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Abstract
Forensic camera device identification addresses the scenario, where an investigator 
has two pieces of evidence: a digital image from an unknown camera involved in a 
crime, such as child pornography, and a person of interest’s (POI’s) camera. The in-
vestigator wants to determine whether the image was taken by the POI’s camera. 
Small manufacturing imperfections in the photodiode cause slight variations among 
pixels in the camera sensor array. These spatial variations, called photo- response non- 
uniformity (PRNU), provide an identifying characteristic, or fingerprint, of the camera. 
Most work in camera device identification leverages the PRNU of the questioned 
image and the POI’s camera to make a yes- or- no decision. As in other areas of fo-
rensics, there is a need to introduce statistical and probabilistic methods that quan-
tify the strength of evidence in favor of the decision. Score- based likelihood ratios 
(SLRs) have been proposed in the forensics community to do just that. Several types 
of SLRs have been studied individually for camera device identification. We introduce 
a framework for calculating and comparing the performance of three types of SLRs 
—  source- anchored, trace- anchored, and general match. We employ PRNU estimates 
as camera fingerprints and use correlation distance as a similarity score. Three types 
of SLRs are calculated for 48 camera devices from four image databases: ALASKA; 
BOSSbase; Dresden; and StegoAppDB. Experiments show that the trace- anchored 
SLRs perform the best of these three SLR types on the dataset and the general match 
SLRs perform the worst.
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1  |  INTRODUC TION

Digital image forensics is a branch of forensic science that analyzes 
digital photographs and videos. Like many other areas of pattern evi-
dence identified in the 2009 landmark report by the National Research 
Council [1], multimedia analysis was identified as lacking in probabilis-
tic and statistical foundations. This absence of sound scientific meth-
ods provides challenges to meet the Daubert standard established by 
the court case Daubert v. Merrell Dow Pharmaceuticals [2] and can 
compromise the probative value of the evidence. Evidentiary strength 
of forensic findings relies on rigorous and peer- reviewed research ex-
periments, where the reliability and validity of the analysis has been 
tested so it will withstand increasing scrutiny in the courts [3]. Score- 
based likelihood ratios (SLRs) provide one method for quantifying the 
probative value of a piece of evidence and are an area in which digital 
pattern evidence is building its repertoire of evidence- based research 
findings. In this paper, we develop a framework for calculating three 
types of SLRs to quantify the weight of evidence for the digital image 
forensic problem of camera device identification, where the goal is to 
identify a particular camera device (as opposed to camera model) that 
captured a questioned image.

In pattern evidence analysis, the investigator is often confronted 
with a source identification problem. The investigator has two impres-
sions, one impression Eu from the crime scene where Eu is from an 
unknown source. The other impression Ek is directly acquired from a 
specific known source, related to the person of interest (POI). The in-
vestigator asks: how likely is it that both impressions originate from the 
specific known source? How likely is it that the crime scene impression 
does not originate from the specific known source? These questions 
are often expressed as two competing, specific- source hypotheses [4].

In practice, the prosecution and the defense do not specify these 
hypotheses, but we will use standard nomenclature and refer to Hp 
as the prosecution’s hypothesis and Hd as the defense’s hypothesis. 

An investigator faced with a camera device identification problem 
might have a digital image Iu that contains child pornography and a 
camera fingerprint Fk estimated from images of innocuous content 
from a POI’s camera. (We use a capital letter I to denote images and 
a capital letter F to denote camera fingerprints. The subscripts de-
note the camera that created the image or fingerprint, the letter u 
stands for unknown camera and the letter k stands for the POI’s 
camera, which is also called the specific known device.) The prosecu-
tion’s hypothesis is that the child pornography image originated from 
the POI’s camera that also created the camera fingerprint, while the 
defense’s hypothesis is that the child pornography image did not 
originate from the POI’s camera.

Most camera device identification methods rely on a camera 
sensor property called photo- response non- uniformity (PRNU) 
[5]. The measured response of a camera sensor array to incoming 
photons slightly varies from pixel to pixel due to the manufacturing 
process and imperfections in the photodiode. In principle, the spa-
tial placement of these variations from the mean response of the 
array of pixels provides an identifying characteristic, or fingerprint, 
of the camera. We will use the terms PRNU and camera fingerprint 
interchangeably.

In Figure 1, we summarize the algorithm presented in [6,7] to 
estimate the camera fingerprint Fk of device Ck, which is given by 
equation

where Ij
k
 (j = 1, 2, …, n) are images from Ck and Xj

k
 (j = 1, 2, …, n) are noise 

residuals of the images calculated by subtracting a denoised version of 
the image from the image itself. The image IJ

k
, the noise residual Xj

k
, and 

the fingerprint Fk in Equation (1) can all be represented as matrices of 
pixel values and multiplication is performed element- wise. Note that 
we use slightly different notation than that in [6,7]: we use a subscript 
to denote the camera device to which an image belongs.

Hp: the impression Eu originated from the specificknown source that created Ek,

Hd: the impression Eu originated from a different sourcethan the specific known source.
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Highlights

• SLRs convey the strength of evidence in favor of a match or non- match for camera 
identification.

• The three types of SLRs considered achieve low rates of misleading evidence on the dataset.
• Trace- anchored SLRs outperform source- anchored and general match SLRs on the dataset.

