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Abstract

Aims We aimed to investigate whether metabolomic profiling of blood can lead to novel insights into heart failure pathogen-
esis or improved risk prediction.
Methods and results Mass spectrometry-based metabolomic profiling was performed in plasma or serum samples from
three community-based cohorts without heart failure at baseline (total n = 3924; 341 incident heart failure events; median
follow-up ranging from 4.6 to 13.9 years). Cox proportional hazard models were applied to assess the association of each of
the 206 identified metabolites with incident heart failure in the discovery cohorts Prospective Investigation of the Vascula-
ture in Uppsala Seniors (PIVUS) (n = 920) and Uppsala Longitudinal Study of Adult Men (ULSAM) (n = 1121). Replication was
undertaken in the independent cohort TwinGene (n = 1797). We also assessed whether metabolites could improve the pre-
diction of heart failure beyond established risk factors (age, sex, body mass index, low-density and high-density lipoprotein
cholesterol, triglycerides, lipid medication, diabetes, systolic and diastolic blood pressure, blood pressure medication, glo-
merular filtration rate, smoking status, and myocardial infarction prior to or during follow-up). Higher circulating urobilin
and lower sphingomyelin (30:1) were associated with incident heart failure in age-adjusted and sex-adjusted models in
the discovery and replication sample. The hazard ratio for urobilin in the replication cohort was estimated to 1.29 per stan-
dard deviation unit, 95% confidence interval (CI 1.03–1.63), and for sphingomyelin (30:1) to 0.72 (95% CI 0.58–0.89). Results
remained similar after further adjustment for established heart failure risk factors in meta-analyses of all three cohorts.
Urobilin concentrations were inversely associated with left ventricular ejection fraction at baseline in the PIVUS cohort
(β = �0.70, 95% CI �1.03 to �0.38). No major improvement in risk prediction was observed when adding the top 2 me-
tabolites (C-index 0.787, 95% CI 0.752–0.823) or nine Lasso-selected metabolites (0.790, 95% CI 0.754–0.826) to a modified
Atherosclerosis Risk in Communities heart failure risk score model (0.780, 95% CI 0.745–0.816).
Conclusions Our metabolomic profiling of three community-based cohorts study identified associations of circulating levels
of the haem breakdown product urobilin, and sphingomyelin (30:1), a cell membrane component involved in signal transduc-
tion and apoptosis, with incident heart failure.
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Introduction

Heart failure is a major global health problem that needs to
be addressed in terms of better identification of high-risk
individuals, as well as new therapeutic and preventive
strategies.1 New biomarkers for heart failure could improve
risk assessment and provide insights into underlying patho-
physiology, thereby improving quality of life for patients
and reducing the burden on the health system.2

Metabolomic profiling, or metabolomics, is the study of
low-weight molecules (<1.5 kDa), derived either from the
environment (exogenous metabolites) or from metabolism
(endogenous metabolites).3 Recent advances in high-
throughput technologies have enabled metabolic profiling in
large cohorts, which has provided novel possibilities for
biomarker discovery. Yet few studies have investigated the
association between metabolomics profiles and heart failure
risk.4,5

The objective of this study was to investigate the
association between 206 metabolites measured by ultra-
performance liquid chromatography coupled with time-of-
flight tandem mass spectrometry and heart failure incidence
in three independent community-based cohorts of middle-
aged to elderly individuals using a discovery/replication
approach. Secondary aims were to assess whether the
metabolites could improve the prediction of heart failure be-
yond established heart failure risk factors and to investigate
the association between the metabolites and the baseline
echocardiographic measurements of left ventricular function.

Methods

Cohorts

In the Prospective Investigation of the Vasculature in Uppsala
Seniors (PIVUS), all 70-year-old residents of Uppsala County,
Sweden, were invited to participate in a health survey and
detailed clinical assessment between 2001 and 2004, de-
scribed in detail previously.6 Of 2025 invited, 1016 (50.2%)
participated in the baseline assessment, which occurred
within 1 month of their 70th birthday.

