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Abstract

Natural languages exhibit many semantic universals, that is, properties of meaning shared across
all languages. In this paper, we develop an explanation of one very prominent semantic universal, the
monotonicity universal. While the existing work has shown that quantifiers satisfying the monotonicity
universal are easier to learn, we provide a more complete explanation by considering the emergence of
quantifiers from the perspective of cultural evolution. In particular, we show that quantifiers satisfy the
monotonicity universal evolve reliably in an iterated learning paradigm with neural networks as agents.
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1. Introduction

While natural languages show great variability, there are features that they all appear to
share. Linguists call these features linguistic universals. Universals have been found at all lev-
els of linguistic structure, for example, phonological (Hyman, 2008), syntactic (Newmeyer,
2008), and semantic (Barwise & Cooper, 1981). Some universals might follow from con-
straints on what humans are physically capable of doing. For instance, there is no language
whose prosody requires the production of sound waves above 30 kHz, since humans can-
not hear such sounds. The reasons for other universals are harder to understand, leading to
multiple proposed explanations.
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One well-supported claim going back at least to Chomsky (1969) is that at least some
universals are to be explained in terms of learnability. According to one version of this
approach, it is easier to learn a language that satisfies the universal than to learn a language
that does not satisfy the universal, and this difference in the complexity of acquisition pro-
duces, through processes of cultural evolution, languages that satisfy the universals. This
picture of the emergence of universals has been supported by the previous computational
and experimental work in the domains of semantics (Piantadosi, Tenenbaum, & Goodman,
2013; Steinert-Threlkeld & Szymanik, 2019, for example), morphology (Culbertson & Kirby,
2016), phonology (Hayes, Kirchner, & Steriade, 2004; Martin & Peperkamp, 2020; Moreton,
2008; Wilson, 2006) among others. In the case of universals of lexical semantics such as the
one we focus on next, the learnability explanation for a universal says that the universal holds
because meanings that satisfy the universal are easier to acquire, and therefore more likely to
be lexicalized.1 Complicated meanings can be obtained through complex grammatical con-
structions and compositional interpretation thereof.

The idea that semantic universals are a consequence of learnability is an empirical, causal
claim about their origins. One way to support the learnability explanation for a specific seman-
tic universal is to show that for various general models of learning the expressions that sat-
isfy the universal are easier to learn. Neural networks offer one such model of learning. The
previous work has addressed the learnability challenge by showing that quantifiers, respon-
sive predicates, and color terms that satisfy certain semantic universals are easier to learn
than ones that do not for neural networks (Steinert-Threlkeld, 2019; Steinert-Threlkeld &
Szymanik, 2019, 2020).

Showing that a cognitively grounded model of learning learns more easily meanings that
satisfy a universal proves that the universal may have a special role in individual’s acquisition.
However, learnability is a fact about individual cognition, while a universal is a feature of a
whole language. Therefore, a causal, mechanistic picture of the evolution of a universal poses
the challenge of connecting these two levels, showing the effects of learnability on emerging
language structure. This is the so-called problem of linkage (Kirby, 1999). Iterated learning
is a method that addresses the problem of linkage. An iterated learning model consists of
a series of timesteps, the generations. Each generation consists of a population of artificial
agents that acquire a language from data produced by the preceding generation. Since learn-
ing is a noisy process, the languages of a cultural child and its cultural parent are generally
slightly different.2 Moreover, the changes introduced in the learning phase are not random,
but rather tend to be guided by the child’s cognitive biases. As a consequence, over time lan-
guages adapt better to the agents’ cognitive biases. The crucial insight of iterated learning is
then that learning is not an inert process in cultural evolution, but rather guides a population
toward languages that better conform to the agents’ biases. Ease of learning can, through iter-
ated learning, affect the frequency of different traits (see, e.g., Culbertson and Kirby, 2016;
Kirby, Cornish, and Smith, 2008; Tamariz and Kirby, 2016, for discussions of the way indi-
vidual cognition is reflected in language structure through iterated learning and experimental
evidence supporting the connection).

In the context of our research question, the above paragraph means that we now need
to connect the neural network models into an iterated chain to see whether, in the case of
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monotonicity (defined in Section 2), the ease of individual learning can affect the language
structure. The previous work has combined iterated learning models with neural network
learners. After initial work focused on the emergence of compositionality (Batali, 1998; Kirby
& Hurford, 2002; Swarup & Gasser, 2009), there has been a recent surge of interest in the
combination of these two models again aimed at explaining compositionality (Chaabouni,
Kharitonov, Lazaric, Dupoux, & Baroni, 2019; Cogswell, Lu, Lee, Parikh, & Batra, 2019;
Guo et al., 2019; Ren, Guo, Labeau, Cohen, & Kirby, 2020), but the promising combination
of iterated learning model and neural networks has not been applied extensively to other
problems. In this paper, we apply this combination of methods for the first time to study the
evolution of a universal of lexical semantics, more specifically the monotonicity universal for
simple determiners.

Determiners are expressions that take a common noun as an argument and return a
noun phrase. Determiners can be grammatically simple—for example, some, few, most—
or complex—for example, fewer than three or at most five.3 Numerous substantial universals
have been identified in the semantics of determiners. In the following, we focus on one of
these universals, the universal of monotonicity for determiners. We present a computation
model of the evolution of the semantic structure of quantifiers. We embed neural networks in
an iterated learning model, and show that right monotone quantifiers emerge reliably in the
process of cultural evolution. Moreover, we show that this result is robust to variations in the
computational model. In particular, we find that the full range of right monotone meanings
develops in a variation of the model that also induces the evolution of another universal of
quantification, the universal of quantity.4

The next section briefly reviews the theory of generalized quantification and the seman-
tic universals that have been described in it, with a focus on monotonicity. Then, Section 3
presents the model of agents and cultural evolution, as well as an information-theoretic mea-
sure of the degree of monotonicity of a quantifier. The result of this first experiment are pre-
sented in Section 3.2. The results show that simple right monotone quantifiers evolve in the
setup of model 1. Section 4 presents a variation of the first experiment’s model, where chil-
dren cannot keep track of individual objects. The results, presented in Section 4.2, show that
the evolution of right monotonicity is robust to variations in the details of the model. Finally,
in Section 5, we discuss possible future directions.

2. Quantifiers and right monotonicity

An explanation of the evolution of universals in determiner semantics requires a formal
specification of what the space of possible meanings for determiners is. In the semantics
literature, determiners are analyzed as expressing generalized quantifiers, that is, properties
of sets of subsets of a domain of discourse.5 The generalized quantifiers expressed by natural
language determiners usually relate exactly two sets A and B, where A is the left argument
and B the right argument of the quantifier, saying whether a certain combination of A and
B belongs to the quantifier. These quantifiers can be equivalently understood as taking (the
characteristic function of) a set A and returning a function from (the characteristic function
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of) a set B to truth values. For instance, a combinations of A and B verifies the sentence “most
As are B” iff the number of As that are B (cardinality of the intersection of A and B, that is,
|A N BJ) is greater than the number of As that are not Bs (i.e., |A \ B]), that is,

[most] = {(A, B) : |ANB| > |A\ B|}.

Since any set of pairs of sets defines a quantifier, in a universe with n objects there are 2%
many possible quantifiers, a number that soon becomes very large as n increases. Only very
few out of this huge collection of possible quantifiers are expressed by simple determiners in
any natural language.