F I G U R E  1  Summary of the PRNU 
estimation algorithm presented in [6,7]
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An investigator can estimate the true PRNU of a camera using 
the above algorithm and a set of images from the POI’s camera. If 
the investigator has one single image, then the PRNU estimate is 
simply the noise residual of the single image. An assumption made 
of the extracted PRNU is that it is unique for a camera sensor. A 
recent paper [8] presents results that show that recent advances in 
the image processing pipeline such as customized HDR algorithms 
can cause small similarities in the camera fingerprints from different 
cameras of the same model. They show that these small similarities 
can slightly increase the rate of false positives between different 
cameras of the same model. We invite readers to pursue open ques-
tions that arise from this recent publication.

After estimating the camera fingerprint Fk from device Ck a ques-
tioned image Iu from unknown device Cu is compared with Fk using a 
(dis)similarity score Δ. The value of interest is

where multiplication between Iu and Fk is performed element- wise 
(See Ref. [6] for an explanation of why the noise residual is compared 
to the product of the image and the camera fingerprint). Early camera 
device identification works used the sample correlation as the simi-
larity score [5,6,9,10]. Later the peak- to- correlation energy (PCE) re-
placed sample correlation because the PCE is robust against a periodic 
signal called linear pattern that created problems for statistical mod-
els that used sample correlation [11]. Most previous work in camera 
device identification focuses on developing what we term a universal 
detector [7,9,11,12,13,14,15] where the authors aim to create a single 
system that works for any questioned image and camera device. Over 
the years, universal detectors that use the PRNU have been tested 
against cropping and scaling [13], gamma correction and denoising [6], 
compression [14], lens distortion [16], and contrast enhancement, his-
togram equalization, and white balance [15]. Most previous work de-
termines if a questioned image Iu came from a specific known camera 
Ck by comparing the value of interest δ = Δ(Xu, IuFk) from Equation (2) 
to an ad- hoc decision threshold t, where t is typically chosen based on 
a constructed set of similarity scores between an image and a cam-
era fingerprint known to be from the same camera (matching) and an 
image and a camera fingerprint known to be from different cameras 
(non- matching). In the universal detector approach, the researchers' 
goal is to create a single detector and decision threshold t that can be 
applied to any image and any camera device. Of particular interest to 
us, the universal detector approach addresses the common- source hy-
potheses, which are less pertinent to the decision- makers in criminal 
justice trials than the specific- source hypotheses (see Ref. [4] for more 
information on the common/specific- source problems). Furthermore, 
the universal detector methods aim to classify pairs of images as either 
matching or non- matching, using pattern recognition and classification 
methods, such as linear discriminant analysis, to define the decision 
threshold. This results in a binary decision that gives no information 
about the strength of the evidence in favor of that decision. These 
methods differ from the likelihood ratio- style approaches, which 

aimed to quantify the probability of observing the evidence under two 
competing hypotheses.

Likelihood ratios (LRs) are used in single source DNA analysis [17] 
and glass fragment analysis [18,19]. An LR for pattern evidence is 
defined as the ratio of the likelihoods of observing both impressions 
under hypotheses Hp and Hd. More specifically, for an impression Eu 
from a crime scene and an impression Ek from a source related to the 
POI, the LR would be written

where P(·) is a joint probability density (or mass) function (PDF) [20]. 
The PDF in the numerator of the LR describes the likelihood of ob-
serving both impressions Eu and Ek if they originated from the specific 
known source and the PDF in the denominator would be the likelihood 
of observing both impressions Eu and Ek if they were a “random match” 
and Eu came from a different source than the specific known source. 
To formulate an LR as in Equation (3), the investigator needs an appli-
cable set of measurements, often called features, where the variability 
between the features of two impressions from the same source can 
be distinguished, with high accuracy, from the variability between the 
features of two impressions from different sources. The representa-
tion of many pattern evidence data is often high- dimensional and com-
plex, making such sets of features extremely challenging to identify. 
Alternate methods for assessing the weight of the evidence are being 
explored in various forensic fields, including machine learning with 
paired feature differences [21] and SLRs [22].

To our knowledge, full- fledged likelihood ratios have not yet 
been implemented in camera device identification, but Qiao et al. 
[23,24] employed a related method, a likelihood ratio test (LRT), 
for camera device identification to determine which of two camera 
devices C1 or C2 captured a questioned image Iu from an unknown 
source. They formulate the problem as a classification problem and 
consider the following two hypotheses:

Note that we use our own notation here to be consistent with 
the rest of this paper. The authors also address the question of 
which device from a set of n devices C1, C2, …, Cn took questioned 
image Iu by performing an LRT for each possible pair of devices and 
declaring the device identified by the most LRTs to be the device 
that captured the Iu [23]. If a case arises in practice where a ques-
tioned image is known to have been taken by one of two devices, the 
likelihood ratio that Qiao et al. treat as the test statistic in their like-
lihood ratio test could potentially quantify the strength of evidence. 
Because their intent was to solve a multi- classification problem by 
determining which of n classes (cameras) the question image Iu came 
from, this framework does not readily provide a means of quantify-
ing the strength of the evidence when the pool of potential sources 

(2)� = Δ
(

XuIuFk
)

,

(3)LR =
P
(

EuEkHp

)

P
(

EuEkHd

) ,

H1: Iu originated fromdeviceC1

H2: Iu originated fromdeviceC2.
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of Iu is larger than two devices. LRs still remain elusive for camera 
device identification.