In the Uppsala Longitudinal Study of Adult Men (ULSAM),
all men born in Sweden between 1920 and 1924 and living
in Uppsala were invited to participate in a health assessment
between 1970 and 1973, described in detail previously.7 Of
1681 invited, 1221 (72.6%) participated in the follow-up

assessment at age 71 between 1991 and 1995 that serves
as the baseline examination for the present study.

The Swedish Twin Register is a population-based study of
194 000 Swedish twins born between 1886 and 2008.8

TwinGene is a longitudinal study of men and women nested
within the Swedish Twin Register. All twins born before
1958 who also participated in the Screening Across the
Lifespan Twin telephone screening between 1998 and 2002
were re-contacted between 2004 and 2008, and 12 591 indi-
viduals (55% women) participated in the study.8 Metabolomic
analyses were performed in a subset of TwinGene using a
case–cohort design, including all incident cases of type 2
diabetes (n = 218), coronary artery disease (n = 282), ischae-
mic stroke (n = 186), and dementia (n = 114) prior to 31
December 2010, and a sub-cohort (controls) of 1643 individ-
uals (43% women) stratified on age and sex were included.9

individuals in all these groups were eligible for inclusion in
this study.

Exclusion criteria

Individuals with (i) prevalent heart failure, (ii) missing
metabolite measurements, (iii) missing model covariates, or
(iv) non-fasting individuals (106 individuals in TwinGene)
were excluded. The final number of participants included in
the analysis was 920 in PIVUS, 1121 in ULSAM, and 1797 in
TwinGene (Figure 1). The regional ethics review boards in
Uppsala (PIVUS and ULSAM) and Stockholm (TwinGene) ap-
proved the studies, and all participants gave written informed
consent.

Outcome

In PIVUS and ULSAM, medical records for all individuals
hospitalized for heart failure [International Classification of
Diseases, Ninth Revision (ICD-9) 428 and ICD-10 I50], or
hypertensive heart disease with heart failure (ICD-9 402 and
ICD-10 I11), in the National Patient Register (inpatient) during
follow-up were reviewed by physicians blinded to the base-
line data.10 Heart failure events were classified as definite,
questionable, or miscoded according to the European Society
of Cardiology definitions.11 Thus, to be classified as a definite
heart failure case, there had to be symptoms and signs of
heart failure and ‘objective evidence’ of cardiac dysfunction
at rest. In cases of doubt, the response to heart failure treat-
ment was a useful check of the diagnosis. The required
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‘objective evidence’ was echocardiography; however,
because the study commenced prior to the widespread avail-
ability of echocardiography, electrocardiography and X-ray
were also considered acceptable when an echocardiography
report was not available. We used definite cases of heart
failure in our analyses for definition of the outcome. In
TwinGene, heart failure diagnosis was obtained from the
National Patient Register (ICD-9 428 and ICD-10 I50).

Individuals were followed for up to 17 years from baseline
until heart failure diagnosis, death, or end of follow-up (10
June 2014 in PIVUS, 31 December 2008 in ULSAM, and 31
December 2010 in TwinGene).

Clinical characteristics

In PIVUS and ULSAM, participants were investigated in the
morning after an overnight fast. Venous blood samples were

frozen as plasma (ULSAM), or as serum (PIVUS), and stored at
�70°C until analysis. Participants in TwinGene went to their
local healthcare centre for blood sampling and health
check-up. Participants were instructed to perform the sample
collection in the morning after an overnight fast. Serum sam-
ples were sent by overnight mail to the Karolinska Biobank
where they were frozen at �80° C until analysis.

In all cohorts, information on lifestyle and medication at
baseline was collected through questionnaires. Data on myo-
cardial infarction prior to baseline or during follow-up were
retrieved from the Swedish hospital discharge register (ICD-
9 410 and ICD-10 I21 and I22). Diabetes was defined as hav-
ing a fasting plasma glucose ≥7.0 mmol/L, taking antidiabetic
medication, or having an HbA1c ≥ 6.5% (48 mmol/mol,
TwinGene only). Glomerular filtration rate was estimated
from creatinine using the CKD-EPI formula.12

In PIVUS, the left ventricular volume was calculated ac-
cording to the Teichholz M-mode formula.13 Left ventricular