As mentioned in the introduction, various universals have been proposed to single out the
generalized quantifiers expressed by simple determiners in natural language. One of these
universals, which is the focus of this paper, is the monotonicity universal presented in Bar-
wise and Cooper (1981), which concerns the determiner’s right argument. The monotonicity
universal says that all simple determiners (type (1, 1)) across all languages express quanti-
fiers that are either monotone in the right argument or are conjunctions of quantifiers that are
monotone in their right argument.6 In practice, in the following we will talk mostly about
monotone quantifiers rather than their conjunctions. A quantifier is monotone in its right
argument iff it is upward monotone in its right argument or downward monotone in its right
argument. A quantifier Q is upward monotone [downward monotone] in its right argument iff
for any three sets A, B, and B', if Q(A)(B) and B C B’ [B’ C B] then Q(A)(B’). As an example,
consider the upward right monotone quantifier [most]. Assume that the sentence “Most cats
sleep” is true and that everything that sleeps is alive, that is, [sleep] C [alive]. The fact that
[most] is upward monotone in its right argument ensures then that “Most cats are alive” is
true. What makes the monotonicity universal nontrivial is that it is easy to imagine quantifiers
that do not satisfy it. Examples of such quantifiers abound among the meanings of complex
determiners: “an even/odd number of” or “exactly 2 or 5,” etc. This commonness makes the
lack of simple quantifiers not satisfying the monotonicity universal especially puzzling and
in need of an explanation. In the following, we will follow the terminology in Barwise and
Cooper (1981) and use simply “monotonicity” to refer to monotonicity in the right argument
and “persistence” to refer to the equivalent property in the left argument.

The previous work proposed to explain the universal of monotonicity in terms of the greater
learnability of monotone quantifiers. Chemla, Buccola, and Dautriche (2019) show that in
limited contexts, humans have a bias in learning that favors a weaker version of monotonicity,
connectedness. Moreover, a post hoc analysis suggests that rules corresponding to monotone
quantifiers are easier to learn than other rules (see Chemla, Dautriche, Buccola, & Fagot,
2019, for a similar experiment with baboons). This gives some preliminary evidence that
humans find monotone quantifiers easier to learn.

Brochhagen, Franke, and van Rooij (2018) develop an iterated learning model of the evolu-
tion of monotonicity, and conclude that monotonicity evolved in a population of pragmatically
skillful agents in response to a combination of pressures from learnability and communicative
accuracy. The children in Brochhagen et al. (2018) perform Bayesian inference, combining
the production data from the previous generation with their own learning biases. The agents
are biased for meanings that are easier to describe in a language of thought (LOT), which
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encodes set-theoretic relations between A and B. The agents’ preference for monotone quan-
tifiers therefore is a direct consequence of the way that the agents’ LOT is specified. The
result of the model is sensitive to the hand-coded details of the LOT, calling for independent
empirical validation (cf. Carcassi, Schouwstra, & Kirby, 2019, for a Bayesian model of the
evolution of monotonicity in the semantics of gradable adjectives). Moreover, this Bayesian
model of the evolution of quantificational monotonicity only considers a world with three
states, namely none, some, and all.

Pauw and Hilferty (2012) study the evolution of a system of quantifiers in a population
of robots. They show that with semantic restrictions, for example, convexity, agents develop
meanings for the quantifiers that lead to successful communication. The aims of Pauw and
Hilferty (2012) are different from ours. First, they focus on environmental constraints rather
than the way cognition influences the meaning of quantifiers. Second, they use agents that
do symbolic reasoning rather than neural networks, and focus on communication rather than
iterated learning.

Instead of using Bayesian learners with a hand-specified prior or robotic agents, we expand
Steinert-Threlkeld and Szymanik’s (2019) proposal to use neural networks as a model of
acquisition of quantifiers. A neural network is a computational device that can learn to approx-
imate functions by observing tuples of inputs and relevant outputs, and progressively mini-
mizing a suitably defined distance between the true output and the network’s own prediction.
In the case of a quantifier, the input is a structure that encodes the sets relevant to the quan-
tifier’s truth and the output encodes whether the structure verifies the quantifier. In practice,
given a structure the neural network outputs a probability that can be interpreted as confidence
that the structure verifies the quantifier.

Data about how fast neural networks learn different kinds of quantifiers were produced
with the following algorithms. First, two quantifiers are picked such that one satisfies the
universal and the other does not. Then, the two quantifiers are taught to a neural network until
it has accurately learned them. The crucial information is how long on average it takes neural
networks to accurately learn quantifiers that satisfy the universal compared to ones that do
not. Various universals were tested in this way. In the case of monotonicity, the data were
produced both for a downward monotone and for an upward monotone quantifier. The neural
networks were strikingly faster at learning monotone compared to nonmonotone quantifiers.
Fig. 1 shows an example.

It should be emphasized that if humans, unlike neural networks, were incapable of learning
nonmonotone quantifiers then the approach we take in this paper would be inappropriate. The
reason why languages lack simple determiners that do not satisfy the monotonicity univer-
sal would simply be that such quantifiers could not be learned at all, and even if introduced
would be lost in the following generation. However, there are good reasons for thinking that
such quantifiers can be learned. First, as mentioned above participants in Chemla et al. (2019)
learned rules corresponding to quantifiers that did not satisfy the monotonicity universal. Sec-
ond, nonmonotone quantifiers such as “either none or all” are easily understandable, suggest-
ing that while cognitively complex they are well within the capabilities of human cognition.

As discussed above, knowing that meanings with certain features can be learned more
easily only goes some of the way in explaining the features’ universality across various
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Fig. 1. Learning curves on a neural network for the monotone at least 4 (blue) versus at least 6 or at most 2 (red).
We note here that the model just sees the quantifiers as labels “Q0” and “Q1,” so the linguistic complexity of the
expressions is not a factor impacting learning. The x-axis is the number of training steps; the y-axis is accuracy
(percentage correct) on a test set of examples the network has not yet seen. This was Fig. 4 in Steinert-Threlkeld
and Szymanik (2019). Rather than the feedforward networks of the computational models in this paper, the neural
networks in Steinert-Threlkeld and Szymanik (2019) consist of two stacked long short-term memory (LSTM)
cells (Hochreiter & Schmidhuber, 1997), each with a hidden state of 12 nodes. This allowed for a very general
representation of the structure that not only encoded A N B butalsoA — B, B — A, and A U B and a varying number
of objects (max 20) in the universe. Thirty networks were trained on each quantifier, and training stopped when
the total loss was below 0.01, total mean accuracy for 100 training mini batches was over 99%, or four epochs
passed. Adam optimizer was used with a learning rate of 107,

languages. A full explanation also needs to show that the structure can and eventually will
be reached by processes of cultural evolution. In the rest of this paper, we develop an iter-
ated learning model of the cultural evolution of quantifiers that embeds the learning model of
neural networks, and show that monotonicity reliably emerges.

3. Experiment 1: Cultural evolution of quantifiers

3.1. Methods

3.1.1. Iterated learning

Iterated learning models start with two groups of agents, the first and second generations.
Some (and possibly all) agents in the first generation—the cultural parents—are associated
with one or more agents in the second generation—their cultural children. A set of linguis-
tic production data are generated by each cultural parent for each of their cultural children.
Based on these data, each cultural child tries to approximate its cultural parent’s language .
Once the agents in the second generation have each learned a language, a third generation is
created. In the succeeding steps, the process is repeated with agents in each generation acting
as cultural parents and the new agents in the following generation as cultural children. The
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cultural transmission process is iterated for some number of generations. Each cultural family
line is called a chain of iterated learning; see Fig. 3 for an illustration of the iterated learning.

Crucially, the agents do not learn their cultural parent’s language perfectly. There can be
various reasons for this. First, there can be a bottleneck in learning. This happens when the
child does not observe everything that is needed to perfectly reconstruct the language, and
therefore has to guess some aspects of it. The number of data points given to the children is
fixed for all generations and agents and is called the bottleneck size. The second reason is that
children might not have perfect memory or perfect reasoning abilities, and might therefore
learn languages that do not perfectly conform to the given data. In this case, the more rational
the child, the closer the learned language will be to the cultural parent’s language. However,
even given a perfectly rational agent and production data for all world states, it might be
impossible to perfectly reconstruct the parent’s language. This is because the cultural parents
might produce language in a way that is stochastic rather than deterministic. This can make
the language harder to approximate and impossible to learn perfectly, constituting a third
possible reason for imperfect reconstruction.