SLRs have appeared in a variety of forensic fields when LRs are 
unavailable: glass fragments and shoe impressions [22]; handwriting 
[25]; MDMA tablets [26]; fingerprints [27]; speaker recognition [28]; 
and facial recognition [29]. SLRs use a similarity score Δ to measure 
the similarity (or dissimilarity) of two pieces of evidence Eu and Ek 
and then calculate the likelihood of obtaining the score Δ(Eu, Ek) 
under hypotheses Hp and Hd. An SLR is then the ratio of these two 
likelihoods. A reference set of matching scores between two pieces 
of evidence known to come from the same source are used to esti-
mate the PDF in the SLR numerator. The PDF in the denominator 
is estimated from a reference set of non- matching scores between 
two pieces of evidence known to come from different sources. We 
consider three methods presented by Hepler et al. [25] –  trace- 
anchored, source- anchored, and general match –  for constructing 
non- matching scores to estimate the SLR denominator for hand-
writing evidence. Consider the scenario where investigators have 
a questioned handwritten document Eu and a handwriting sample 
Ek from a POI. They specify an alternative population of possible 
writers. Researchers and practitioners are still in disagreement 
about how alternative populations should be constructed [30,31]. 
The trace- anchored method considers similarity scores between 
the questioned document Eu and handwriting samples from writers 
in the alternative population. Hepler et al. [25] define the trace- 
anchored SLR as

Neumann and Ausdemore [32] present an alternative definition 
of a trace- anchored SLR:

In this case, both the numerator and denominator condition on 
the evidence from the unknown source, unlike Equation (4) that 
anchors on the evidence from the known source in the numerator 
and the evidence from the unknown source in the denominator. 
Neumann and Ausdemore state an SLR that anchors on the ev-
idence from the unknown source in the numerator is not useful 
in practice because the investigator would need other objects 
from the same unknown source as Eu to estimate the numerator. 
Additionally, Neumann and Ausdemore point out that because the 
trace- anchored SLR defined by Hepler et al. anchors on two dif-
ferent objects in the numerator and denominator it is highly un-
likely that it will converge to the desired Bayes factor. However, 
this is only a drawback from a Bayesian perspective and the valid-
ity of this method for other statistical frameworks has yet to be 
explored.

The source- anchored method considers similarity scores be-
tween the POI’s handwriting sample Ek and handwriting samples 

from writers in the alternative population. The source- anchored SLR 
is defined

Neumann and Ausdemore [32] criticize this approach for being 
incoherent from a Bayesian perspective, but Garton [33] takes a dif-
ferent viewpoint.

The general match method considers similarity scores between 
handwriting samples from pairs of different writers randomly se-
lected from the alternative population. The general match SLR is 
defined

Like the trace- anchored SLR, the general match SLR also does 
not anchor on the same object in the numerator and denominator. 
Again, this is problematic from the Bayesian perspective, but fur-
ther research is needed to ascertain whether this is an issue from 
the perspective of other statistical frameworks. Hepler et al. [25] 
demonstrate that these three SLR types can lead to different con-
clusions on the same evidence. Because of this, the method inves-
tigators use to build their reference set of non- matching scores is 
extremely important.

In many situations, SLRs from Equations (4)– (6) are easier to 
apply than LRs from Equation (3) because similarity scores reduce 
the dimensionality of the problem. Instead of needing to fit prob-
ability distributions in high dimensions, the investigator only needs 
to fit distributions to lower dimensional similarity scores. One draw-
back of SLRs is that unlike LRs, they do not account for rarity. For 
example, if a witness told the police the color, make, and model of 
the car that fled the crime scene and a person of interest owns a car 
of the same color, make, and model, an LR would take into account 
the rarity of that color, make, and model in the general population of 
cars (e.g., a red Ferrari Portofino is rarer than a black Toyota Corolla). 
In contrast, an SLR does not consider the rarity of the car involved 
(e.g., two red Ferrari Portofino cars are just as similar in color, make 
and model as two black Toyota Corolla cars). Another drawback of 
SLRs is that when “pairwise comparison” methods are used, depen-
dency is introduced into the resulting score data. Meaning that any 
two similarity scores that were created using the same object as one 
item in the pair will be dependent (e.g., Δ(I1, I2) and Δ(I1, I3) are de-
pendent because they both involve item I1). Unfortunately, no one 
knows how to fix this problem yet. Because LRs are as of yet unavail-
able for camera device identification when more than two devices 
are considered, despite the limitations, SLRs are the only available 
alternative.

SLRs have been applied to the digital image forensic problem 
of camera source identification, where the source being identified 
is a particular camera device [34,35]. Nordgaard and Höglund [34] 
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introduce the framework for calculating source- anchored SLRs, one 
of the available types of SLRs. They perform simulation studies in 
the case where a questioned image came from one of two cameras, 
and they discuss how their method could be applied to a larger set 
of cameras. van Houten et al. [35] addressed the scenario where an 
investigator knows the make and model of the camera that took a 
questioned image and wishes to determine which device out of a set 
of 9 or 10 devices of that make and model captured the image. They 
present specific- source hypotheses, but they construct SLRs that 
address common- source hypotheses. The difference between the 
numerators of a common- source SLR and a specific- source SLR lies 
in the construction of the reference sets of matching scores used to 
estimate the numerators' PDFs [31]. The reference set of matching 
scores for a common- source SLR consists of matching scores from 
devices in the alternative device population in addition to matching 
scores from the specific known device. The specific- source SLR uses 
matching scores only from the specific known device. The denom-
inator of a common- source SLR is the same as the general match 
denominator for a specific- source SLR. van Houten et al. performed 
experiments on two camera models: the Motorola V360 mobile 
phone camera (10 cameras) and the Sony DSC- S500 camera (nine 
cameras). Reinders [36] and Reinders et al. [37] adapted the method 
Hepler et al. used to calculate trace- anchored SLRs for the camera 
device identification problem. We present an extended investiga-
tion of the use of SLRs for camera device identification beyond the 
current published literature and develop a framework for calculating 
all three available types of specific- source SLRs with a larger dataset 
of 48 camera devices from 26 distinct camera models. We do not 
compare our method of computing source- anchored SLRs to those 
in the literature since other authors tailored their methods to small 
database sizes, and we designed our methods to work with large 
databases.