Figure 1 Flow chart illustrating the design of the study, including inclusion and exclusion criteria.
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systolic function was assessed by ejection fraction, calculated
as (left ventricular diastolic volume � left ventricular systolic
volume) left ventricular diastolic volume. Left ventricular dia-
stolic function was assessed by the isovolumic relaxation time
(the interval between aortic valve closure and the onset of
mitral flow) using the Doppler signal from the area between
the left ventricular outflow tract and the mitral flow.13

Metabolomic profiling

The analytical procedure for metabolomics has been previ-
ously described,14 and the code to process the data is publicly
available (https://github.com/andgan/metabolomics_pipe-
line). In brief, metabolomics profiling in PIVUS, ULSAM, and
TwinGene was performed using a Waters Acquity UPLC
system coupled to a Waters Xevo G2-Time-Of-Flight-Mass
Spectrometry platform at Colorado State University (Fort
Collins, CO, USA). Data acquisition using positive electrospray
ion mode with a mass-to-charge ratio range of 50–1200 at
five scans per second was alternately performed at collision
energies of 6 and 15–30 V. Data were processed by XCMS
in R.15 In total, 10 162 (ULSAM), 9755 (TwinGene), and
7522 (PIVUS) features were detected and adjusted for factors
of external variability (plate effect, analysis date, retention
time drift, and sample collection) by analysis of variance-type
standardization and/or log transformation and by removal of
spectra with abnormal intensities and/or low interduplicate
correlations and/or retention times. Features in common
between PIVUS, ULSAM, and TwinGene were identified by
matchingm/z and retention time, followed by manual inspec-
tion. For each feature, retention time, m/z, and fragmenta-
tion pattern were compared with in-house and public
database reference libraries and matched according to Meta-
bolomics Standard Initiative guidelines to annotate spectra to
metabolite names.16 We confirmed the annotation of
sphingomyelin (30:1) and urobilin at the highest level of con-
fidence by spectral comparison of standards prepared in
methanol and injected at a concentration of 5 μg/mL using
the same method as described earlier (Supporting Informa-
tion, Figures S2–S4). Full metabolomics data are available in
the MetaboLights archive (study identifiers MTBLS90 for
PIVUS, MTBLS124 for ULSAM, and MTBLS93 for TwinGene;
http://www.ebi.ac.uk/metabolights/).

Statistical analyses

We fitted Cox proportional hazard regression models for
new-onset heart failure separately for each of the 206 identi-
fied metabolites, using attained age as timescale and
adjusting for sex, and meta-analysed the discovery cohorts
PIVUS and ULSAM (fixed effect model using the method of
Mantel and Haenszel)17 using the Stata package metan. All

metabolites were normalized (on log2 scale) prior to analysis
to have a mean of 0 and a standard deviation of 1, and those
associated with incident heart failure at a 15% false discovery
rate (estimated using the Benjamini and Hochberg method18)
were taken forward to replication in TwinGene (validation
cohort), where a nominal significance threshold of P ≤ 0.05
was used. We expect the false rediscovery rate in the
validation cohort to be 0.23%, implying that 0.23% of
metabolites replicating at P = 0.05 are expected to be false
positives (Supporting Information, Methods).19 The Cox
proportional hazard assumption was assessed by visually
inspecting plots of Schoenfeld residuals against time in those
metabolites passing the discovery stage. In TwinGene, we
applied weighted Cox proportional hazard models compen-
sating for the case–cohort design, as described in detail
previously.14