The changes introduced by each child accumulate over generations. Often, these changes
are not completely at chance, but rather tend to be consistent across agents. Therefore, lan-
guages tend to change in the same way in different chains over time. Eventually, the iterated
learning chains will mostly move around a part of the language space that can be reliably
learned with the amount of data produced by each cultural parent. In sum, iterated learning
is a way to study how the cognitive system of the children determine which languages one
should expect to see spoken in a population of such agents. The crucial individual level com-
ponents of an iterated learning model are the set of possible languages, and the way the agents
learn them.

In the context of iterated learning models, Bayesian children with a prior that favors lan-
guages with a shorter description in a LOT and agents based on neural networks behave
differently. After observing only little data, Bayesian children will end up speaking a very
regular, simple language, while neural networks will mostly keep their randomly initialized
behavior, speaking very unstructured and hard to describe languages. When more data are
available, Bayesian agents biased toward simplicity in a LOT will speak the simplest among
the languages that explain the observed data, while neural networks will be able to better pick
up on patterns in the data. Therefore, while chains of iterated learning will stabilize on sim-
ple languages in population of Bayesian agents, in populations of neural children unexpected
languages might emerge depending on what patterns the networks can most easily pick up
from the data.

In the following, we look at the evolution of the meaning of simple determiners. In these
computational models, we do not explicitly formalize the difference between the simple and
the nonsimple determiners that can be obtained, for example, by compositional means. The
signals in the computational models nonetheless more naturally correspond to real-world sim-
ple signals rather than complex signals. This is because only the meaning of simple signals
can naturally be described as being learned, while the meaning of complex signals is inferred
from the meaning of the constituent signals. Therefore, the computational models are best
interpreted as modeling the evolution of the meaning of simple determiners.
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3.1.2. Model of structures, quantifiers, and language

The computational model we propose is concerned with the evolution of the meaning of
type (1, 1) quantifiers as expressed by simple determiners such as “all” and “several,” or
equivalently the evolution of quantified NPs such as “some carrots” or “many people.” In
particular, we will not look at type (1) quantifiers as expressed by nonquantified NPs (“Mari-
anne,” “Berta,” “here,” “there,” “this,” “that”™).

Since our focus in this paper is on the evolution of the monotonicity universal, we do not
need to contrast the monotone quantifiers with the full variety of nonmonotone quantifiers.
Rather, we restrict our attention to the subset of quantifiers that are conservative and uni-
verse independent. These, next to the monotonicity universal, are two prominent semantic
universals distinguishing natural language quantifiers from all logically possible quantifiers.
Universe independence means that extending or shrinking the universe of discourse has no
effect on the truth value of the quantifier sentence as long as the left and right arguments
are unchanged. For instance, “every” expresses a universe independent quantifier: the truth
of “every cat sleeps” is unaffected by variations in the world that do not affect the set of cats
and the set of sleeping things. Conservativity means that only the part of B that is common
to A matters for the truth value of the sentences. In other words, the elements in B \ A can
be safely ignored when determining the truth value. This amounts to saying that for a conser-
vative quantifier Q, evaluating the truth value of Q(A)(B) only requires knowledge of two of
the three: A, A — B, A N B. For instance, “every” expresses a conservative quantifier: the truth
of “every dog barks” is unaffected by variations in the set of barking things that are not dogs
(For more details on these universals of quantification, see Peters & Westerstahl, 2006).

Given universe independence and conservativity, the truth of any quantifier depends only on
which of the elements of A are also elements of B, and which are not. Assuming conservativity
and universe independence, both reduces the number of possible quantifiers that agents can
speak and simplifies the model of each quantifier, since only A and A N B need to be encoded.
Nonetheless, the set of conservative and universe independent quantifiers contains quantifiers
that both conform and do not conform to the monotonicity universal. An example of the
latter is the conservative and universe independent complex determiner ‘“Fewer than two or
more than four.” The possibility of such quantifiers is crucial in the context of our model, as it
means that our restrictions on the set of quantifiers do not by themselves imply the conclusion
that quantifiers satisfying the monotonicity universal are widespread. In fact, as we show next
only a small proportion of the quantifiers that can be modeled with our representation satisfy
the monotonicity universal.

Assuming conservativity/universe independence and a fixed set A with cardinality n, we can
represent the part of the world—called a structure—that is relevant to determining the truth
value of a quantifier as a Boolean vector of a fixed length n. Each element i of the structure
represents an object o; in A. Each element has value T (true) iff the object corresponding
to that bit is also an element of B, and value F' (false) otherwise. For instance, the vector
[F, T, T ] would model a situation where A = {01, 02, 03} and 0,, 03 € B. The set of structures
is the set of all Boolean vectors with n components, representing the set of possible relations
between a fixed A and any possible B. We call M’ a substructure of a structure M iff M’ is F
everywhere where M is F. For instance, [ F, T, T, F, F ] is a substructure of [ F, T, T, T, T ].
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Note that each structure is a substructure of itself. In intuitive terms, a substructure of M is
a situation where some of the objects that were in B in M have been moved outside of B to
A\ B.

We represent a guantifier as a function from structures into {7, F'}, the single Booleans. An
example of a quantifier is Q(M) = T iff the structure M is T at two or more indices, and false
otherwise, meaning “at least two.” Since for A of size n there are 2" different structures, each
quantifier is a 2"-sized Boolean vector. Each element of the quantifier vector corresponds to
a structure and has value T iff the structure verifies the quantifier and F otherwise.7

To see how this works in practice, consider a set A of size 3. There are 2° = 8 possible
ways in which any other set B can overlap with A. Each of these is modeled as a vector of
size 3. For instance, [ F, T, T ] says that the second and third object of A are also elements of
B, but the first is not. The English expression “all As are B” is modeled for the given A by a
Boolean vector of size 8 that has value 7" at the index corresponding to the structure [ 7, T, T ]
and F otherwise. If the structures are ordered lexicographically8 and the last structure is
therefore [T, T, T ], then the quantifier corresponds to the vector [F, F,F,F,F,F,F,T].
We call a quantifier degenerate iff it corresponds to a vector of identical elements, F's or
Ts. A degenerate quantifier corresponds intuitively to a quantifier that is true (or is false) of
every structure.

In sum, each structure is a certain combination of A and A N B, and is modeled with a
Boolean vector of length |A|, where A is fixed throughout the numerical experiment. The
Boolean vector is true for at the indices corresponding to elements of A N B, and false for the
elements corresponding to A — B. Each quantifier Q, for a fixed A, is modeled as a Boolean
vector where each element corresponds to a structure, and is true at the indices corresponding
to Bs that verify Q(A)(B) and false at all other indices.

Each agent encodes a single quantifier within a neural network. Given a structure, an agent
produces a truth value using its own neural network. The next two sections detail the connec-
tion between the neural networks and the agent’s behavior.

3.1.3. Neural networks

Based on the aforementioned learnability results of Steinert-Threlkeld and Szymanik
(2019), the agents that make up the generations in our iterated learning setup are neural
networks. Each network has n input neurons (one for each bit of a vector corresponding to
a structure) and one output neuron (encoding the network’s confidence in the truth of the
quantifier for that input), with two hidden layers of 16 neurons each and ReLU activation
functions except on the last layer, where a sigmoid function is applied to squeeze the out-
put in the (0, 1) interval.9 Batch normalization is performed in the second to last layer to
improve the networks’ performance. We used binary cross-entropy to measure the difference
between the parent’s output and the child’s prediction. We made these design choices so that
the networks had enough expressive power to represent many quantifiers, including complex
ones. Future work will analyze the effect of architecture choices on the results presented next.
The networks and learning, which will be described in the next section, were implemented in
PyTorch (http://pytorch.org).
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A network in the computational model learns from input/output pairs using a fancier ver-
sion of gradient descent called Adam (Kingma & Ba, 2015). The network receives a num-
ber of true input/output pairs, which it iterates over in small batches. For each batch, it
guesses the correct outputs for the inputs, and then updates its parameters (weights and biases
connecting the neurons) in such a way that its future outputs are guaranteed to be closer to the
truth (for general introductions, see Goodfellow, Bengio, & Courville, 2016; Nielsen, 2015).
Because this style of learning is fairly gradual, we introduce one more parameter to our sim-
ulations, namely number of epochs: this is how many times the network processes its training
set in each generation. In other words, the network sees a portion of its cultural parent’s lan-
guage, which we call its bottleneck size, but gets to learn from that portion number-of-epochs
times.10 We do not give independent cognitive interpretations to the bottleneck size and the
number of epochs, but rather just interpret both as contributing to the total amount of data that
the child gets to learn from.

