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Untangling the network effects of
productivity and prominence
among scientists

Weihua Li 1,2,3,4 , Sam Zhang 5, Zhiming Zheng1,2,3,4, Skyler J. Cranmer6 &
Aaron Clauset 7,8,9

While inequalities in science are common, most efforts to understand them
treat scientists as isolated individuals, ignoring the network effects of colla-
boration. Here, we develop models that untangle the network effects of pro-
ductivity defined as paper counts, and prominence referring to high-impact
publications, of individual scientists from their collaboration networks. We find
that gendered differences in the productivity and prominence of mid-career
researchers can be largely explained by differences in their coauthorship net-
works. Hence, collaboration networks act as a formof social capital, andwefind
evidence of their transferability from senior to junior collaborators, with ben-
efits that decay as researchers age. Collaboration network effects can also
explain a large proportion of the productivity and prominence advantages held
by researchers at prestigious institutions. These results highlight a substantial
role of social networks in driving inequalities in science, and suggest that col-
laboration networks represent an important form of unequally distributed
social capital that shapes who makes what scientific discoveries.

Scientific discoveries are an emergent phenomenon of the collective
actions of individual scientists and the scientific communities they
construct. The composition of these communities can be highly het-
erogeneous, and often exhibit pervasive inequalities. These inequal-
ities can be social in terms of who makes up the scientific workforce1,2

and what resources they receive for their research3–5, or epistemic in
terms of which ideas spread further and receive more attention6,7.
Understanding the origins of these inequalities and their effects on the
pace and direction of scientific discovery would better inform efforts
to support innovation, broaden participation in science, and accel-
erate new discoveries8.

The pervasiveness of inequalities in science, in representation,
prestige, attention, resources, etc., likely reflects the combined and
heterogeneous effects of many processes, including competition,

cumulative advantage, systemic bias, pipeline effects, and discrimina-
tion. For instance, in the academic job market, faculty hiring commit-
tees tend to hire the graduates of prestigious doctoral programs1,9,
which may allow scientists at a small group of elite institutions to
effectively set the research agenda of the entire field. Scientists at elite
institutions also receive disproportionately more funding than those at
less prestigious institutions,whichmayenable greater scientific activity,
larger doctoral training programs, and institutionalized hierarchy10.
And, an elite affiliation provides ameasurable advantage in peer review,
which may play a role in the research of elite scientists being far more
likely to appear in high-impact publication venues, compared to that of
early-career or non-elite scientists11.

Biases related to gender, race, ethnicity, geography, language, and
prestige are known to drive differences in scientific output and impact.
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A number of recent studies have shown that inequality in social net-
works and collaborations may relate to gender disparity and affect
career outcomes for women12–18, particularly in science, technology,
engineering, and mathematics (STEM) fields19–22. Moreover, women
tend to receive less funding23, publish fewer papers, aremore isolated in
collaborations, and are often overlooked in favor of male
collaborators24. As a result, it remains unclear the degree to which dif-
ferences in individual scientific activity reflect genuine differences in
scientificmerit or biases caused by various non-meritocratic processes.

At its base, science is composed of networks of social
interactions25–28. These interactions mediate most scientific activities,
including scientific training, hiring, collaboration, teaching, citation,
peer review, and debate. Hence, a scientist’s social relationships with
other scientists may represent a form of persistent social capital that
can be accumulated, used, and possibly transferred among
scientists29–31. For instance, some evidence indicates that a single
extremely strong connection to another scientist is sufficient to
increase the productivity and career sustainability of individual
researchers32. Via collaboration, networks correlate with the unequal
provision of "scientific and technological human capital” across
researchers20, shape the academic career of researchers33, and can
conceal underlying inequalities in formal evaluations like tenure34.
Even common but unadjusted measures of scientific productivity and
impact, such as the number of papers a scientist publishes or the
number of citations a paper receives, depend on networks, because
discoveries are always situatedwithin a broader, evolving conversation
among scientists35–38.

In the sociology of science, there are both many measures of
scholarly output and awide variety of normalization schemes intended
to help distill a collaborative publication record into individual-level
contributions8. For instance, authorship may be fractionalized by the
number of coauthors on a given paper39,40, or a paper’s citation count
may be normalized by the impact factor of the venue in which it
appeared41. Each measure sheds its own light on social and epistemic
inequalities in science, and each normalization scheme comes with
assumptions, with potentially uncertain external validity42. In this
study, our analysis follows the long tradition in the sociology of
science43,44 of using simple measures of scholarly productivity and
prominence, which count the number of papers published by an
individual and the number of publications in high-impact venues. This
approach presents both advantages and limitations, which we discuss
below, but is central to our analysis of network effects.

By mediating scientific attention, evaluation, and collaboration,
social networks play a fundamental role both in shapingwhat scientific
discoveries are made and what impact they have, and in shaping per-
vasive social and epistemic inequalities in science. Untangling the
effects of these interactions would shed substantial light on the
mechanisms that underlie scientific discovery, and may offer new
solutions for making the scientific community more inclusive and
innovative. For instance, is it more important for an early career sci-
entist to have a prominentmentor or to train in an elite program?How
does who a scientist knows shape what questions they study or what
discoveries they make? How much are gender differences in pro-
ductivity and prominence caused by gendered differences in colla-
boration networks?12 And, how much of a scientist’s productivity and
prominence is explained by that of their collaborators?45 These ques-
tions cannot be clearly answered without considering the effects of
social networks in science.