We constructed directed acyclic graphs for the assumed
causal relations to guide the choice of covariates (Supporting
Information, Figure S1).20 For the metabolites that were asso-
ciated with heart failure in the replication phase, we per-
formed additional multivariable adjustment based on the
DAGs to establish models with minimal confounding in each
cohort and meta-analysed the results. In these analyses using
age as time scale, we adjusted for sex, body mass index, low-
density lipoprotein (LDL) and high-density lipoprotein choles-
terol, triglycerides, lipid medication, diabetes, systolic and di-
astolic blood pressure, blood pressure medication, kidney
function (glomerular filtration rate), smoking status, myocar-
dial infarction prior to or during study (time updated; the co-
variate is updated the day individuals are hospitalized with
acute myocardial infarction). In additional models, we ad-
justed for baseline N-terminal prohormone of brain natri-
uretic peptide levels (estimated by a commercial or enzyme-
linked immunosorbent assay (ELISA), Roche Diagnostics),
heart rate, haemoglobin, cardiovascular medications (angio-
tensin-converting enzyme inhibitors, angiotensin II receptor
antagonists, beta-blockers, calcium inhibitors, and diuretics),
and calendar year in the PIVUS cohort to determine the influ-
ence of these risk factors on our estimates. In order to inves-
tigate the influence of liver damage on the association
between metabolite and heart failure, we performed addi-
tional multivariable models adjusting for alanine transami-
nase, albumin, γ-glutamyltransferase in the PIVUS cohort.
For the measured upstream metabolites of urobilin, we per-
formed sensitivity analysis to investigate the association of
bilirubin and its metabolites with incident heart failure. We
also assessed the association of all measured sphingomyelins
in the three cohorts combined to evaluate the association be-
tween sphingomyelins as a group and incident heart failure.
In additional sensitivity analysis, missing covariates in
TwinGene (475 data points in 258 individuals) were imputed
using multiple imputation by chained equations using the
mi command package in Stata 14, and results from fully ad-
justed models were compared with the complete case
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analysis. We also evaluated if the metabolites had a linear re-
lationship by fitting restricted cubic spline models with Cox
and plotting the log relative hazards, using the predict com-
mand in Stata.

We further investigated the cross-sectional association
with echocardiographic indices of left ventricular systolic
and diastolic function in PIVUS using age-adjusted and sex-
adjusted linear regression analyses.

To assess whether metabolomic data could improve heart
failure risk prediction beyond the Atherosclerosis Risk in
Communities (ARIC) heart failure score,21 we assessed Cox
proportional hazard models with and without urobilin and
sphingomyelin (30:1) in a pooled sample of all three cohorts.
We adjusted both models for cohort and for available ARIC
covariates (age, sex, previous or current smoker, body mass
index, systolic blood pressure, history of myocardial infarc-
tion, blood pressure medication and diabetes diagnosis).
Heart rate was not available.

Second, we used L1-regularized (Lasso) Cox proportional
hazard regression to select a sparse model that maximized
discrimination performance, while minimizing the number
of metabolites used for prediction. Using the glmnet package
in R, we forced the established risk factors unpenalized into
the model and selected the best performing solution

retaining nine metabolites (<5% of 206 candidates), in a
75% random split of the combined cohorts.22

We evaluated discrimination performance for the two
prediction models by calculating the C-index with coxph and
survConcordance function in the survival package in a pooled
sample of all three cohorts.

Analyses were performed using Stata 13.1 (Stata Corp,
College Station, TX, USA) or R version 3.4.3.

Results

Cohort characteristics

The baseline characteristics, number of events, and incidence
rate of the final analytical dataset for PIVUS (median age
70 years, n = 920), ULSAM (median age 71 years, n = 1121),
and TwinGene (median age 68 years, n = 1797) are shown
in Table 1 and stratified by sex in Supporting Information,
Table S1. Seventy-four participants in PIVUS, 183 participants
in ULSAM, and 84 participants in TwinGene were diagnosed
with heart failure. In total, 96 of the 324 heart failure events
had a preceding myocardial infarction.

Table 1 Baseline characteristics of the participants of the PIVUS, ULSAM, and TwinGene cohorts

Cohort (number of individuals) PIVUS (920) ULSAM (1121) TwinGene (1797)