As mentioned before, SLRs quantify the strength of evidence in 
favor of one of the hypotheses over the other. More specifically, if 
an SLR is greater than 1 it shows support for Hp rather than Hd and 
the larger the SLR the stronger the support for Hp. On the other 
hand, an SLR value less than or equal to 1 supports Hd rather than 
Hp and the smaller the SLR the stronger the support for Hd. Figure 2 
illustrates this.

Section 2 describes the proposed framework for calculating the 
three types of SLRs for camera device identification. Section 3 ex-
plains the results obtained from applying the proposed methods to 
a dataset of 48 camera devices. Section 4 discusses the strengths 
and limitations of the proposed methods and the implications of the 
findings for future work.

2  |  METHODS

We present a framework for calculating three types of specific- 
source SLRs [25] –  trace- anchored, source- anchored, and general 
match –  for the camera device identification problem. We demon-
strate this framework on an image dataset from 48 camera devices 
representing 26 distinct camera models. Building upon previous 
work, our framework offers a more comprehensive application of 
SLRs for camera device identification.

We start by describing the scenario we consider. Then we for-
mulate two competing hypotheses Hp and Hd for this scenario. We 
specify the alternative camera devices and image data that we use 
in our analyses. We estimate camera fingerprints from the POI’s 
camera and each of the alternative devices. Then we calculate a 
similarity score δ between the questioned image and the camera 
fingerprints from the POI’s camera. To estimate the probabilities 
of observing the score δ under each hypothesis, we build reference 
sets of matching and non- matching scores using image data from 
the alternative camera devices. Finally, we construct three types 
of SLRs as the ratio between probability of observing δ under Hp 
(same source) and the probability of observing δ under Hd (different 
source).

We consider the scenario where an investigator has two pieces 
of evidence: a digital image from an unknown camera device that 
was involved in a crime; and a camera fingerprint from a POI’s cam-
era device. Our method requires that the investigator has access to 
one or more images that are known to have originated from the POI’s 
camera that can be used to estimate a camera fingerprint. Instead of 
using the generic labels Eu and Ek for evidence as in the previous 
section, here we denote a questioned image of unknown source as 
Iu to make clear that the evidence is an image. We use Fk to denote 
a camera fingerprint from the specific known source, the POI’s cam-
era, and we use Ck to refer to the POI’s camera. We construct the 
following two competing hypotheses:

The goal then is to construct score- base likelihood ratios to eval-
uate the strength of the evidence regarding these specific- source 
hypotheses.

Our experiments use image data from four digital image data-
bases: Alaska version 1 (R. Cogranne, Q. Giboulot, P. Bas, personal 
communication, December 1, 2019), BOSSbase [38], Dresden 
(Dressden Image Database, T. Gloe, R. Bohme, personal com-
munication, December 1, 2019), which is described in [39], and 
StegoAppDB [40,41]. Because this work is the first implementation 
of our proposed framework, we chose to restrict our experiments 
to RAW, auto- exposure images that we converted to TIFF format 
using Adobe Photoshop’s Image Processor without LZW compres-
sion or resizing. We use photos taken in landscape orientation only 
and ignore devices with fewer than 100 such images. Restricting 
to auto- exposure eliminates the effect of manual camera expo-
sure, which may affect the PRNU accuracy. Using the RAW image 

Hp: questioned image Iu and camera fingerprint Fk both originated from camera device Ck

Hd: camera fingerprint Fk originated from camera device Ck, but questioned image Iu did not.

F I G U R E  2  Basic interpretation of SLR values [Color figure can 
be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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data and converting to TIFF eliminates the effect of compression 
quality from JPEG images that can also affect accuracy. Landscape 
photos avoid calculation of rotation of the device to perform the 
“best” fit, another computational issue we put aside. Finally, we 
use 512 × 512 sub- images cropped from the center of each photo, 
rather than the entire photo itself. This avoids the computation-
ally expensive alignment process to compare images of different 
sizes, as would be necessary in real- world case scenarios. These 
choices limit the effect of other complicating factors that poten-
tially affect accuracy, so that analysis of SLR scores can avoid com-
plicating factors. Future work should investigate these and other 
factors for their impact to accuracies.