Here, we untangle the network effects of collaborations on the
productivity and prominence of individual scientists by developing
two network models. Applied to large-scale scientific publication and
collaboration data, these models allow us to quantify the network’s
effect on driving certain widespread and persistent inequalities
across individual researchers. Using these models, we investigate the
degree to which gendered collaboration patterns explain gendered

differences in productivity—measured by the number of first- or last-
authored publications—and prominence—measured by the number of
high-impact publications that received the upper 8th percentile of
citations as measured 2 years after publication for a given year and
field, how network effects vary with institutional prestige, and the
degree to which collaboration networks operate as a kind of moder-
ately transferable form of social capital, by which successful senior
scientists improve the long-term trajectory of their junior collabora-
tors. Although the selected metrics of productivity and prominence
are broadlymentioned anddiscussed in the scientific community, they
should be used with considerations as they do not necessarily imply
scientific utility46,47.

Results
We begin by extracting pairs of coauthors defined across 20.0 million
research articles in the Microsoft Academic Graph (MAG) database
since 195048,49, across six STEM fields: biology, chemistry, computer
science, mathematics, medicine, and physics. To better isolate the
most important network connections, we focus on the coauthorship
links defined by the first and last authors of each paper. Subsetting to
only the first-last author pairs connections eliminates the network
effects on productivity and prominence caused by variations in the
number of coauthors per paper, middle-author contributions of all
types, trends over time and across fields in team sizes, and other
related confounds. This selection preserves and focuses our analysis
on the most important collaboration links according to common
coauthorship norms in STEM fields, e.g., traditional mentor-mentee
relationships, where the junior scholar is typically the first author and
their senior colleague is the last author.

The nature of coauthorship in scientific publications tends to
confound direct measures of the productivity and prominence of
individual scientists. Highly productive scientists tend to have many
collaborators, often including each other, and the productivity of
these individuals tends to lift the productivities of others by virtue of
those collaborations. In the same way, highly cited scientists tend to
increase the prominence of their collaborators, and often, the same
collaborators are both highly productive and highly cited. Bibliometric
normalization schemes, such as fractional authorship, can be viewed
as paper-level adjustments for these network effects of collaboration.

However, untangling the network effects of collaborations over a
scientific career to estimate each individual’s contributions within the
interdependent context of coauthorship networks requires a gen-
erative network model. Here, we introduce two such models that can
control for these collaboration network effects and allow us to quan-
tify the latent productivity and prominence of individual researchers,
and their relationship with social and epistemic inequalities in scien-
tific careers.

Wemodel the production ofpublications by a pair of coauthors as
a stochastic outcome of their joint efforts, governed by a linear com-
bination of their individual latent productivity parameters (Fig. 1a).
Mathematically, the number of coauthored publications is the output
of a pairwise Poisson process, parameterized by the sum of the latent
individual productivities λi and λj for coauthor pair (i,j). Hence, the
model parameter λi gives the expected number of publications per
year for author i, and for an author pair (i,j), their joint productivity is a
random variable of the form

PðNij ,tij ∣λi,λjÞ=
exp�ðλi + λj Þtij ½ðλi + λjÞtij �Nij

Nij !
, ð1Þ

where Nij is the observed number of papers coauthored by authors i
and j over a total collaboration time period tij (see Methods).

Similarly, we model prominence, defined as the number of high-
impact publications, as a joint function of individual latent parameters
(Fig. 1a). Mathematically, researcher prominence is modeled by a
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Binomial distribution, parameterized by the sum of the latent indivi-
dual prominences θi and θj of the coauthor pair (i,j). Hence, the model
parameter θi gives the expected fraction of publications with i as an
author that will be highly cited, and for an author pair (i,j), their joint
prominence is a random variable of the form

PðNij ,mij ∣θi,θjÞ=
Nij

mij

 !
ðθi +θjÞmij ½1� ðθi +θjÞ�Nij�mij , ð2Þ

wheremij is the observednumber of highly citedpapers coauthoredby
authors i and j over a total collaboration time period tij (see Methods).
We note that both models assume conditional independence across
publications, which may obscure some interesting temporal effects50.
Applying these joint productivity and prominence models to all pairs
of coauthors in a collaboration network yields joint likelihood func-
tions whose independent maximization yields a set of individual pro-
ductivity and prominence parameters that effectively control for the
network effects of coauthorship on the variables of interest

LðλÞ= ∑
i≠j
logPðNij ,tij ∣λi,λjÞ LðθÞ= ∑

i≠j
log PðNij ,mij ∣θi,θjÞ: ð3Þ

Applied to our full dataset of 198,202 mid-career researchers
across six STEM fields, defined as researchers with at least 15 years of
scholarly publishing activity (see Supplementary Information), we find
compelling evidence that these latent parameter models yield a useful
individual decomposition of the observed joint productivities and
prominences of collaborating scientists (Fig. 1b and Supplementary
Fig. 3 for individual fields). Examining the marginal distributions, we
find that the latent productivity and prominence variables are nearly
orthogonal (Pearson’s r = 0.09, p < 10−3), with λ following a Normal
distribution and θ following a heavy-tailed distribution. That is, con-
trolling for network effects,wefind that individual productivity ofmid-
career researchers is low variance and concentrated around a central
tendency of μλ =0.39 first/last-authored papers per year (standard
deviation σλ =0.15), with only the top 0.02% of researchers exhibiting a
latent productivity of λ̂ > 2 first/last-authored papers per year.