At the moment, it is unclear to what extent the biases of neural networks correspond to
those of humans. As we show in Appendix B, the results of the models mentioned below are
robust across different optimizers. More in general, the plausibility of backpropagation as a
model of learning in the human brain has been explored in recent literature (see Whitting-
ton & Bogacz, 2019 for an overview up to 2019). Lillicrap, Santoro, Marris, Akerman, and
Hinton (2020), Millidge, Tschantz, Seth, and Buckley (2020), Millidge, Tschantz, and Buck-
ley (2020) proposed approximations of backpropagation that could be implemented in the
brain. Moreover, Song, Lukasiewicz, Xu, and Bogacz (2020) recently bridged some technical
gaps to showing that the brain might be able to perform backpropagation exactly, rather than
just approximately.

3.1.4. Model of the agents

The life of each agent in the computational model goes through two stages. In the first
phase, the agent learns a quantifier given data from the previous generation. The data consist
of a set of tuples (structure, judgment). The judgment is a single bit expressing whether the
quantifier used by the agent’s cultural parent is compatible with the structure. These data are
used to train the agent’s neural network as described in the previous subsection.

In the second stage of their life, after acquiring a language agents produce data used to
teach to the following generation. To produce these data, the agent is prompted with ran-
domly chosen structures. Production works as follows. The agent feeds an observed struc-
ture to its neural network. The neural network returns a number in the [0, 1] interval. Then,
the agent rounds the number and returns it. The returned number expresses whether the
agent’s quantifier is compatible with the structure that the agent observed. The way in which
this number should be interpreted is discussed in more detail in Appendix A. The produc-
tion behavior is deterministic, since an agent always produces the same bit given the same
structure.

3.1.5. Measures of monotonicity
According to the standard definition, monotonicity is a binary property. A possible way
of analyzing the results would be to find the proportion of monotone languages in every
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generation. However, some quantifiers are intuitively more monotone than other quantifiers.
For instance, consider the three quantifiers “some,” “between 3 and 5,” and “an even number
of.” While “some” is monotone and the other two quantifiers are not, intuitively “an even
number of” is the least monotone of the three, as it cannot be encoded with a finite Boolean
combination of monotone quantifiers. To track finer changes in monotonicity level over time,
we define a graded measure of monotonicity.

We measure upward monotonicity in information-theoretic terms as the proportion of
uncertainty in the output of a quantifier that is removed after knowing that there is a substruc-
ture where the quantifier is true, that is, a 1.11 For a perfectly upward monotone quantifier Q,
if a structure M has a substructure to which the quantifier assigns 1 then Q will assign 1 to M.
Therefore, for an upward monotone quantifier all the uncertainty is removed and the measure
has value 1.

More formally, call M the set of all structures. Let { M, F, P} be a probability space with
P a uniform discrete probability function and F = 2. Then, define two random variables
1y and ]lé as follows, with M € M:

1 — 1 if Q(M)
¢~ 0 else

1= — 1 if AM’.M’ is a substructure of M A Q(M)
27 1o else.

In words, 1y is 1 if Q verifies a random structure, and O otherwise. ]lé is 1 if a random
structure has a substructure that verifies the quantifier. The entropy of 1y, H (1), quantifies
the uncertainty about what truth value Q will assign to a structure. The conditional entropy
H(1, | 15) quantifies the uncertainty about what Q will assign to a structure, given that one
knows whether the structure has a substructure that verifies Q. H(1p | 15) is minimized
(attains value 0) for a perfectly upward monotone quantifier: if you know that a structure
has a true substructure, and the quantifier is upward monotone, you know the truth value of
that structure. The difference between the entropy and the conditional entropy between these
variables is known as the mutual information:

This measures how much information 1 provides about 1¢. For a perfectly upward mono-
tone quantifier, H(]1Q|]l§) =0, and so I(1p; ]15) = H(1p). In other words, for an upward
monotone quantifier, knowing which structures have a true substructure provides as much
information as knowing the entire quantifier.

While this roughly captures what we want from a measure of upward monotonicity, it
needs to be normalized to form a degree that applies across quantifiers, since 0 < I(Lg; 1) <
H(1p). We do this by dividing by H (1), moving the upper bound to 1. Overall then, we
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Truly random quantifiers
50 Randomly initialized networks

0.0 0.2 0.4 0.6 0.8 1.0
Monotonicity

Fig. 2. Kernel density estimation of the distribution of degrees of monotonicity from a sample of 300 completely
random quantifiers and 300 random neural network agents (max structure size of 10). The x-axis is the measure of
monotonicity we describe in the main text.

measure upward monotonicity as
I(1g:15)
H(1p)
H(1p) — H(1pl1y)
T H{p)
H(lp | 15)
~ H(p)

mon(Q) =

To see how this measure tracks intuitions, consider the previously mentioned quantifiers
“some,” “between 3 and 5,” and “an even number of.” “Some” gets monotonicity 1.0 because
knowing whether a structure has a substructure that verifies “some” eliminates all uncertainty
about the truth of the structure. An agent whose quantifier is “between 3 and 5 has degree
0.7517 and one with “an even number of” has degree 0.001, which captures the intuitive order
of monotonicity of these quantifiers.

Up until this point, we have focused on a measure of upward monotonicity. The measure
above can be straightforwardly modified to measure downward monotonicity, by replacing the
variable 1 for the variable 17, which is true when a structure has a true superstructure. We
discuss the way we calculated overall monotonicity, including both downward and upward,
in more detail in Appendix A.

We compare the results of the simulation to the distribution of the measure in randomly
generated quantifiers. There are two different random distributions of quantifiers. On the one
hand, there are the quantifiers instantiated by randomly initialized agents. On the other hand,
there are the quantifiers sampled uniformly from the space of possible quantifiers. These two
distributions are depicted in Fig. 2. While the completely random quantifiers have a narrower
distribution, both types of random distribution are very skewed toward low degree of mono-
tonicity. This makes sense: monotonicity is a relatively rare property, and so should not be
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Fig. 3. Overview of the computational model. Each run of the iterated learning algorithm consists of generations
(right subplot). Languages in generation 0 are initialized at random. Each generation consists of agents (bottom
left plot). Each agent in each generation (after the first) is associated with a randomly chosen agent from the
previous generation. The latter (called the cultural parent) produces linguistic data on which the former (called
the cultural child) is trained. Specifically, the language of each agent is encoded in a neural network (top right
plot). The network of the cultural child is trained on tuples of structures and truth-value judgments produced by
the neural network of the cultural parent. Each agent in the model encodes one quantifier.

expected to appear randomly. We now turn to the results, showing that higher degrees do
emerge via iterated learning.

3.1.6. Materials

For our experiments, we used a fixed structure size of 10 (which, recall, is also the size
of the input to the agents), with 10 agents in each generation, and varied the bottleneck size
(200, 512, 715, 1024) and the number of epochs (4 and 8). For each setting of those two
parameters, we ran 20 trials. The code, data, and instructions for running experiments may be
found at https://github.com/thelogicalgrammar/NeuralNetlteratedQuantifiers. Fig. 3 shows an
overview of the computational model.