A total of 48 devices from all four databases had at least 100 
RAW, auto- exposure, landscape- oriented images, so these are the 
devices that we use in our experiments. Of those 48 devices, 23 
are digital still cameras, 24 are mobile phones, and one is a tablet. 
The 48 devices represent 26 distinct camera models and 16 of 
the models have at least two devices. Ideally, we would have a 
much larger set of devices, but this is the largest set of images 
that we could find where the ground truth of the camera device 
has been authenticated. We randomly select 100 images from 
each of the 48 devices and pre- process the images by converting 
the RAW images to TIFF in Photoshop using the Image Processor 
with no LZW compression or resizing. Then we center- crop the 
images to 512 × 512 and save them as PNG in MATLAB. (Images 
can be cropped in Python using the Python Imaging Library or 
similar libraries.) We split the sample of 100 images from each of 
the 48 devices into a training set of 80 images and a set of 20 
testing images, which serve as our questioned images. We have 
20 × 48 = 960 questioned images in total.

Camera fingerprints are estimated from each of the 48 camera 
devices. (MATLAB and Python implementations of fingerprint esti-
mation are available at [42]. We used the MATLAB code.) Each de-
vice Ci has n = 80 training images I1

i
, I2
i
, … , In

i
. (The subscript denotes 

the camera, and the images are numbered in the superscript.) A de-
noising filter D is used to extract a noise residual from each image: 
X
j

i
= I

j

i
− D

(

I
j

i

)

 for j = 1, 2, …, n. The n = 80 training images are divided 
into 8 folds of 10 images each. Camera fingerprint F1

i
 calculated with 

Equation (1) and all training images except those in fold 1, camera 
fingerprint F2

i
 is estimated from all training images except those in 

fold 2, and so on. This results in 8 camera fingerprints from device Ci.
We need a way to measure the similarity (or dissimilarity) be-

tween the questioned image Iu and the camera fingerprint Fk from 
the POI’s device. In other words, we need to choose which similar-
ity score to use in Equation (2). We used peak- to- correlation energy 
(PCE) in our initial experiments, but we found that the large variance 
(on the order of 106) of the observed PCE scores produced many 
unstable SLR values where the numerator of the SLR is tiny and 
the denominator is zero. We found that for our dataset the sam-
ple correlation has much smaller variance (on the order of 10−3) and 
thus produced more stable results. We chose to use the correlation 
distance, which is defined as one minus the sample correlation. For 
X ,Y ∈ ℝ

n the correlation distance is

where X =

1

n

∑n

i=1
Xi and Y =

1

n

∑n

i=1
Yi . The correlation distance 

between two images X and Y with dimensions m × n can be calculated 
by first converting the images to vectors of length mn. The noise re-
sidual Xu = Iu − D(Iu) is obtained by subtracting a denoised version of 
the image, created with denoising filter D, from the image itself. Then 
the investigator calculates the correlation distance between the ques-
tioned image Iu and the camera fingerprint Fk from the POI’s camera 
using Equation (2) where multiplication between Iu and Fk is performed 
element- wise and Xu and IuFk are first converted to vectors.

A trace- anchored, source- anchored, and general match SLR is 
calculated for each questioned image Iu and each of the 48 devices 
set as the specific known device Ck in turn. For a given questioned 
image Iu and a given specific known device Ck the correlation dis-
tance is calculated between a noise residual Xu of Iu and the product 
(element- wise) IuF

j

k
 (for j = 1, …, 8) and the results are averaged:

By taking the average score over the eight fingerprints, we are 
adapting the subsampling algorithm used by Hepler et al. [25] for 
estimating the numerator distribution for the device identification 
problem by creating “pseudo camera fingerprints.”

We build reference sets of known matching scores and three 
sets of non- matching scores –  trace- anchored, source- anchored, 
and general match –  to estimate the probability of obtaining the 
score δ under each hypothesis. The reference set of matching 
scores is used to estimate the probability of obtaining the score δ 
if Iu and Fk originated from the same camera. A matching score is 
calculated as the correlation distance between the j- th fingerprint 
F
j

k
 and the noise residual X�,j

k
 of image I�,j

k
, which is the �- th image 

in fold j.

Figure 3 illustrates the calculation of matching scores. In total, 
we calculate 8 × 10 = 80 matching scores for device Ck. Note that 
scores calculated using the same fingerprint or the same noise 
residual and image are dependent, so we do not have 80 inde-
pendent scores. Also, note that matching scores do not use the 
question image Iu.

Non- matching scores require a set of alternative camera devices. 
In our experiments, we set aside specific known device Ck and treat 
the other 47 devices from our dataset as the set of alternative cam-
era devices. To calculate a trace- anchored non- matching score, we 
fix the questioned image Iu and calculate the correlation distance 
between its noise residual Xu and a camera fingerprint Fa from an 
alternative device Ca.

1 −

(

X−X
)� (

Y − Y
)

√

(

X−X
)� (

X − X
)

√

(

Y−Y
)� (

Y − Y
)

,

(7)� =
1

8

8
∑

j=1

Δ

(

XuIuF
j

k

)

.

Matching scores: Δ

(

X
�,j

k
I
�,j

k
F
j

k

)

for � = 1, … , 10 and j = 1, … , 8.