In contrast, controlling for network effects, individual promi-
nence is highly variable, with an average prominence of μθ =0.04 (on
average, for publications written by two authors, 1 out of 12.5 will be

highly cited), but a standard deviation twice as large (σθ =0.08). That
is, a large majority of researchers have low individual prominence,
while aminority generate a long tail ofmuch greater impact, much like
measures of popularity and wealth in other complex social systems51.
Furthermore, both of these estimated parameters have lowcorrelation
with a researcher’s career-wise raw productivity, with the Pearson
correlation coefficients rλ,N =0.21 and rθ,N = −0.02. This implies that
after controlling for the network effects of collaboration, the latent
parameters could indicate the productivity and prominence of indi-
vidual researchers in a given unit time period. As a technical aside, we
note that parameter estimates for these models are more stable for
researchers with at least 10 papers, and appear to underestimate latent
productivity λ and overestimate prominence θ for less productive
authors (Supplementary Fig. 5). The distribution of θ does not quali-
tatively change when we alter the threshold of highly-cited papers
(Supplementary Fig. 6).

If the estimated individual productivity and prominence para-
meters λ and θ are genuinely measuring individual-level character-
istics, controlling for network effects from collaboration, then they
should only loosely correlate with their corresponding network-
confounded measures of raw productivity and raw prominence. We
evaluate the efficacy of these two measures by characterizing their
correlation with other “unadjusted” measures and time-related
dynamics for individual researchers. We first select a cohort of mini-
mally productive mid-career researchers who have published at least
10 papers by their 15th year, and tabulate a correlation matrix of esti-
mated individual parameters and observed scholarly statistics, based
on their publications through their mid-career (Fig. 1c). We define a
researcher to be “high λ” or “high θ” if their individual estimated
parameter is in the upper 10th percentile of same-field researchers for
a given year. And, we define a high λ or θ coauthor as a collaborator
who is themselves a high λ or θ author and has published at least three
papers by the year of relevant collaboration. This correlation analysis
reveals that a researcher’s individual λ and θ values correlate only
moderately with their “unadjusted” productivity and prominence
(λ with papers, Pearson’s r = 0.21; θ with citations, Pearson’s r =0.36),
indicating that the model parameters are capturing behavior above
and beyond what the unadjusted counts provide. And, we find strong
evidence of the network effects of collaborations in driving the
observed productivity and prominence of individual researchers,
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Fig. 1 | Network decomposition and correlation of individual productivity and
prominence measures. a Illustrations of how observed individual productivity
(upper) and prominence (lower) are network measures, resulting from the joint
effect of the individual productivity λ and prominence θ parameters of coauthors.
b Joint and marginal distributions of estimated latent variables λ and θ estimated
from 198,202 mid-career STEM researchers who published at least ten papers. To
better illustrate the estimated distribution of θ, we omit points for 116,223

researcherswith negligible θ̂ < 10�3 values. The remaining researchers have amean
λ̂ value of μλ =0.42, moderately higher than the entire cohort of selected
researchers reported in the main text (two-sided t-test, t = 49.8, p < 10−3).
c Correlation matrix of individual mid-career researchers' observed and modeled
scholarly statistics, illustrating how the modeled parameters capture the network
effects of collaboration.
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because the number of high λ and high θ coauthors correlates more
strongly with individual productivity and prominence (papers vs. high
λ coauthors, Pearson’s r =0.70; citations vs. high θ coauthors, Pear-
son’s r =0.49) than do the individual’s own model parameters. Hence,
these network models can shed new light on the substantial but often
hidden role that social networks can play in determining individual
career metrics.

Similarly, if the estimated individual latent parameters are mea-
suring a researcher’s underlying characteristics, they should remain
relatively stable over an individual’s career path, even as their colla-
borationnetwork evolves. Compared to a fully randomizednullmodel,
we find that high λ or high θ researchers are more likely to remain in
the same percentile group after 10 years (see Supplementary Infor-
mation, and Supplemenatry Figs. 7–9). Furthermore, researchers with
high latent parameter values in their early-career (first 5 years of
publishing) are also more likely by their mid-career to be in the upper
5th percentile of citations among researchers who publish in a given
field in a given year. And, this pattern holds when we repeat the ana-
lyses in matched-pair experiments, in which we match researchers on
their institutional prestige, productivity, andprominence in their early-
career (Supplementary Fig. 10, Supplementary Tables 1–4). These
results indicate that an individual researcher’s estimated model para-
meters for productivity and prominence are relatively stable over a
career, suggesting that they are capturing underlying scholarly beha-
vior independent of changes in collaboration patterns over time, as
intended.

In agreement with past studies, we find gendered inequalities in
observed measures of both career-wise productivity (Fig. 2a) and
prominence (Fig. 2d) among mid-career STEM researchers, in which
men both publish more papers and receive more citations than

women22,52,53. On average, men in these fields publish a total of 20.3
papers by the time they reach their mid-career (first 15 years) com-
pared to 18.3 papers by women (t-test, t = 24.5, p < 0.001, Cohen’s
d =0.15 ± 0.01), and, on average, men’s past publications receive 346.0
total citations compared to 330.1 citations for women’s (t-test, t = 4.9,
p <0.001, Cohen’s d =0.03 ±0.01). In other words, men’s average total
productivity is 11.0% greater and they receive 5.0%more citations than
women by mid-career, and these disparities are stable over time. For
researchers with at least three publications in the first 5 years of their
publishing career, i.e., in their early career, the probability of persisting
until mid-career is 20.6% for men but only 15.7% for women, in
agreement with the well-known higher drop-out rate for early-career
female scientists53. Despite these differences in observed scholarly
metrics, controlling for collaboration via our networkmodels reveals a
different pattern: across fields, the average mid-career latent pro-
ductivity parameter is λ̂=0:39 for bothmen andwomen (t-test, t =0.7,
p =0.51, Cohen’s d < 0.01), and the average mid-career latent promi-
nence parameter θ̂=0:044 for men and 0.045 for women (t-test,
t =0.82, p =0.41, Cohen’s d <0.01). That is, men and women exhibit
statistically indistinguishable individual latent productivities and
latent prominences, implying that the differences in observed scho-
larlymetrics are likely caused by gendered differences in the structure
and composition of researcher collaboration networks (Fig. 2b, e).