3.2. Results

The first result is that monotone quantifiers evolve consistently and rapidly for some values
of the simulation parameters. More specifically, the evolution of monotonicity depends on the
bottleneck size and the number of epochs, that is, how much of the cultural parent’s language
is observed by the cultural child; see Fig. 4 for the results. If the networks get too much input,
they learn the quantifier accurately and change is very slow. If the networks get too little
input, the learning has little effect and no pattern emerges. If languages are somewhat stable
across generations, but enough variation is allowed by not overtraining the cultural children,
monotonicity evolves.

A second result is that the monotone quantifiers that emerge are in large part nondegen-
erate. With Bayesian agents that have a bias for simplicity, degenerate languages become
widespread under pure iterated learning (Kirby, Tamariz, Cornish, & Smith, 2015). Here,
however, degenerate quantifiers only constitute a small minority of the evolved languages
(about 0.005% of all quantifiers). This result is consistent with the fact that neural networks
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Fig. 4. The simulation was run 20 times for each combination of bottleneck size and number of epochs in a
population of 10 agents and a maximum structure size of 10. The plot shows how the average monotonicity level
across all languages changes over 301 generations (shaded area show the 95% confidence interval). Convergence to
monotonicity depends on how much the children’s neural networks are trained, which itself depends on the number
of epochs and the bottleneck size. With small bottleneck and few epochs, monotonicity does not evolve. With a
bigger bottleneck size and more training epochs, monotone languages become widespread. However, increasing
the training data further tends to impede the development of monotone languages.

produce noisy output unless they are trained on a pattern, while Bayesian learners biased
toward simplicity in a LOT learn the simplest among the languages compatible with their
observations. As we show in Section 4, degenerate languages can be learned by neural net-
works, but are less stable than other patterns.12

The third result of the simulation is that most nondegenerate monotone quantifiers fall in
one of a few types. About 79% of the perfectly monotone quantifiers show the following
pattern: there is some index i such that the quantifier—call it Q;—assigns 1 to a structure iff
the structure is 1 at i (or an equivalent pattern obtained by switching 0 and 1 uniformly in the
structures and/or in the quantifier). Q; is true iff o;, the object represented by index i, belongs
to the set B.13. Therefore Q;(A) functions much like a proper noun for o;. Just like “Anna is
human” is true iff Anna belongs to the set of humans, “Q;(A) is B” is true iff o; belongs to the
set B.

For other monotone quantifiers Qy; 1}, there are two indices j, k (with j # k) such that Oy s
assigns 1 to a structure iff the structure has value 1 at both j and k (or, again, an equivalent
patterns obtained by switching O and 1 in the structures and/or in the quantifier). Qy;; is
true iff B contains two specific elements of A, and false otherwise.14 It functions like the
conjunction of two proper nouns. Like “Anna and Rob are human” is true iff Anna is human
and Rob is human, “Qy; 11 (A) is B” is true iff 0; is B and oy is B.

4. Experiment 2: Shuffling the individuals

The majority of the languages that evolved in Experiment 1 are ultrafilters, which can
be naturally interpreted as naming one of the objects in the structure. The neural networks
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Fig. 5. Schematic representation of how cultural transmission from a cultural parent to a cultural child happens in
the model. Note that the only difference between Experiments 1 and 2 is in the shuffling of the models before the
cultural child is trained.

can exploit a particularly simple strategy in the acquisition of ultrafilters, which consists in
copying or reversing the input at the index of the relevant object. For instance, if the quantifier
is naming the third object in the structure, the neural network simply needs to output 1 when
the third component of the input vector is 1, and O otherwise. The agents are capable of
learning this simple rule with little input data, making the ultrafilters very stable in the process
of cultural evolution.

While the quantifiers that evolve in the first experiment are indeed monotonic, they are
unlike quantifiers in natural language. Specifically, the truth of the corresponding natural lan-
guage quantifiers would depend on a specific object, and therefore they do not satisfy another
important universal of quantification, quantity.15 To further test whether neural networks have
a preference for monotone quantifiers, we introduce a small change in the model of learning
that prevents the networks from exploiting the simple strategy of copying the input at an
index. We find that monotonicity evolves even when quantifiers cannot encode information
about the identity of specific individuals.

4.1. Methods

4.1.1. Model of transmission

In Experiment 1, the child observes tuples consisting of a structure and the output of the
parent’s neural network for that structure. In Experiment 2, the parent observes a structure and
produces an output in the same way as in Experiment 1. However, in Experiment 2 the child
observes, along with the parent’s original output, a shuffled version of the input observed by
the parent. In the shuffled structure, the total number of 1s and Os is the same as in the original
structure observed by the parent, but their order can change; see Fig. 5 for a visual explanation
of the difference between Experiments 1 and 2.

The shuffling introduced in Experiment 2 requires a change in the interpretation of the
structures. In Experiment 1, each index of a structure represents a specific object in A, which
is stable across observations by individual children as well as across generations. On other
hand, in Experiment 2 the parent and the child observe structures that are different (up to
permutation) within a single instance of language production. Shuffling can then be inter-
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preted simply as a way to prevent the parent from referring to individual elements of A across
productions, and thus to prevent the evolution of ultrafilters. However, shuffling can also be
interpreted more substantially as reflecting the fact that real language users often do not keep
track of the specific individuals belonging to a set. For instance, quantifying over the set of
glasses—*“Q glasses are clean”—does not require language users to keep track of the identity
of individual glasses over time, or even within a single instance of communication.

It is worth noting that while in Experiment 1 the data observed by children are consistent,
that is, a structure is always associated with the same output, the data observed by the child
might not be consistent in Experiment 2, despite parents producing consistent data. Because
the input is shuffled independently for each observation, two different structures with the
same number of 1s that receive different outputs in the parent’s language might be shuffled
onto identical structures before the child observes them.

4.1.2. Measure of quantity

In Experiment 2, the quantifier cannot convey information about specific objects. In other
words, a quantifier can be reliably preserved across generations only if the values it attributes
to a structure is invariant across all permutations of the structure. The only quantifiers that can
in principle be transmitted perfectly are therefore permutation invariant. Like the monotonic-
ity universal, permutation invariance has also been proposed for a universal of quantificational
semantics (Keenan & Stavi, 1986). (For a more extensive discussion of the quantity universal,
including a stronger formulation in terms of isomorphism, see Peters & Westerstahl, 2006.)
This constraint rules out quantifiers, like the “first three,” as candidate meanings for natu-
ral language determiners. A quantitative quantifier attributes the same truth value to any two
structures that can be permuted into each other. The only information that all permutations of
a given structure share is the number of Os and 1s. Therefore, all that matters in determining
the output of a neural network encoding a quantitative quantifier is the number of 1s in the
structure, or equivalently the size of A N B, and |A|, which is known and fixed throughout
the experiment.

Children can fail to acquire a quantitative quantifier for two reasons. First, a child may pick
up on noise in the observed data and memorize spurious observed associations between the
shuffled structure and their parent’s output. Second, the child might not change its original
output for some of the structures, regardless of whether it is consistent with the observed
data. Approximately quantitative quantifiers can evolve in the iterated learning despite noise
if agents learn that the truth of the quantifier depends on the number of 1s in the structure.

While permutation invariance as defined above is a binary property, in order to quantify the
extent to which the iterated learning chains stabilize on quantitative quantifiers, we develop
a graded measure of quantity for quantifiers. This measure analyzes the degree of quantity
of a quantifier Q as the proportion of information about the truth of a structure for Q that
is eliminated by knowing the number of 1s in the structure. Formally, we define a random
variable #, which is the number of 1s in a structure (with the same probability space as in
Section 3.1.5):

# = Number of 7's in M.
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Fig. 6. The simulation was run 20 times for each combination of bottleneck size and number of epochs in a
population of 10 agents and a maximum structure size of 10. Each dot shows the quantity and monotonicity level
of the language spoken by one agent in one generations, color-coded by the similarity to a degenerate quantifier.
All agents in all generations are shown. When agents observed enough data to preserve some structure from their
parents’ language, the iterated learning chains soon converge to either nearly degenerate quantifiers (yellow dots)
or vague proportional-like quantifiers (high degree of monotonicity and quantity), observable in the plot as two
clusters of languages. When more data are available, the evolved languages approximate more closely the two
types of quantifier.