Trace − anchored non −matching score: Δ
(

XuIuFa
)

.
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As illustrated in Figure 4, we calculate trace- anchored non- 
matching scores between questioned image Iu and each of the eight 
fingerprints from each of the 47 alternative devices. This results in 
8 × 47 = 376 trace- anchored non- matching scores for questioned 

image Iu. Because some of these scores were calculated with either 
the same fingerprint or the same noise residual and image these 
scores are not independent. Notice that trace- anchored scores do 
not use any information from the POI’s device Ck. Also, while we 

F I G U R E  3  Calculating matching scores for specific known device Ck. Each camera fingerprint Fj
k
 was estimated from all training images 

except those in fold j. because the images in fold j were not used to estimate fingerprint Fj
k
, matching scores are calculated between 

fingerprint Fj
k
 and the images and corresponding noise residuals in fold j

F I G U R E  4  Calculating trace- anchored 
non- matching scores for questioned image 
Iu and specific known device Ck
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know that Ca and the POI’s camera Ck are not the same device, the 
questioned image Iu could have originated from Ca. However, our 
hypotheses ask whether Iu originated from a device other than Ck 
but do not identify the alternative source of the image. If the investi-
gator wants to evaluate the probability that Iu originated from device 
Ca, then new hypotheses should be constructed and a new SLR with 
Ca in place of Ck as the specific known device will be calculated.

A source- anchored non- matching score is calculated between a 
fingerprint Fk of specific known device Ck and the noise residual Xa 
of a training image Ia from alternative device Ca.

We calculate source- anchored non- matching scores between 
each of the 8 camera fingerprints from Ck and each of the 80 train-
ing images from each of the 47 alternative devices for a total of 
8 × 80 × 47 = 30,080 scores. Many of these scores are dependent 
because they are calculated from either the same fingerprint or the 
same noise residual and image. Figure 5 illustrates the calculation of 
these scores. Note that the questioned image Iu is not considered in 
the source- anchored scores.

The last type of non- matching scores are general match non- 
matching scores. To calculate one of these scores we randomly se-
lect two different devices C1 and C2 from the set of 47 alternative 
devices. Then we calculate the correlation distance between the 
noise residual X1 of a training image I1 from one of the devices with a 
camera fingerprint F2 from the other device.

We also calculate Δ(X2, I2F1) where X2 is the noise residual of a 
training image I2 from device C2 and F1 is a camera fingerprint from 
device C1 because Δ(X1, I1F2) is not generally equal to Δ(X2, I2F1). 
Figure 6 shows that we calculate a general match non- matching 
score between the 80 training images of one device and the 8 

camera fingerprints of the other device for each pair of alternative 
devices. This results in 47 × 46 × 80 × 8 = 1,383,680 general match 
non- matching scores. Again, many of these scores are dependent 
because they were calculated from either the same fingerprint or 
the same noise residual. Notice that the general match non- matching 
scores do not use the questioned image or the specific known device.

We do not know the true PDFs of matching and non- matching 
scores, so we fit PDF estimates to each set of scores and use these 
estimates to construct the SLR. We acknowledge that there are 
several possible methods for estimating these PDFs, including both 
parametric and non- parametric options. Nordgaard and Höglund 
[34] use a parametric method due to the relatively low amount of 
background information (they only have two camera devices to use 
for comparison). In contrast, we have much more background infor-
mation (hundreds of images from 48 camera devices), so we chose to 
explore a non- parametric method. We use kernel density estimation 
to fit PDFs fm, ftrace, fsource, and fgeneral to the reference sets of match-
ing, trace- anchored, source- anchored, and general match non- 
matching scores, respectively. Similar methods were employed in 
[43]. We use the MATLAB fitdist function to perform kernel density 
estimation. (Kernel density estimation can be performed in Python 
with Scikit- Learn’s Nearest Neighbors library.) The kernel density es-
timator f̂ h:ℝ →

[

0∞) applied by fitdist is defined as

where n is the sample size, y1, …, yn are random samples from the un-
known distribution, K is the kernel smoothing function, and h is the 
bandwidth. In our case, y1, …, yn are the scores, K is the normal ker-
nel function [44]. We allow fitdist to choose the optimal bandwidth h. 
Generally, this method of naively selecting the bandwidth will under- 
smooth the estimated PDFs because this method relies on the assump-
tion of independent data, which we know we do not have due to the 
pairwise nature of creating the matching and non- matching scores. 

Source − anchored non −matching score: Δ
(

XaIaFk
)

.

General match non −matching scores: Δ
(

X1I1F2
)

andΔ
(

X2I2F1
)

.

(8)f̂ h (y) =
1

nh

n
∑

i=1

K
(

y − yi
)

h
,

F I G U R E  5  Calculating source- 
anchored non- matching scores for specific 
known device Ck
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However, there is currently no method of fitting better PDF estimates 
for pairwise dependent data.

All the pieces are in place for us to calculate the trace- anchored, 
source- anchored, and general match SLRs. The numerator of all three 
SLR types shown in Equations (4)– (6) are estimated by fitting a PDF fm 
to the matching scores matching scores reference set using Equation (8) 
and evaluating fm at the mean similarity score δ from Equation (7). The 
denominator of the trace- anchored SLR is the PDF ftrace fit to the set of 
trace- anchored non- matching scores using Equation (8) evaluated at δ 
from Equation (7). The trace- anchored SLR is defined

Similarly, the source- anchored SLR is defined

where fsource is the PDF fit to the source- anchored non- matching 
scores. Lastly the general match SLR is defined

SLRtrace =
fm (�)

ftrace (�)
.