Furthermore, we find that the gendered gaps for mid-career
researchers can be largely explained by variation in the number of
direct coauthors in their collaboration networks.Matchingwomen and
men researchers by institutional prestige, year of first publication, and
field, we still find a gendered disparity in which women’s productivity
and prominence is lower relative tomatchedmen (Fig. 2c, f). However,
additionally matching on the number of coauthors largely eliminates
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Fig. 2 | Gendered disparities in individual productivity and prominence mea-
sures. Across six STEM fields, observed average (a) productivity and (d) promi-
nence, showing substantial and stable gaps, among 198,202 mid-career
researchers, by gender from 1989 to 2017, along with corresponding estimated
individual latent (b) productivity λ and (e) prominence θ for the same researchers,
showing negligible gendered differences. Shaded areas represent 95% confidence

intervals. Then, (c) productivity and (f) prominence for pairs of men and women
researchers matched on institutional prestige, year of first publication, and either
(i) field alone or (ii) field and the number of coauthors, showing that gendered
collaboration rates can explain the observed gendered differences in scholarly
metrics. Two-sided t-test for comparisons.
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these gendered disparities in both productivity (10.5%, t-test, t = 24.5,
p <0.001, Cohen’s d =0.15 ± 0.01 vs. 0.7%, t-test, t = 1.3, p = 0.20,
Cohen’s d =0.01 ± 0.01) and prominence (12.8%, t-test, t = 4.9,
p <0.001, Cohen’s d = 0.03 ± 0.01 vs. 2.3%, t-test, t = 2.0, p = 0.04,
Cohen’s d =0.02 ±0.01). Hence, we find substantial evidence that the
well-known gendered productivity and prominence inequalities
among women and men researchers can be largely explained as a
network effect, in which the composition and size of local collabora-
tion networks differ between men and women, and these differences
lead to the observed differences in scholarly metrics, rather than any
inherent difference in the researchers themselves. We note that this
analysis does not establish a causal relationship, and hence known
causal factors, such as the gendered impact of parenthood on
researchers that leads to productivity penalty for mothers as they
undertake more childcare duties54, likely influence both productivity
and collaborationnetworks.Wealso test the robustnessofourfindings
by selecting mid-career researchers with at least 20 publications
(Supplementary Fig. 13) and repeating the analysis by randomly sam-
pling a tertile of researchers (Supplementary Fig. 14), showing that
these different choices do not change the qualitative nature of our
conclusions. Overall, these results suggest that collaboration networks
can be viewed as a form of social capital that is distributed in unequal
and gendered ways in STEM, which mediates or shapes the amount of
scholarly contributions and their visibility.

If a researcher’s collaboration network acts like a form of social
capital, we should expect key dynamics of social capital apply in col-
laboration networks as well. For instance, an author’s collaboration
network capital should be “transferrable” to some degree between
researchers. For example, collaboration by an early-career researcher
with a high λ or high θ senior coauthor should enhance the junior
researcher’s productivity or prominence in a way that persists into
their own mid-career, compared to similar researchers without such a
collaboration. For this analysis of junior-senior collaborations, we
select pairs in which, at the time of collaboration, the early-career
researcher is 5 or fewer years since their first publication, and the
senior coauthor is 6 ormore years since theirfirst publication. Because
themodel estimates of individual latent parameters aremore accurate
for researcherswithmore papers, we restrict our analysis here to early-
career coauthors and their senior coauthors that have at least three
papers by the time of collaboration.

We find that early-career researchers are significantly more likely
to collaborate with high λ or θ senior researchers if they are based at
elite institutions, which we define as research institutions whose
authoritative ranking is among the top 10 in a given field (see Meth-
ods), indicating that the composition of collaboration networks itself
varies with environmental prestige55. This may be largely due to a
selection effect that high λ or θ senior researchers are more likely to
work at elite institutions, reflecting inequalities of having access to
important social networks among early-career researchers. In parti-
cular, at pairwise coauthorships, the probability that an early-career
researcher collaborates with a high λ (productivity) senior researcher
is 0.177 at elite institutions vs. 0.145 at non-elite institutions (t-test,
t = 19.3, p < 0.001, Cohen’s d = 0.09 ±0.01), and the probability of
collaborating with a high θ (prominence) senior researcher is 0.141 at
elite institutions vs. 0.067 at non-elite institutions (t-test, t = 50.2,
p <0.001, Cohen’s d = 0.28 ±0.01).