Age (years) 70.2 (0.2) 71 (0.6) 68.5 (8.1)
BMI (kg/m2) 27 (4.2) 26.3 (3.4) 26.3 (4.0)
LDL-C (mmol/L) 3.4 (0.9) 3.9 (0.9) 3.7 (1.0)
HDL-C (mmol/L) 1.5 (0.4) 1.3 (0.3) 1.4 (0.4)
Triglycerides (mmol/L) 1.3 (0.6) 1.4 (0.7) 1.4 (0.7)
Fasting glucose (mmol/L) 5.6 (5.1–6) 5.4 (5–5.9) 5.4 (5–6)
Glomerular filtration rate (mL/min/1.73 m2) 80 (14) 76 (11) 82 (14)
Systolic blood pressure (mmHg) 150 (22) 147 (19) 142 (20)
Diastolic blood pressure (mmHg) 79 (10) 84 (9.0) 82 (10)
NT-proBNP (mmol/L) 109 (63–175) 105 (59–214) NA
Heart rate (b.p.m.) 61 (55–68) 64 (60–72) NA
Haemoglobin (g/L) 137 (131–145) NA 143 (135–152)
Male 454 (49%) 1121 (100%) 1013 (57%)
Current smoker 94 (10%) 226 (20%) 259 (15%)
Previous smoker 376 (41%) 487 (43%) 662 (37%)
Left ventricular hypertrophy 102 (12%) 246 (27%) NA
Lipid-lowering medication 142 (15%) 97 (9%) 299 (17%)
Blood pressure-lowering medication 275 (30%) 377 (34%) 467 (26%)
ACE inhibitors 69 (8%) 59 (6%) 65 (4%)
Angiotensin II receptor antagonists 75 (8%) NA NA
Beta-blockers 184 (20%) 206 (19%) 80 (4%)
Diuretics 101 (11%) 124 (12%) NA
Calcium channel blockers 103 (11%) 128 (12%) NA
Myocardial infarction at baseline 53 (6%) 84 (7%) 129 (7%)
Type 2 diabetes at baseline 165 (18%) 142 (13%) 241 (14%)
Treated with insulin 15 (2%) 13 (1%) NA
Taking diabetes medication 55 (6%) 48 (4%) 115 (6%)
Follow-up time (median, range) 10.0 (0.1–10.9) 13.9 (0.0–17.4) 4.6 (0.0–6.6)
Incidence rate (per 100 person years at risk) 0.87 1.40 0.26

ACE, angiotensin-converting enzyme; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; NA, not applicable; NT-proBNP, N-terminal prohormone of brain natriuretic peptide.
Data are mean (standard deviation) for normally distributed variables, median (interquartile range) for skewed variables, and n (%) for
dichotomous variables, unless specified.
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Main results

Three metabolites, urobilin, sphingomyelin (30:1), and
sphingomyelin (28:1), were associated with incident heart
failure after adjusting for age and sex at the 15% false discov-
ery rate threshold in PIVUS and ULSAM combined (Supporting
Information, Table S2). Urobilin and sphingomyelin (30:1)
were also associated with incident heart failure at P < 0.05
with consistent effect direction in TwinGene (Table 2 and
Supporting Information, Table S3).

We performed multivariable adjustment for established
heart failure risk factors in each cohort and meta-analysed
the results. As seen in Table 2, adjustment for heart failure
risk factors had a modest influence on these associations.
Urobilin (hazard ratio 1.27 per standard deviation unit in-
crease, 95% confidence interval CI 1.08–1.49) and
sphingomyelin (30:1) (hazard ratio 0.85, 95% CI 0.75–0.95)
were associated with incident heart failure also after adjust-
ment for established heart failure risk factors.

In PIVUS, we added further adjustments for N-terminal
prohormone of brain natriuretic peptide, heart rate,
haemoglobin, cardiovascular medication, or calendar year to
the model with established heart failure risk factors. These
additional adjustments had a modest influence on the hazard
ratio estimates for the two metabolites and heart failure risk
(Table 3).

Sensitivity analysis

Adding liver markers (alanine transaminase, alkaline phospha-
tase, bilirubin, albumin, and γ-glutamyltransferase) to the
fully adjusted model had no effect on the association
between each metabolite and heart failure (Supporting Infor-
mation, Table S4), and the measured upstream metabolites
of urobilin were not associated with incident heart failure
(Supporting Information, Table S5).

For all of the 15 sphingomyelins measured in PIVUS,
ULSAM, and TwinGene, all the associations went in the same
direction as for sphingomyelin (30:1), and four of them were
nominally significant (Supporting Information, Table S6).

Results from the analysis based on individuals with im-
puted missing covariates in TwinGene yielded essentially
identical results as the complete case analysis (Supporting
Information, Table S7).