SLRsource =
fm (�)

fsource (�)
,

F I G U R E  6  Calculating general match 
non- matching for specific known device Ck

F I G U R E  7  Tippet plots of general match, source- anchored, and trace- anchored SLRs under two scenarios: Match (Hp is true) and non- 
match (Hd is true) [Color figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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where fgeneral is the PDF fit to the general match non- matching scores.
The SLRtrace, SLRsource, and SLRgeneral use the same numerator, 

which gives the likelihood of observing the score δ if Hp is true. The 
denominators of the three SLRs give the likelihood of observing the 
score δ if Hd is true, each SLR type using a different definition of 
non- matching scores. An SLR value is the ratio of these two likeli-
hoods. sss 2 shows how SLR values are commonly interpreted based 
on whether they are less than or greater than 1.

3  |  RESULTS AND DISCUSSION

We calculate the trace- anchored, source- anchored, and general match 
SLRs between 960 questioned images (20 images from each of the 
48 camera devices in the dataset) and each of the 48 devices set as 
the specific known device in turn, resulting in 3 × 960 × 48 = 138,240 
SLRs. The prosecution hypothesis Hp is true (the questioned image Iu 

and the camera fingerprint Fk both originated from the person of inter-
est’s camera Ck) for 3 × 48 × 20 = 2880 of these SLRs, and the defense 
hypothesis Hd is true (the fingerprint Fk originated from the POI’s cam-
era Ck but the questioned image Iu did not) for the other 135,360 SLRs.

3.1  |  Overall performance

The Tippet plots in Figure 7 (following the convention used in [45]) 
show the empirical cumulative distribution function of SLR scores 

SLRgeneral =
fm (�)

fgeneral (�)
,

F I G U R E  8  Each tile shows the percentage of known matching 
log10(SLR) values that fall into a particular interval. values greater 
than 0 correctly support Hp relative to Hd and values less than or 
equal to 0 are misleading evidence in favor of Hd. Values closer 
to 0 show weaker support and values farther for 0 show stronger 
support [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E  1  Rates of misleading evidence in favor of Hp

General match Source- anchored Trace- anchored

0.0466 0.0409 0.0267

TA B L E  2  Rates of misleading evidence in favor of Hd

General match Source- anchored Trace- anchored

0.0146 0.00833 0.00521

TA B L E  3  Rates of misleading evidence in favor of Hp by the 
model of the questioned image

Model of questioned image
General 
match

Source- 
anchored

Trace- 
anchored

Canon EOS 100D Rebel SL1 0.0277 0.0399 0.0447

Canon EOS 20D 0 0 0

Canon EOS 400D 0 0 0.0011

Canon EOS 60D 0.034 0.0394 0.0404

Canon Rebel XSi 0 0 0.0043

iPad pro 7.1 13 inch 0.183 0.1064 0.0447

iPhone 6s 0.0899 0.0404 0.0149

iPhone 6s Plus 0.0383 0.0117 0.0064

iPhone 7 0.0316 0.0133 0.0106

iPhone 7 Plus 0.05 0.0229 0.0096

iPhone 8 0.0787 0.0489 0.0229

iPhone X 0.0718 0.0495 0.0191

Nikon 1 AW 0 0 0.0011

Nikon D200 0.0191 0.0213 0.0234

Nikon D5200 0.0848 0.0851 0.067

Nikon D70 0.077 0.0848 0.0365

Nikon D70S 0.0819 0.0846 0.0473

Nikon D7100 0.084 0.083 0.0287

OnePlus 5 0.0154 0.0186 0.0218

Panasonic Lumix DMC FZ28 0 0 0.0011

Panasonic Lumix DMC GM1 0 0 0.0011

Pentex K50 0.0213 0.0213 0.0223

Pixel 1 0.0362 0.0574 0.0314

Pixel 2 0.0144 0.0197 0.0202

Samsung Galaxy S8 0.0468 0.0521 0.0617

Sony ILCE alpha 6000 0.0681 0.0809 0.0532

https://onlinelibrary.wiley.com/
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for each SLR type when Hp is true and when Hd is true. We see 
that the three SLR types under consideration perform well but 
imperfectly. Misleading evidence in favor of Hd occurs when Hp 
is true but the SLR score is less than zero. Misleading evidence 
in favor of Hp occurs when Hd is true but the SLR score is greater 
than zero. The Tippet plots show that both types of misleading 
evidence occur for all three SLR types. The trace- anchored SLRs 
might appear on first glance to perform poorly when Hp is true, but 
that is not the case. The trace- anchored SLR curve under Hp rises 
more slowly than the other two SLR types because the majority 
of trace- anchored SLR scores are larger than the source- anchored 
and general match scores (see Figure 8). This behavior is precisely 
what we wish to see because it means that when Hp is true many 
of the trace- anchored SLRs correctly show strong support for Hp 
relative to Hd.

The exact rates of misleading evidence in favor of the prosecution 
(RMEP) and in favor of the defense (RMED) are show in Tables 1 and 
2, respectively. Both the RMEP and RMED are lowest for the trace- 
anchored SLRs. Tables 3 and 4 show the RMEP and RMED for each 

camera model. It is interesting to note that a particular model might 
have its highest RMEP under one SLR type while a different model 
might have its highest RMEP under a different SLR type. The RMEP 
is high for some camera models and work should be done to attempt 
to lower the RMEP. In particular, we propose researching how incor-
porating an inconclusive zone where log10(SLR) values close to 0 are 
considered inconclusive and using close non- matches, cameras of the 
same model, as the alternative device population might decrease the 
rates of misleading evidence (see Section 4 for more discussion of 
future work).