However, regardless of the institution, researchers who collabo-
rated with high λ or high θ senior coauthors early in their career are
significantly more likely to themselves be a highly prominent
researcher in their mid-career, who have accrued the upper 5th per-
centile of citations among all active researchers in a given year and
field (Fig. 3a, c). In particular, collaborating with at least one high λ
senior coauthor in thefirst 5 years of a researcher’s career increases the
probability of subsequently being a highly prominent researcher in the
15th career year from 16.2 to 29.5% (t-test, t = 65.0, p <0.001, Cohen’s

d =0.34 ±0.01; Fig. 3a). And, a high θ senior coauthor doubles that
mid-career probability from 16.3 to 39.8% (t-test, t = 81.6, p <0.001,
Cohen’s d =0.61 ± 0.01; Fig. 3c). For both types of collaboration pat-
terns, junior researchers from elite institutions exhibit higher pro-
ductivity and prominence in the mid-career than do peers at less
prestigious institutions—a disparity that reflects the value of presti-
gious environments55. This institution-based gap is larger for early-
career researchers that have collaborated with high θ coauthors than
with high λ coauthors.

However, the early-career benefits of a high λ or high θ senior
coauthor appear to decrease modestly with that coauthor’s career
age (Fig. 3b, d). This finding contrasts with past studies of scientific
mentorship56,57, which have typically relied on unadjusted citation
counts that are naturally larger for more senior collaborators and
which represent a stronger confounding network effect. By correct-
ing for the network effect of collaboration, we find instead that the
benefits of collaborating with highly productive or highly prominent
senior coauthors do not increase with coauthor seniority. Rather,
they decrease with career age of the senior coauthor, and decrease
more for high λ coauthors, suggesting that the transfer of social
capital from senior to junior researchers through collaboration is
more effective earlier in the career of senior coauthors. We also test
the robustness of our results by selecting senior collaborators
with at least six publications and at least ten publishing career years
by the time of relevant collaboration, (Supplementary Fig. 15), andwe
find that the different thresholds do not qualitatively change our
findings.

Finally, we consider the impact of environmental prestige on
latent productivity and prominence of mid-career researchers. Past
work has shown that working at a more prestigious institution
drives greater productivity and prominence among early-career
researchers55. However, as with past work on the impact of mentor-
ship, such insights were derived from scholarly measures that
did not control for the network effects of collaboration,which increase
as a career progresses. Across six STEM fields, researchers in our
dataset affiliated with elite institutions on average publish a total of
21.8 papers up to their mid-career (first 15 years), which is 8.5% greater
than the 20.1 for researchers at non-elite institutions (t-test, t = 11.5,
p <0.001, Cohen’s d =0.11 ± 0.02, Fig. 4a). And, over the same career
time, researchers at elite institutions receive on average 493.7 cita-
tions, which is 62.1% greater than the 304.5 citations received by
researchers at non-elite institutions (t-test, t = 27.8, p <0.001, Cohen’s
d =0.38 ±0.02, Fig. 4d). Hence, in unadjusted scholarly metrics,
researchers at elite institutions have marginally higher productivity
and a substantially higher impact.

We find that these productivity and prominence advantages for
researchers working in prestigious environments also appear in our
estimated individual latent parameters. Researchers at elite institu-
tions, on average, also exhibit a marginally greater latent productivity
than those at non-elite institutions (λ =0.394 vs. 0.387; 1.8% greater;
t-test, t = 6.0, p <0.001, Cohen’s d = 0.05 ±0.02, Fig. 4b). And, these
same researchers, on average, exhibit nearly double the latent pro-
minence of researchers at non-elite institutions (θ =0.071 vs. 0.037;
91.9% greater; t-test, t = 36.7, p <0.001, Cohen’s d = 0.43 ± 0.02,
Fig. 4d).Hence, controlling for the networkeffects of collaboration,we
find smaller but still significant advantages in productivity but even
larger advantages in prominence for researchers working at elite
institutions, compared with raw scholarly metrics. The persistence of
the advantages of elite environments after controlling for network
effects suggests that other factors likely drive these differences55, e.g.,
differences in resources, the size of collaboration networks, or selec-
tion effects that apply primarily tomid-career researchers. In addition,
wefind that the results donot qualitatively changewhenwemodify the
number of selected elite institutions to the top 20 (Supplemen-
tary Fig. 16).
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Some of this prestige advantage can be explained by differences
in the composition of a mid-career researcher’s collaboration net-
works. Matching researchers in our sample by field and year of first
publication, we find that researchers at non-elite institutions are only
6.8% less productive than those at elite institutions (Fig. 4c). However,
further matching on variables that quantify the composition of a
researcher’s collaboration network, and in particular, the number of
coauthors, number of high λ coauthors, and number of high θ coau-
thors, we find that researchers at non-elite institutions are 2.8% more
productive than those at elite institutions (t-test, t = 3.1, p <0.01,
Cohen’s d =0.04 ±0.02). These network effects are even stronger for
the prominence of individual researchers. Matching researchers by
field and year of first publication, researchers at non-elite institutions
receive 39.9% fewer citations than those at elite institutions, while
further matching on collaboration network variables shrinks this gap
to only 19.9%. Hence, in contrast to gendered differences (Fig. 2), we
find that the inequalities in productivity and prominence associated
with environmental prestige cannot be explained entirely by differ-
ences in the structure of collaboration networks, suggesting that
additional prestige-related variables play an important role in driving
the greater scholarly impact of researchers at elite institutions.