We assessed deviance from a log-linear relationship
between urobilin and sphingomyelin (30:1) and incident heart
failure using restricted cubic spline models. No evidence of
non-linearity was observed when plotting the log relative
hazard (data not shown).

Left ventricular function

Urobilin concentration was inversely associated with left
ventricular ejection fraction at baseline in the PIVUS cohort
(regression coefficient per standard deviation increase
�0.70, P = 3.1 × 10�5), while neither metabolite was associ-
ated with a measure of early diastolic function (isovolumic
relaxation time) (Table 4).

Risk prediction

No major improvement in risk prediction was found when
adding (i) the top 2 metabolites (C-index 0.787, 95% CI
0.752–0.823) or (ii) nine Lasso-selected metabolites (0.790,
95% CI 0.754–0.826) to the ARIC model (0.780, 95% CI
0.745–0.816) in the three cohorts combined. The correspond-
ing C-index for the nine Lasso-selected metabolites and ARIC
covariates in the 25% validation set was 0.793 (95% CI 0.717-
0.869) compared to ARIC only 0.775 (0.689-0.862).

Discussion

Principal findings

In this large well-characterized sample, we identified novel
associations of urobilin and sphingomyelin (30:1) with inci-
dent heart failure, independently of established risk factors.
Furthermore, higher urobilin was associated with worse
echocardiographic left ventricular systolic function.

Table 2 Assessment of the association between urobilin and sphingomyelin (30:1) and incident heart failure in the PIVUS, ULSAM, and
TwinGene cohorts

Metabolite PIVUS and ULSAMa TwinGenea Meta-analysisa Meta-analysis, adjustedb

Urobilin 1.45 (1.19–1.76)*** 1.29 (1.03–1.63)* 1.38 (1.19–1.60)*** 1.30 (1.10–1.52)**
Sphingomyelin (30:1) 0.80 (0.72–0.90)*** 0.72 (0.58–0.89)* 0.78 (0.71–0.87)*** 0.85 (0.75–0.95)**

Data are hazard ratio with 95% confidence intervals expressed per standard deviation increase of metabolite levels.
aAge and sex adjusted.
bEstablished heart failure risk factors: age, sex, body mass index, low-density and high-density lipoprotein cholesterol, triglycerides, lipid
medication, diabetes, systolic and diastolic blood pressure, blood pressure medication, kidney function (glomerular filtration rate),
smoking status, and myocardial infarction prior to or during study (time updated).
*P-value <0.05.
**P-value <0.01.
***P-value <0.001.
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Comparison with other studies

We are aware of two previous studies investigating the lon-
gitudinal associations between untargeted metabolomics
and heart failure risk. Zheng et al.4 investigated 1744
African-Americans in the ARIC cohort. Six named metabolites
(erythritol, N-acetylalanine, p-cresol sulfate, phenylace-
tylglutamine, prolylhydroxyproline, and pyroglutamine) and
10 unnamed metabolites were independently associated
with incident heart failure, adjusting for established heart
failure risk factors. None of the named but two unnamed
metabolites remained associated after additional adjustment
for kidney function. Moreover, in an untargeted metabolo-
mics study measuring 308 metabolites, also in the ARIC co-
hort, the metabolite hexadecanedioate was independently
associated with heart failure risk.5

To our knowledge, the specific positive association be-
tween urobilin and heart failure risk has not been reported
previously. However, metabolites related to urobilin, such
as bilirubin,23 have been reported to be associated with heart

disease in humans including inverse associations with coro-
nary artery disease,24 stroke,25 atherosclerosis,26 and one
study showing a U-shaped relationship with ischaemic heart
disease.27

We found a consistent inverse association of measured
sphingomyelins with heart failure risk. In line with our
findings, cross-sectional studies have reported an inverse
association between sphingomyelins and prevalent heart fail-
ure.28,29 Further, a recent investigation in the ULSAM, PIVUS,
and TwinGene cohorts found that sphingomyelin (28:1) was
associated with decreased risk of coronary heart disease.9