Then, the degree of quantity for a quantifier Q is one minus the (normalized) conditional
entropy of 1y given #:

_ H(lg | #)

qua(Q) :=1 H(ly)

In the structures corresponding to fully quantitative quantifiers, such as “between 2 and 4,”
knowing the size of A N B leaves no uncertainty about whether the structure is true or false
for the quantifier (since the size of A is fixed). Therefore, the conditional entropy of the truth
value of a structure given the size of A N B will be 0, and the quantifier’s degree of quantity 1.

4.2. Results

We ran Experiment 2 with the same combinations of parameters as Experiment 1. Results
can be seen in Fig. 6. The main result of Experiment 2 is that, despite the shuffling, the
evolved quantifiers have in large part a high degree of monotonicity. This confirms the results
of Experiment 1, showing that the evolution of monotonicity is a robust feature of culturally
evolved quantifiers.
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Fig. 7. Monotonicity of languages evolved in Experiment 2 by generation. When agents observe more data, they
tend to stabilize on higher levels of monotonicity. In combination with Fig. 6, which shows that degenerate quan-
tifiers concentrate at low levels of monotonicity, this shows that in chains where agents see more observations,
degenerate languages concentrate in early generations.

While the shuffling puts a strong pressure toward the evolution of quantitative quantifiers in
the model, it does not in itself induce the evolution of monotone quantifiers. To see why, note
that structures in the computational model can encode perfectly quantitative quantifiers—for
example, “between two and four”—which are not monotonic. More specifically, for struc-
tures of size 1 in the computational model, there are 3"/ ("1') = 2"+! perfectly quantitative
quantifiers, and of these only 2n 4 2 are monotonic. For the structures with 10 components in
the simulations above, only 1.07% of quantitative quantifiers are also monotonic. The small
proportion of monotone out of the quantitative quantifiers shows that the evolution of mono-
tonicity cannot be explained as a side effect of the increased degree of quantity (Fig. 7).

The second result of Experiment 2 is that the iterated learning chains consistently stabilize
on the same two types of quantifiers, namely nearly degenerate quantifiers and quantifiers
with a vague threshold. The first type of quantifiers that evolve, degenerate, or nearly degen-
erate quantifiers, output the same value for all structures except for a few exceptions. These
exceptions, to the best of our knowledge, do not follow from a general pattern but are rather
memorized by the networks. We measure degeneracy as the maximum among the proportion
of Os and the proportion of 1s in the quantifier’s output. Nearly degenerate quantifiers have a
comparatively low level of monotonicity, which can be visualized Fig. 6. This is because the
measure of monotonicity is very sensitive to random noise in an otherwise degenerate quan-
tifier. Despite the low level of measured monotonicity, the underlying pattern of degeneracy
that the neural networks approximate is a monotone pattern.

The second type of quantifier on which the chains of iterated learning stabilize tends to
switch output around a specific values of |A N B|, for example, by outputting O for all struc-
tures with less than 4 ones and 1 for all structures with more than 4 ones. Thresholds are not
crisp, but rather vague: not all structures with the same number of 1s are mapped onto the
same output, but the mean output of the quantifier is a monotone function of the number of
1s in the structure. Because of the assumption encoded in the structure of a fixed size for A, it
is not possible to determine whether the threshold quantifiers learned by the neural networks
depend on the absolute number or on the proportion of 1s in the structure, corresponding,
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Fig. 8. Unrounded neural network output, representing the confidence level in the truth of the quantifier, as a
function of the size of A N B for various parameter regimes. Each distribution in each plot is a kernel density
estimate of the output of the neural net for all structures with a given |A N B|. For visual clarity, the color does
not represent |A N B| directly, but rather encodes |5 — |A N B||, intuitively how the size of |A N B| differs from the
mean size. Nearly degenerate quantifiers have been excluded. As the agents observe more data, they become more
confident in how the size of A N B affect whether the quantifier is true or false. This means intuitively that the
quantifier encoded by the agents becomes more crisp.

respectively, to cardinal quantifiers and proportional quantifiers from a linguistic point of
view.16 Further work is needed to disambiguate between these two readings, and we return
to this problem in the discussion below. Bracketing the difficulty of drawing the distinction,
we call these quantifiers proportional-like. As can be seen in Fig. 8, the amount of vagueness
decreases as the agents are trained on more data. With a small bottleneck of 200 observations
(left column of plots), agents are uncertain about the output for all structures, while with 8
epochs and 1,024 observations (bottom right plot) the size of A N B completely determines
the output of the quantifier.

The thresholds of the proportional-like quantifiers that evolve in the experiment are not dis-
tributed uniformly across the possible sizes of A N B. Rather, sizes between 2 and 8 are more
common, and quantifiers with transitions at the extreme sizes, that is, 0 and 10, never evolved.
A possible reason why proportional-like quantifiers tend to have nonextreme thresholds is that
the pattern of proportional quantifiers with extreme or close-to-extreme thresholds is based
on the judgment of only a few structures, in the extreme case either the all-1 structure or the
all-0 structure. The accuracy of transmission is lower for quantifiers whose pattern depends
on fewer structures, both because the probability of the child observing and correctly memo-
rizing the crucial structures decreases and because if a pattern is encoded by few structures,
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it becomes more difficult to distinguish the outputs that are determined by the pattern from
outputs that the agent has simply memorized for specific structures, rather than inferred from
a pattern.

The result that nonextreme thresholds might have an advantage in cultural evolution com-
plements the previous literature which attempted to explain the evolution of extreme thresh-
olds in the semantics of scalar terms. For instance, Lassiter and Goodman (2017) and Qing
and Franke (2014) argue that the emergence of extreme thresholds in natural language is
a consequence of a pressure for communicatively accurate signals. The results show that
a pressure from learning might counterbalance this pressure from communication, favoring
proportional-like quantifiers with nonextreme thresholds. In the context of a pressure from
learning alone, Carcassi, Schouwstra, and Kirby (2020) show that for the simpler semantics
of gradable adjectives, learning alone might favor extreme thresholds. We leave the effects of
a joint pressure from learning and communication to future research.

Overall, excluding extreme thresholds for the reasons discussed above, all and only the
quantitative monotone quantifiers emerged in Experiment 2. While the evolved quantifiers
approximate degenerate and proportional quantifiers with noise, meaning that some structures
get a truth value that is inconsistent with the quantifier’s overall pattern, Fig. 6 shows that as
the agents are trained on more data they stabilize on less noisy approximations of degenerate
and vague proportional quantifiers. This result shows that, at least among the quantitative
quantifiers, neural networks have a bias in favor of monotonicity specifically, rather than
strategies which correlate with monotonicity in some but not all cases.

5. Discussion

The results from the two experiments presented in this paper have shown that monotonic,
nondegenerate quantifiers reliably evolve in a population of neural networks under the sole
pressure from learning, showing that learning biases might suffice to explain the universal of
monotonicity. This result seems to contradict the previous work in iterated learning showing
that, under a pressure from learning alone, languages tend to become degenerate, and moti-
vates experimental research on which quantifiers would be accurately conveyed by human
participants (Kirby et al., 2008, 2015). Nonetheless, when the agents in Experiment 2 observe
enough data, degenerate quantifiers are transmitted faithfully across generations and are stable
in cultural evolution.

The computational model presented in this paper can be straightforwardly extended in
various ways. The agents judged their quantifier compatible with a given structure simply by
rounding the output of their neural network. An alternative to this is for the agents to accept
a structure with a probability proportional to the network’s output. Such so-called sampling
agents do not straightforwardly instantiate a quantifier, since they can produce inconsistent
output when repeatedly prompted with the same structure.