In addition, we test the interaction effects of gender and institu-
tional prestige on the performance of mid-career researchers. We find
that the prestige of institutions has a relatively stronger effect on
researchers’ productivity and prominence than gender, for both
unadjusted measures and latent parameters (see Supplementary
Fig. 12). In particular, both gender and institutional prestige have
negligible effects on latent productivity λ, while institutions appear to

have stronger influence than gender on latent prominence θ. The
observation thatprestigedoesnot appear todrive latent productivity λ
is supported by other recent studies, which show how the greater
productivity of faculty at prestigious departments can be largely
explained by a collaborationnetwork effect: elite departments provide
more available funded research labor, who then coauthor papers with
the faculty members in their departments58.

Discussion
By mediating scientific attention, evaluation, and collaboration, social
networks play a fundamental role in shaping both the advancement of
science and the pervasive social and epistemic inequalities that appear
inmost scientific communities. However, analyses of scholarlymetrics
associated with productivity and prominence, based on counts of
publications and citations, even when normalized in some way, as in
the case of fractional authorship or adjusting for journal impact fac-
tors, tend to be confounded by network effects that operate above the
level of individual publications. Such network effects make it difficult
to gain insight into the causes and consequences of these inequalities,
particularly across the span of a scientific career. Here, we introduced
two scholar-level generative network models that allow us to estimate
parameters that represent individual researcher productivity and
prominence, while controlling for the effects of collaborations with
more or less productive or prominent collaborators over time (and
those collaborators’ collaborations, etc). We then applied these mod-
els to a large dataset of 198,202 mid-career researchers and all of their
first-last author collaborations across 70 years of time and six fields in
STEM to investigate the effect of collaboration networks.
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Fig. 3 | Impact of senior coauthors on junior researcher’s likely mid-career
impact. Early career researchers with a (a) high λ or (c) high θ senior coauthors are
substantially more likely to be elite authors by their mid-careers, regardless of
institutional prestige. The magnitude of this effect for both (b) λ and (d) θ is large
regardless of the career age of the senior coauthor, but decreases modestly with

age. Junior researchers with early high λ coauthors n for yes = 57,552; no = 229,225.
Junior researchers with early high θ coauthors n for yes = 30,983; no = 255,794.
Two-sided t-test for comparisons. Error bars in (a and c) indicate mean ± 1.96 SEM.
In (b, d), solid lines indicate mean and shaded areas indicate 95% confidence
intervals.
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We find that the observed gendered gap in productivity and
prominence canbe largely explained by differences in social networks.
The way social networks can behave like social capital, with boosting
effects on junior researchers decaying as their senior collaborators
age. After controlling for network effects, our adjusted productivity
and prominence parameters can explain a significant proportion but
not all scholarly disparity related to environmental prestige. These
results have implications for gendered and institutional differences in
scholarship, which we discuss further in the following paragraphs.

Our estimated latent parameters reveal that women researchers
who persist until mid-career (15 years since first publication) exhibit
equal productivity and prominence to persisting men (Fig. 2). This
finding suggests that the well-known gendered difference in “unad-
justed” scholarly metrics like number of papers (productivity) and
total citation counts (impact) can be explained by gendered differ-
ences in coauthorship networks. Although this result does not imply
causality, it does indicate that known causal factors like the gendered
impact of parenthood on researchers54, likely also shape collaboration
networks. By providing new individual parameters after adjusting
network effects, our findings highlight the importance of social net-
works in shaping scholarly gender differences among mid-career
researchers, which contributes to the abundant literature on potential
causes and effects of gender disparity in science, including academic
culture19 and homophily15,16. More research is needed to identify the
likely multiple reasons that women on average have fewer coauthors
than men, and the degree to which those reasons relate to scholarly
factors, preferences, or non-meritocratic factors.

These results also suggest that collaboration networks can be
viewed as a form of social capital that is distributed in unequal and
gendered ways in STEM. In this way, collaboration networksmay serve
as a common mediating variable for other social and epistemic

inequalities, which may then drive differences in the amount or visi-
bility of scholarly contributions, or other factors associated with sci-
entific discovery. Efforts specifically aimed at expanding and
supporting the collaboration networks of women researchers, e.g.,
formal support and advocacy organizations, women-in-science meet-
ings, and fellowships for women that support intensive new colla-
borations, seem likely to help mitigate these gendered gaps in
scholarly metrics, and to broadly support scientific discovery.

Supporting the view that collaboration networks act like a formof
social capital, we find that early-career collaborations with elite senior
researchers, as identified via their high latent parameters λ or θ, seem
to raise the latent productivity and prominence of their junior coau-
thors, which supports the long-term development of their academic
careers (Fig. 3). This effect appears regardless of the prestige of the
affiliated institution, but is amplified in prestigious environments,
which measurably catalyze the formation of collaboration ties with
elite researchers. However, the boosting effect that early-career col-
laborations with elite senior coauthors have on mid-career pro-
ductivity and prominence gradually declines as senior coauthors age,
regardless of the senior authors’ latent parameter values. Further
research is needed to understand the causal mechanisms through
which these senior collaborations produce lasting influence on the
productivity and prominence of early-career researchers, whether
these effects are gendered, and what causes the age-related effect.