In the current study, sphingomyelin (28:1) was associated
with decreased risk of incident heart failure in the discovery
sample but not in the replication sample. This might be due
to the lower power or the younger age of participants in
TwinGene. Total plasma sphingomyelin has also been associ-
ated with lower 5 year coronary heart disease incidence in
the prospective Multi-Ethnic Study of Atherosclerosis cohort,
consisting of 6809 individuals between 45 and 84 years of
age.30

Table 3 Assessment of potential confounders of the association between urobilin and sphingomyelin (30:1) and incident heart failure,
respectively, in the PIVUS cohort (n = 829, number of events = 58)

Metabolite Model Hazard ratio (95% CI) P-value

Urobilin Age and sex 1.36 (1.07–1.72) 0.01
Established risk factorsa 1.24 (0.97–1.60) 0.08
Established risk factors + NT-proBNP 1.27 (0.99–1.63) 0.06
Established risk factors + heart rate 1.24 (0.96–1.59) 0.09
Established risk factors + haemoglobin 1.24 (0.97–1.59) 0.08
Established risk factors + calendar year 1.25 (0.98–1.61) 0.08
Established risk factors + cardiovascular medications 1.24 (0.97–1.60) 0.09

Sphingomyelin (30:1) Age and sex 0.72 (0.58–0.88) 1.4 × 10�3

Established risk factorsa 0.70 (0.56–0.88) 2.0 × 10�3

Established risk factors + NT-proBNP 0.61 (0.50–0.74) 6.8 × 10�7

Established risk factors + heart rate 0.70 (0.56–0.88) 2.1 × 10�3

Established risk factors + haemoglobin 0.70 (0.56–0.87) 1.7 × 10�3

Established risk factors + calendar year 0.70 (0.56–0.89) 3.1 × 10�3

Established risk factors + cardiovascular medications 0.69 (0.54–0.87) 2.2 × 10�3

CI, confidence interval; NT-proBNP, N-terminal prohormone of brain natriuretic peptide.
Data are hazard ratio with 95% CI adjusted for age and gender expressed per standard deviation increase of metabolite levels.
aEstablished heart failure risk factors: age, sex, previous or current smoker, body mass index, systolic and diastolic blood pressure, blood
pressure medication, diabetes, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, glucose, diastolic
blood pressure, lipid-lowering medication, blood pressure, myocardial infarction before/during study, glomerular filtration rate, and insu-
lin/oral antidiabetics treatment. Cardiovascular medications: angiotensin-converting enzyme inhibitors, angiotensin II receptor antago-
nists, beta-blockers, calcium inhibitors, and diuretics.

Table 4 The association between urobilin, sphingomyelin (30:1), and systolic and diastolic function, as evaluated by left ventricular ejec-
tion fraction and isovolumic relaxation time, respectively

Metabolite

Systolic function (left ventricular
ejection fraction, n = 755)

Diastolic function (isovolumic
relaxation time, n = 824)

β valuesa, 95% CI P-value β valuesb, 95% CI P-value

Urobilin �0.70 (�1.03 to �0.38) 3 × 10�5 47 (�46 to 141) 0.32
Sphingomyelin (30:1) 0.41 (�0.48 to 1.31) 0.37 6 (�255 to 268) 0.96

aβ values can be interpreted as the change in ejection fraction (%) for each standard deviation unit increase in the metabolite measure-
ment. Lower ejection fraction implies worsened systolic function.
bβ values can be interpreted as the change in isovolumic relaxation time (milliseconds) per standard deviation unit increase in the metab-
olite measurement. Higher isovolumic relaxation time implies worsened diastolic function.
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Potential mechanisms

Because of the observational study design, it is not possible
to draw conclusions regarding causality between metabolites
and heart failure incidence. Our findings warrant additional
experimental studies to clarify the underlying mechanisms
for the present associations.