3.2  |  Evaluating the strength of the evidence

SLRs allow us to quantify the strength of the evidential support for 
Hp or Hd. Figures 8 and 9 group all 138,240 general match, source- 
anchored, and trace- anchored log10(SLR) scores into intervals based on 
their values. Figure 8 shows log10(SLR) values from known matches and 
Figure 9 shows known non- matches. Each cell displays the percentage 

TA B L E  4  Rates of misleading evidence in favor of Hd by the 
model of the questioned image

Model of questioned image
General 
match

Source- 
anchored

Trace- 
anchored

Canon EOS 100D Rebel SL1 0.025 0 0

Canon EOS 20D 0 0 0

Canon EOS 400D 0 0 0

Canon EOS 60D 0.05 0.05 0.05

Canon Rebel XSi 0 0 0

iPad pro 7.1 13 inch 0 0 0

iPhone 6s 0 0 0

iPhone 6s Plus 0 0 0

iPhone 7 0.0375 0.0625 0

iPhone 7 Plus 0 0 0

iPhone 8 0.025 0.05 0

iPhone X 0.025 0 0

Nikon 1 AW 0 0 0

Nikon D200 0 0 0

Nikon D5200 0 0 0

Nikon D70 0.05 0 0

Nikon D70S 0 0 0

Nikon D7100 0 0 0

OnePlus 5 0 0 0

Panasonic Lumix DMC FZ28 0 0 0

Panasonic Lumix DMC GM1 0 0 0

Pentex K50 0 0 0

Pixel 1 0.0125 0 0

Pixel 2 0.075 0 0

Samsung Galaxy S8 0 0 0

Sony ILCE alpha 6000 0 0 0.2

F I G U R E  9  Each tile shows the percentage of known non- 
matching log10(SLR) values that fall into a particular interval. values 
less than or equal to 0 correctly support Hd relative to Hp and 
values greater than 0 are misleading evidence in favor of Hp. Values 
closer to 0 show weaker support and values farther for 0 show 
stronger support [Color figure can be viewed at wileyonlinelibrary.
com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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of general match, source- anchored, or trace- anchored log10(SLR) val-
ues that fall into a particular interval. Almost 69% of general match 
SLRs for known matches correctly support Hp relative to Hd but the 
strength of the evidence is rather weak with these values between 
0 and 2. On the other hand, 87.71% of the trace- anchored SLRs for 
known matches correctly show stronger support for Hp with log10(SLR) 
values greater than 100, while only 41.83% of source- anchored SLRs 
and 3.85% of general match SLRs show the same strength of support 
for Hp relative to Hd. In this respect, the trace- anchored SLRs perform 
better than the other two SLR types when Hp is true. It is worth noting 
that 61.5% of the trace- anchored SLRs for known matches are infinite 
because the denominator is zero. This is an artifact caused by KDE. All 
three SLR types perform well and similarly on known non- matches. 
For roughly 10% of the log10(SLR) values the evidence in favor of Hd 
is rather weak with the values falling between −2 and 0. Over 80% of 
the log10(SLR) values show stronger support for Hd relative to Hp with 
values less than or equal to −2.

4  |  CONCLUSIONS

This paper presents a framework for calculating general match, 
source- anchored, and trace- anchored SLRs to not only address 
the prosecution’s and defense’s hypotheses in camera device 
identification problem, but also to provide a means of quantify-
ing the strength of the evidence in favor of one hypothesis over 
the other. The dataset consists of digital images from 48 cam-
era devices representing 26 distinct models. It includes digital 
still cameras, mobile phones, and one tablet. To the best of our 
knowledge, this is the first time camera device identification ex-
periments using all three types of SLRs have been performed. 
General match SLRs performed poorly on the dataset, while both 
the source- anchored and trace- anchored SLRs performed well, 
with the trace- anchored SLRs performing the best of the three. If 
this dataset were to be used as the reference dataset for camera 
device identification SLRs in practice, trace- anchored SLRs would 
be recommended for use. One large caveat, however, is that it 
is unknown if similar results would occur on different datasets. 
Before applying SLRs in practice with a new dataset, it would be 
a good idea to replicate the study presented in this paper on the 
new dataset.

We only used RAW, center- cropped, auto- exposure, landscape- 
oriented images in our dataset. Future research should explore 
SLRs on a much wider variety of image data. Additionally, we only 
considered the closed set scenario where the questioned image’s 
camera was present in the dataset. Future work should explore the 
open set scenario where the questioned image’s camera is not in 
the dataset.

Previous work has shown that it is possible to distinguish between 
different models based on image artifacts created by the color filter 
array and the image processing pipeline [46]. We plan to leverage 
this in future work with SLRs where we restrict the reference dataset 

to close non- matches where the cameras in the dataset are the same 
model or brand as the POI’s camera.

Several researchers [25,47] have employed an inconclu-
sive zone where log10(SLR) values are considered inconclusive if 
t1 < log10(SLR) < t2 for a real- valued constants t1 and t2 where t1 < t2. 
These researchers considered t1 = −t and t2 = t for a constant t > 0. 
This type of inconclusive zone gives equal weight to both hypotheses. 
Future work could explore methods for choosing the best t1 and t2 to 
minimize the rates of misleading evidence. Additionally, a defense bi-
ased inconclusive zone with t1 = 0 and t2 = t for a constant t > 0, which 
places a higher burden of proof on the prosecution while granting the 
benefit of the doubt to the defense could also be explored.
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