Many possibilities are plausible. The effect could reflect epistemic
ossification, in which older scientist become progressively less well-
connected to the dynamic core of their field. It could also reflect social
saturation, in which the capacity of senior scientists’ collaborators to
fromnewcollaborationswith junior colleagues is gradually depleted. A
particularly plausible possibility is that the effects are driven by
prestige-correlated selection and social stratification. For instance,
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Fig. 4 | Impact of elite environments on researcher productivity and promi-
nence. The institution-based differences in unadjusted average (a) productivity
and (d) impact, and in latent variables (b) λ and (e) θ of mid-career researchers.
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showing that elite working environments can explain the observed differences.
Two-sided t-test for comparisons.
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elite senior researchers are more likely to be based at prestigious,
research-intensive institutions, and hence are more available to colla-
borate with students intent on pursuing academic research careers,
who have enhanced prospects to do so, as a result of their prestigious
pedigree. By the same token, talented students at a less prestigious
institution will have fewer available elite researchers to collaborate
with, and hence have lower access to the kinds of social capital that
facilitate a successful early research career. Or, the advantage of mid-
career researchers at elite institutions in their productivity and pro-
minence may reflect the stratification of research resources, e.g.,
funding, research group size, computational or experimental facilities,
etc., and early collaborations with elite senior researchers simply
increases the likelihood of ultimately working at such an institution.
Identifying the underlying causes of the long-term effects of these
collaborations is an important direction of future research, with spe-
cific implications for efforts to mitigate social and epistemic inequal-
ities in science.

Overall, our findings shed considerable new light on the funda-
mental role of collaboration networks in shaping scientific careers and
mediating scholarly inequalities. Our results suggest that collaboration
networks embody a formof unequally distributed social capital, which
influences whomakes what scientific and technological discoveries. In
particular, collaboration network effects can explain both the persis-
tent gendered inequalities among mid-career researchers in pro-
ductivity and prominence, and a considerable portion of the observed
inequalities between researchers working in more or less elite envir-
onments. While these results are not causal, they do suggest that a
more detailed understanding of the factors that influence the size and
composition of researcher collaboration networks is likely to bring us
closer to a causal understanding of many social and epistemic
inequalities in science. Collaboration networks may also play an
important role in the domain of research and development efforts,
particularly in the form of patent collaborations59. Studies focusing on
cross-disciplinary effects thus are likely to shed further light on the
dynamics and influence of social capital in scientific discovery, and the
role of collaboration networks in shaping individual research careers.

There are several limitations to our analyses. By focusing only on
first and last author collaborations, we neglect all collaborations with
middle coauthors, regardless of the kind or size of their contributions.
This categorical selectionmitigates the confoundingnetwork effects of
large author lists, but also neglects the value and influence of team
science. Among the six STEM fields studied here, a common norm is
that research tasks likedata analysis, experiments, and visualization are
performed by the first author, while the last author commonly plays
the more supervisory role of research design, manuscript writing, and
funding support. The specific and varied roles of and interactions with
middle authors are omitted in order to simplify the model framework.
Elaborating our modeling framework to incorporate the effects of
middle-author collaborations, perhaps labeled using an author con-
tribution taxonomy,may reveal additional nuance or secondary effects
of interest. In addition, in order to produce reliable estimates of latent
parameters, researchers with only a small number of collaborations
were dropped from our analysis, which limits our insights to relatively
productive mid-career researchers. Hence, we can say little about the
degree to which our results hold for researchers with short track
records. Our name-based gender classification used data from the US
Social Security Administration, which is biased toward English names.
Further studies that focus on gender disparity of other ethnic groups
are needed to show if similar gendered network patterns persist. And,
our analysis of environmental prestige usedonly a coarsedichotomous
variable for elite or non-elite institution, which likely obscures the
effects of gradations of prestige. Finally, our analyses depend on crude
but easy-to-measure metrics of scholarly contributions, based on
publication and citation counts, which can be useful in aggregate but
should not be confused with measures of scientific utility.

Our results implicate a fundamental but complicated role for
collaboration networks, and the kind of social capital they embody, in
forming and perpetuating social and epistemic inequalities in the sci-
entific processes of STEM fields. They also suggest that collaboration
network effects could be leveraged to help mitigate some of those
same inequalities, to better support scientific discovery and to
broaden participation in science. For instance, targeted support
of cross-institution, early-career collaborations with elite senior
researchers, perhaps through specialized fellowships,may support the
career advancement of promising young researchers who would
otherwise leave research. Similarly, directly supporting the collabora-
tion networks of women researchers may improve both retention and
productivity, particularly at times when gendered impacts occur, e.g.,
at parenthood54. And, efforts to “correct” for collaboration network
effects when evaluating candidates for faculty positions or applicants
for funding is likely to help mitigate the multiple implicit biases that
are known to favor elite-pedigree men researchers with prolific senior
collaborators1,5,25. Network effects are a natural part of the social pro-
cesses that underlie the scientific process, and are likely to be key
components in any effort to mitigate social and epistemic biases, to
make academia more meritocratic and less sensitive to the effects of
cumulative advantages.

We note that our models are a general way to decompose
observed data on repeated collaborative activities, such as technolo-
gical inventions, business partnerships, and musical composition, into
individual contributions. Applying similarmodels to other phenomena
would be an interesting direction of future work, which may help
illuminate individual differences and contributions to these group
activities. As we have done in this paper, it can also shed new light on
how those differences relate to other variables of interest and, in
particular, the role of those differences in driving broader social
inequalities.

Methods
Publication and citation data
We use the MAG dataset, containing journal articles and conference
proceedings published between 1950 and 2019, inclusive. MAG pro-
vides a 5-level taxonomy of academic fields of study; the top level 0
divides all documents into 19 major fields. Among them, we select six
scientific fields representative of the traditional science, technology,
engineering and mathematics (STEM) domains: biology, chemistry,
computer science, mathematics, medicine, and physics. These fields
publish the majority of research papers in science and technology
domains (see Supplementary Fig. 1). Following the publication norms
in these fields, we include only journal articles in our analyses for all
fields except computer science. For computer science, where con-
ference proceedings are peer reviewed in the same way that journal
articles are in other fields, we include both journal and conference
articles.