Urobilin is a degradation product of haem, through
conversion of haem to biliverdin, and then to bilirubin, which
is excreted as bile and further degraded by microbes present
in the large intestine to urobilinogen. Approximately half of
the urobilinogen is reabsorbed and oxidized to urobilin by
the liver, which is then excreted by the kidneys, causing the
yellow colour of urine.23,31 Already in 1929, it was observed
that patients with heart failure had increased haemolysis,
bilirubin formation, and urinary urobilinogen, thought to arise
from liver dysfunction.32 Abnormal liver function is commonly
seen in heart failure patients and is linked to worse
prognosis.33

The association between urobilin and incident heart failure
could be explained by an increased breakdown of the up-
stream compounds haem and bilirubin, a larger reabsorption
of urobilinogen in the large intestine into the blood, or slower
clearance of urobilin from the blood by the kidneys. We saw
no association with incident heart failure between bilirubin,
biliverdin A, biliverdin B, or unconjugated bilirubin in the
present study (Supporting Information, Tables S2, S3, and
S5), and the association with incident heart failure was not
attenuated after adjustment for kidney function or
haemoglobin (Table 3). Taken together, it seems more likely
that the observed association would be due to increased
reabsorption of urobilinogen into the blood from the large in-
testine than a decreased clearance of urobilin by the kidney.

Sphingomyelin is an abundant constituent of cell mem-
branes, and its involvement in signal transduction,34 apopto-
sis,35 atherosclerosis,36 and plasma lipid metabolism37 may
explain part of these associations, although further studies
are needed to investigate the mechanism behind the associa-
tion with incident heart failure.

Plasma sphingomyelin is not degraded in plasma; instead,
it accumulates in lipoproteins,38 a mechanism that has been
proposed to be directly involved in the early stages of athero-
sclerotic development.36 Knockout mice for the LDL receptor
gene fed on a sphingolipid-rich (1%) diet had increased
plasma sphingomyelin, LDL aggregation, and atherosclerotic
lesions, indicating that accumulation of circulating
sphingomyelin has a direct effect on plaque development.39

Thus, speculatively, higher circulating levels of sphingomye-
lins could indicate a reduced accumulation of sphingomyelins
in atherosclerotic plaques and consequently a lower athero-
sclerotic load that might explain the inverse association with
heart failure risk. In the current study the association with
incident heart failure was independent of LDL-C. There may
also be some other, currently unidentified cardioprotective

roles of sphingomyelin (30:1) and other sphingomyelins.
Additional mechanistic studies are highly warranted to shed
light into the underlying pathophysiology of our findings.

Clinical implications

The addition of metabolomics to a model of established heart
failure risk factors did not improve the prediction of heart
failure in our study to any large extent. Thus, our study does
not provide support that circulating metabolomics could be
useful in identifying individuals at increased risk for heart fail-
ure in clinical practice. However, other metabolites not cap-
tured on our platform may be more informative.

Strengths and limitations

Strengths of the study include the longitudinal study design,
up to 17 years of follow-up, detailed assessment of partici-
pants, use of a state-of-the-art mass spectrometry platform,
rigorous annotation and data processing, with manual valida-
tion, the discovery and replication approach in independent
cohorts, and the balanced multiple testing correction.
Limitations include generalizability, as participants were
middle-aged to elderly European residents of a geographically
defined part of Sweden and that the ULSAM cohort included
only men. The replication cohort however was recruited
nationwide in Sweden and consisted of 43% women. We
excluded persons previously hospitalized for heart failure,
but it is possible that some participants had subclinical heart
failure at baseline. We did not have data on primary care di-
agnoses or the incidence of subtypes of heart failure. We
could not differentiate between heart failure with reduced
ejection fraction and heart failure with preserved ejection
fraction as echocardiographic data from the heart failure
event were not available, nor were data on heart failure se-
verity according to New York Heart Association functional
classification available. The estimated hazard ratios should
be interpreted with caution because the storage time may
decrease the precision of the estimates. The mass spectrom-
etry platform does not provide standard concentration units,
making comparisons with clinically applied cut-offs difficult.
Our observational study cannot establish causality but may
help in giving future directions for experimental studies on
the causal mechanisms leading to heart failure.

Conclusions

We identified two novel associations between circulating
metabolites and incident heart failure, independent of
traditional risk factors. Our data suggest that circulating
metabolomics is a promising technique for discovering novel
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risk markers for incident heart failure and encourage future
large-scale efforts to evaluate the utility of metabolomic pro-
filing in clinical practice.
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