As discussed in the previous section, the threshold quantifiers that emerged in Experiment 2
underdetermine the natural language difference between cardinal and proportional quantifiers.
In order to disambiguate between these two possibilities, a more complex representation of
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structures could be used which allows vectors of different sizes. Cardinality quantifiers would
then be the ones whose truth value depends on the number of ones in a structure, while
proportional quantifiers the ones whose truth value depends on the proportion of ones. While
the feedforward neural networks we used above do not accept variable size input, recurrent
neural networks (such as long short-term memory (LSTM) networks, see, e.g., Hochreiter &
Schmidhuber, 1997) could be used which accept sequential data of possibly varying length.
Even though this seems like a natural follow-up linguistic question, we do not pursue it in
this paper as it is not directly related to our leading problem, whether monotonicity emerges
as an effect of the ease of learnability.

Generalizing the structures and using LSTMs would also allow agents to learn quantifiers
that fail to have other proposed universals of quantification, such as conservativity and uni-
verse independence. Based on Steinert-Threlkeld and Szymanik (2019), the evolution of these
further universals could be explored in an iterated learning context. This is of particular inter-
est because, while in the above we have looked at quantity and monotonicity separately, these
two universals—along with a variety of others—in fact coevolve. Future work can look at the
coevolution of these various universals together rather than in isolation.

Beyond the universals of quantification, neural networks have been shown to more easily
learn meanings satisfying other semantic universals, such as veridical uniformity (Steinert-
Threlkeld, 2019).17 An iterated learning extension of such models could also offer insights
in the way individual biases are reflected on a population of neural network agents.

Another pressure that might contribute to shape the meaning of quantifiers comes from
communication (Kirby et al., 2015). Our results show that learning pressures may be the
force responsible for the universal of monotonicity. However, communication might also play
a role in this explanation. In particular, the evolution of the universal of monotonicity might
be a case where communication and learning push toward similarly structured categories,
namely those satisfying the universal of monotonicity. In the case of categories expressed by
nouns, the universal property of convexity has been argued to be a consequence of a pres-
sure both from learning (Gérdenfors, 2004) and from communication (Jiger & van Rooij,
2007). As pointed out in Chemla et al. (2019) and Carcassi (2020), the property of convex-
ity is structurally similar to the property of monotonicity as defined above (see cited papers
for a more discussion of why this is the case), suggesting that they might be explained by
similar pressures.

Beyond monotonicity, while some semantic universals of quantification might have an
advantage in cultural evolution because they conform well with learning biases, other univer-
sals might evolve because they lead to more successful communication. Therefore, combin-
ing iterated learning with a pressure for accurate communication, implemented for instance
by direct selection of communicatively successful languages, might help more natural quan-
tifiers emerge. Recent work has looked at the emergence of compositional languages from
interacting neural networks (Choi, Lazaridou, & de Freitas, 2018; Foerster, Assael, de Freitas,
& Whiteson, 2016; Yuan et al., 2020), but the role of direct selection of languages by com-
municative accuracy in an iterated learning model with neural agents has not yet been studied
(although see Ren et al., 2020, for an implementation of a pressure for expressivity in iterated
learning with neural networks). We leave all these exciting possibilities to future work.
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The results we presented support the learnability account of the origins of semantic univer-
sals of quantification. While the previous work compared quantifiers satisfying semantic uni-
versals to quantifiers that do not, we have presented a computational model where the former
are selected out of all the possible quantifiers by a process of cultural evolution. Moreover,
the preference for monotone quantifiers is not a consequence of an explicitly coded bias for
simplicity, but rather of an independently motivated, biologically plausible model of learning.
The results therefore suggest that not only are monotone quantifiers easier to learn, but they
are also widespread in language because of their learnability.
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Notes

1. See for instance Hunter and Lidz (2012) for the universal of conservativity in quanti-
fiers. However, see Spenader and de Villiers (2019) for a failed replication, and Zuber
and Keenan (2019) for a slightly weakened formulation of the conservativity universal
that better conforms to the linguistic data.

2. Note that with “cultural parent,” we do not mean simply the legal parent of a child, but
rather any individual from whom the child acquires cultural information.

3. Exactly how to draw the distinction between simple and complex and whether, for
instance, most is simple or complex, do not matter for present purposes.

4. Informally, a quantifier Q satisfies the universal of quantity if and only if (iff) for any
two sets A and B the truth value of Q(A)(B) only depends on the cardinalities of A — B,
B —A, AN B, and A U B. More detail is given in Section 4. For a formal definition of
quantity, see Peters and Westerstéhl (2006).

5. For more information on generalized quantifier theory from linguistic, computa-
tional, and cognitive perspectives, see also Peters and Westerstahl (2006) and Szy-
manik (2016). Keenan and Paperno (2012) and Paperno and Keenan (2017) present
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10.

11.

12.
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typologically rich data obtained through a questionnaire, but did not ask directly about
monotonicity. Bach et al. (1995) also provide a wealth of cross-linguistic data on quan-
tification in general but not on monotonicity. Matthewson (2008) also reports cross-
linguistic data on quantification.

. The formulation in terms of determiners’ right argument, rather than NPs, comes from

Peters and Westerstahl (2006, p. 172). The definition in Barwise and Cooper (1981)
technically concerns NPs and not only quantified NPs. In the following, we will focus
only on the latter, excluding expressions such as proper nouns, deictic pronouns (“L,”
“you”), and demonstrative pronouns (“this,” “that”). We an anonymous reviewer for
pointing to this distinction.

. In practice, while we are interested in type (1, 1) quantifiers, the quantifiers in the

model are effectively type (1). The type (1) quantifiers that we use in the model are
relativizations of the type (1, 1) quantifiers (see Peters & Westerstdhl, 2006).

. In this case, lexicographic order is the dictionary order over sequences of letters from

the alphabet {F, T} with F preceding T in the order.

. Any specific number of nodes and input layers has to be picked arbitrarily. We selected

an architecture that is quite expressive and capable of learning nonmonotone quanti-
fiers, while still remaining simple. Recent work by Baldi and Vershynin (2019) explores
the problem of the capacity of feedforward neural networks. While their results con-
cern networks with a Heaviside activation function rather than ReLLU, they conjecture
that structurally identical networks with the latter have higher capacity than the former.
In some experimental literature—for example, Carr, Smith, Culbertson, and Kirby
(2019)—this is also referred to as exposures.

In the rest of this section, we assume that 1 is to be interpreted as T and O as F. For
more details, see Appendix A.

We thank an anonymous reviewer for pointing out connections between neural net-
works and Bayesian learners, specifically in connection to previous results on iterated
learning. While Griffiths and Kalish (2007) showed that the distribution of languages
in iterated learning models will converge to the prior for sampling Bayesian agents, the
neural networks’ output in our computational model is deterministic, implying that they
should be characterized as MAP agents. The convergence behavior of iterated learning
is more complex with MAP agents, with the distribution of languages approximately
centered around a prior mode and a variance that depends on the specific parameters
of the simulation (Kirby, Dowman, & Griffiths, 2007). Moreover, the situation in the
current paper is further complicated by the fact that different weight initialization cause
different neural networks to infer different probabilities for new data given the same
training data, so that they would correspond with Bayesian learners with different prior.
As shown by Navarro, Perfors, Kary, Brown, and Donkin (2018), the stationary distri-
bution in a population with heterogeneous biases does not in general have a simple
relation to the prior, so that even while knowing the bias of the single agents the results
of cultural evolution are not easily predictable. In sum, there are reasons to be skeptical
that the results in this paper could easily be reduced to an analytic result in the literature.
Despite this, the results of iterated learning are clearly influenced by the agents’ biases.
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An important question is therefore whether the implicit bias of neural networks for
monotonicity should be interpreted as a human-specific cognitive bias or as a feature
of any universal learning algorithm. While we do not take a position in this discus-
sion, this paper contributes to the previous literature showing that a range of different
learning algorithms have a bias for monotonicity, therefore suggesting the conclusion
that any general model of learning will be biased toward monotone categories; see,
for example, van de Pol, Steinert-Threlkeld, and Szymanik (2019) for monotonicity
and approximate Kolmogorov complexity and Szymanik (2016) for monotonicity and
logic, automata theory, and computational complexity.