Missing researcher affiliations are common in MAG, but difficult
to impute. TheMAGdataset includes 80.4million papers thatmeet the
above inclusion criteria. Among these, 36.0 million papers provide
author affiliation information, and we consider only these in our ana-
lyses. These affiliations provide necessary information for assessing
the environmental effects on coauthorship, career development,
productivity, etc. for individual scientists. The reasons for missing
affiliations for authors in MAG remain unclear.

Our analyses consider coauthorship only between first and last
authors of each paper. In the six STEM fields we analyze, the first and
last authorship positions are typically understood to denote the
authors that made the greatest contributions to the research. There
are circumstances where this norm does not apply, e.g., in specific
subfields where authors are listed in the alphabetic order, or when
there are multiple “first” or “last” authors due to equal contribution
flags, as well as in some large collaborations. To account for this latter
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category, we exclude all papers with more than 10 listed authors.
Applied together, our refined dataset contains 12.9 million unique
authors and 20.0 million research articles. Our first-last author
counting scheme eliminates the effects of large author lists and the
relevance of fractional counting, at the expense of potentially under-
counting contributions and effects of middle-authorship. Most
authors are associated with very few publications, and our analyses
focus on themid-career trajectories of the 198,202 productive authors
that published their first paper in 1975–2003 and have at least 10
publications in the 15th career year.

We define the highly cited papers to be those that receive the
upper 8th percentile of citations among papers published in journals
and computer science conferences, respectively, for a given year and
level 0 field annotated in MAG dataset. In MAG, a paper belongs to
exactly one level 0 field but falls into several different fields at other
fine-grained levels, making it difficult to operationalize the definition
of highly-cited works based on these levels. The theoretical need to
normalize citation counts at a fine-grained level only applies when
authors are being compared directly across such fields, and that our
models naturally account for such cross-field variability as our model
essentially estimates a researcher-specific parameter.

Institutional prestige and elite institutions
For a specific discipline, we use the z-score of the number of total
historical highly cited papers produced by each research institution to
define its prestige score

pinst
i =

Nhigh
i � hNhighi
σ=

ffiffiffiffiffiffiffiffiffi
ninst

p , ð4Þ

where Nhigh
i is the number of highly cited papers produced by institu-

tion i, 〈Nhigh〉 is the average number of highly cited papers by all
institutions,σ is the standarddeviationof highly citedpapers, andninst is
the number of institutions. The institutional prestige score is discipline
specific, but does not vary over time. We define the top 10 research
institutions by this measure, within each field, to be elite institutions.

Gender
We assign binary gender labels to authors according to a classifier
based on U.S. Social Security Administration data, which records the
historical gender associated with names of newborn babies in the
United States of America60. Hence, our analysis of gender disparity is
most applicable to researchers with origins in North America or other
native English-speaking countries. Only first names that have at least
95% accuracy for a specific gender are retained for the matching. As
such, we matched 126,805 productive authors for our analysis who
published the first paper in 1975–2003, composing 64.0% of all pro-
ductivemid-career authors selected for our study, amongwhich 20.2%
(25,666) are women.

Latent variable estimation
For each network model and each field, we use all papers published
within that field up to a given year, and estimate the latent parameter
sets using convex optimization. We estimate yearly parameters with
bootstrap-corrected pseudo-likelihood using 30 replications for every
year from 1975 to 2017. For each year T, we construct the coauthorship
network by using all publications from 1950 to T. In each round of
bootstrap sampling, prior to estimating the networkmodels, we prune
all subgraphs of the coauthorship network that are trees, as model
parameters become non-identifiable in such structures. Authors
dropped as a result of pruning are assigned a latent variable of 0, and
the final parameter estimates are the average values of all replications.
In our analysis of patterns over time, authors receive latent parameter
estimates in every year from their first appearance as either a first or
last author until 2019.

Individual research latent parameters λ and θ are estimated using
the convex optimization R package CVXR61. Within a given field, for
each year from 1975 to 2017, we estimate the model parameters on a
bootstrap of all papers published up to and including that year, using
30 replications. An individual researcher’s λ and θ parameters are
recorded as the (bootstrap) average across replications.

In our networkmodels, we assume that a pair of coauthors started
their collaboration 1 year before they published their first paper
together. Hence, the duration of collaboration for authors i and j
is tij =Yr

lastpaper
ij � Yrfirstpaperij + 1.

We assess the bias induced from pruning authors in collaboration
network trees by examining the differences in individual-level attri-
butes such as institutional prestige and gender in the 2017 network for
retained and dropped authors. There are 35.6% women authors in the
retained population, while the proportion of women is 31.9% in the
dropped population. And, the average institutional prestige score for
retained authors is 5.51, and 3.41 for dropped authors, suggesting that
authors in the tree subgraphs are usually from less prestigious
institutions.

Data manipulation and visualization
We used R package data.table version 1.14.0 for processing and
manipulating publication and citation data62. All data visualization
graphics in this study are made with the R package ggplot2 ver-
sion 3.3.563.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Microsoft Academic Graph data was obtained by following the
guidelines at https://docs.microsoft.com/en-us/academic-services/
graph/get-started-setup-provisioning.

Code availability
The code used in this study has been deposited in the GitHub reposi-
tory https://github.com/LleytonLi/LatentVariables.
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