brief, electrocompetent E. coli DH10EMBacY cells were transformed with the
plasmids described in Supplementary Figure S2. Positive colonies were identified in a blue-white
screening. Bacmids were purified from liquid culture using a ZR BAC DNA kit (Zymo Research,
Cat No D4048). Sf21 insect cells seeded into 6-well plates and grown at 27 ◦C were transfected with
the bacmid using the CellFECTIN II transfection reagent (Thermo, Cat No 10362100). The virus was
propagated in Sf21 cells over several incubation steps at 27 ◦C and constant agitation lasting eight
days in total and was harvested using centrifugation. The resulting supernatant was concentrated
using ultrafiltration units (Vivaspin 20, 100,000 MWCO PES, 48pc Cat. No VS2042) and then used to
transduce HEK293 cells.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/14/
4949/s1. Supplementary Figure S1: List of plasmids. Supplementary Figure S2: Primers and gene blocks.
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