13. In set-theoretic terms, Q; is a principal ultrafilter If U is a finite nonempty set, a set F
is a principal ultrafilter on U if there is an a € U such that F = {B € P(U)|a € B}. Q;
is (the characteristic function of) a principal ultrafilter on B because it contains every
subset of B that contains i.

14. These are called in set-theoretic terms principal filters. They are not principal ultrafil-
ters because their truth depends on more than one element.

15. We are interpreting the evolved quantifiers as quantified NPs with a fixed A. However, if
the quantifiers are interpreted more generally as any type (1) quantifiers, the ultrafilters
correspond to proper nouns. The model itself is underdetermined with respect to these
two interpretations.

16. Cf. some natural language quantifiers, such as “many” and “few,” which have been
argued to be in fact ambiguous between a cardinal and a proportional reading (Partee,
1988).

17. The universal of veridical uniformity can be roughly stated as follows: every respon-
sive verb (i.e., verbs that can take both declarative and interrogative complements) is
veridical with respect to declarative complements iff it is veridical with respect to inter-
rogative complements. For instance, “know” is veridical: “Mary knows that James won
the race” implies that James won the race, and “Mary knows who won the race” implies
that Mary knows that John won the race (assuming that John indeed won the race). For
a more rigorous explanation, see Steinert-Threlkeld (2019).
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APPENDIX A: Neural networks and truth values

While the neural networks take structures as inputs, they cannot work with Boolean vectors
directly, but rather require bit vectors. Therefore, true and false have to be represented as
bits. In the discussion of the interpretation of neural network’s inputs and outputs, we have
assumed the usual interpretation of 0 and 1 as true and false, respectively. However, this was
a simplification. While it is conventional to define 1 as true and O as false, this will not work
in the context of languages evolved by neural networks, since the networks do not necessarily
associate 1 with truth and O with falsehood. Moreover, the way bit values are mapped onto
Boolean values need not be identical for a network’s input and its output.

More specifically, when prompted with a bit string agents produce a single bit. The former
models a state of the world, the latter models the compatibility of the agent’s quantifier with
the world state. While 1 and 0 are often used to represent true and false, as mentioned in
the previous paragraph nothing in the simulation implies that neural networks are interpret-
ing 1 and O as true and false, respectively, in their input and output. Therefore, if quantifiers
attribute a truth value to each structure, the output of an agent underdetermines which quan-
tifier the agent speaks, even when the output for all structures is known. For instance, an
agent that returns 1 for input [0, 0, 1, 1 ] can be interpreted as accepting the structure where
B = {03, 04} (if 1 is interpreted as true in the structure and in the quantifier), as rejecting
the structure where B = {03, 04} (if 1 is interpreted as false in the quantifier and true in the
structures), as accepting the structure where B = {0}, 0} (if 1 is interpreted as true in the
quantifier and false in the structures), or as rejecting the structure where B = {0, 0o} (if 1 is
interpreted as false in the quantifier and the structures). Crucially, the interpretation of the bits
has to be consistent across the structures and, in a possibly different way, across the quantifier
judgments. Therefore, each agent can be interpreted as speaking four quantifiers, depend-
ing on whether 1 and O are interpreted as meaning true or false in the structures and in the
agent’s output.
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The issue of interpreting bits as Boolean values is important when measuring monotonic-
ity, because the value of monotonicity depends on the attribution of truth values, rather than
simply bits, to each structure, rather than simply to each binary string. Since no objective
truth values or structures can be recovered from the network, in practice we measure the
monotonicity of a neural network’s language as the highest among the degrees of upward
monotonicity of the four quantifiers compatible with the network’s judgments for all possible
structures. Selecting the highest among the degrees of monotonicity compatible with the neu-
ral networks’ output allowed us to more easily identify, classify, and visualize the emerging
patterns that we discussed in the Sections 3.2 and 4.2.

We discussed in Section 3.1.5 the problem of defining a measure of downward mono-
tonicity based on its upward version. Having a separate measure of downward monotonicity
turns out to be in fact superfluous when considering the data produced by the neural net-
works. Each agent can be interpreted as instantiating any of four quantifiers, depending on
how the Booleans are interpreted for the quantifier’s input and output. The two interpretations
of the truth values of the structures—associating 0 with false and 1 with true, or vice versa—
correspond to an exchange of the subset—superset relation of any two structures. For instance,
the structure [0, 1, 1] with O interpreted as false and 1 interpreted as true is a superstructure
of [0, 0, 1], but the former becomes a substructure of the latter when O is interpreted as true
and 1 as false. It follows that the measure of downward monotonicity is equivalent to the mea-
sure of upward monotonicity with the opposite interpretation of the Booleans representing the
structure. Therefore, the measure of upward monotonicity, when applied to all four possible
interpretations of the network’s output, also covers a possible interpretation of the network as
instantiating a downward monotone quantifier.

APPENDIX B: Other optimizers

In the computational models above, we have used the Adam optimizer. However, it is worth
considering how robust the results are across different optimizers. We check this for two
other common optimizers, namely stochastic gradient descent (SGD) and SGD + momen-
tum. Results show that although the exact proportions of the different types of quantifiers that
emerge are different, the main effects are robust across different optimizers.

B.1Experiment 1 with other optimizers

We ran the model with SGD for the same combination of parameters as shown in Fig. 4.
The results are shown in Fig. B1. As expected, languages get to high levels of monotonicity,
although the precise levels are different than with the ADAM optimizer. For bottleneck of
200, about half or all evolved languages are ultrafilters. For eight epochs and bottlenecks
greater than 200, about a quarter of all languages become degenerate. SGD + momentum
again shows the same pattern (Fig. B2).

B.2Experiment 2 with other optimizers

We ran the model with shuffled inputs with SGD for the same combination of parameters as
shown in Fig. 6. The results are shown in Fig. B3 for SGD and Fig. B4 for SGD + momentum.
Like in the results from the experiment with ADAM (Fig. 6), the languages tend to divide in
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Fig. B1. Level of monotonicity by combination of parameters in the first experiment with SGD optimizer. Like
for the previous experiments, the main result is observed. Namely, the population develops higher levels of mono-

tonicity than would be expected in a random sample of quantifiers.
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Fig. B2. Level of monotonicity by combination of parameters in the first model with SGD 4 momentum optimizer.

The population again develops higher levels of monotonicity than would
quantifiers.
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Fig. B3. Monotonicity against quantity for each language spoken across all generations in the replication of Exper-
iment 2 above with SGD as optimizer. Like in the results above, the languages cluster in two groups.



30 of 30 FE. Carcassi, S. Steinert-Threlkeld, J. Szymanik/ Cognitive Science 45 (2021)

. A A n 1
y 1 !> = 1= = -1.0
! i {
SE 4 i * 3
s < » P 3
oS & & o 08
E® & o ¥
3 s i ST >
z 0 -08 3
I 2
(0]
2 1 B 1= -07 @
< > ! H o
25 3 -06
£ 3 y S ,_TT ol
=] 4 2
2 0 )é & a L5

o 10 1 0 1 0 1

monotonicitymonotonicitymonotonicitymonotonicity
Btink: 200 Btink: 512 Btlnk: 715 Btink: 1024

Fig. B4. Monotonicity against quantity for each language spoken across all generations in the replication of Exper-
iment 2 with SGD + momentum as optimizer. Like in the results above, the languages cluster in two groups, albeit
with a higher proportion of degenerate quantifiers.

two clusters, a degenerate or close to degenerate cluster (yellow) and a high-quantity high-
monotonicity cluster (top right of plots). One difference is that the proportion of degenerate
languages is higher in the SGD + momentum model.



