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Inferred mechanisms of learning, such as those involved
in improvements resulting from perceptual training, are
reliant on (and reflect) the functional forms that models
of learning take. However, previous investigations of the
functional forms of perceptual learning have been
limited in ways that are incompatible with the known
mechanisms of learning. For instance, previous work has
overwhelmingly aggregated learning data across
learning participants, learning trials, or both. Here we
approach the study of the functional form of perceptual
learning on the by-person and by-trial levels at which
the mechanisms of learning are expected to act. Each
participant completed one of two visual perceptual
learning tasks over the course of two days, with the first
75% of task performance using a single reference
stimulus (i.e., “training”) and the last 25% using an
orthogonal reference stimulus (to test generalization).
Five learning functions, coming from either the
exponential or the power family, were fit to each
participant’s data. The exponential family was uniformly
supported by Bayesian Information Criteria (BIC) model
comparisons. The simplest exponential function was the
best fit to learning on a texture oddball detection task,
while a Weibull (augmented exponential) function
tended to be the best fit to learning on a dot-motion
discrimination task. The support for the exponential
family corroborated previous by-person investigations of
the functional form of learning, while the novel
evidence supporting the Weibull learning model has
implications for both the analysis and the mechanistic
bases of the learning.

Introduction

Given proper experience, humans tend to show
significant improvements in the ability to make
many different types of perceptual decisions (e.g.,

discrimination, detection categorization, estimation)
about a wide variety of stimuli (e.g., from basic black
and white gratings or moving dots to radiological
images or faces). Of particular interest to researchers,
beyond the simple fact that improvements are observed,
is the functional relationship between the amount of
experience and the degree of improvement. Indeed,
understanding the mathematical functions that best
capture learning is not simply an empirical data-fitting
problem with the goal of providing purely descriptive
outcomes. Instead, uncovering the best-fitting
functional form for learning has deep inferential
repercussions. For instance, certain mechanistic
accounts of learning produce very characteristic
shapes (e.g., the influential ACT-R system produces
a power function; Anderson et al., 1999). As such,
identifying the functional form of learning shown by
human observers on different types of tasks provides
leverage when considering the most likely underlying
mechanisms.

Interestingly, in large swaths of literature, learning
is frequently (at least implicitly) modeled as being
linear with time (e.g., via the use of change scores such
as pretest mean minus posttest mean, linear trends
such as using trial or session number as a covariate,
certain growth curve models, etc.). While in many cases,
such analyses are likely employed based on ease or
convenience, if learning is not in fact linear with time,
it can be a threat to the validity of the analyses (e.g.,
outcomes can depend in a problematic fashion on the
number of trials that are considered; see Figure 1).

Given the obvious issues with linear accounts, when
researchers have attempted to directly characterize the
functional form of learning, candidate functions have
nearly always been nonlinear and saturating (i.e., the
function reaches some true asymptote or maximum
in performance; Newell et al., 2009). Of the possible
functional forms, historically the most dominant has
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Figure 1. Implications of the timescale-dependent biases of
linear fits. While a linear relationship is clearly biologically
implausible in the limit, even in smaller time windows, an
inappropriate assumption of linearity can create problems. In
the example above, a given “true” learning curve (black dotted
line) is plotted alongside solid lines of linear fits to 50 trials
(purple), 250 trials (green), or 500 trials (blue). Critically,
despite each being fit to the same actual learning process, the
various linear models provide very different inferences
regarding the nature of learning. The 50-trial linear fit
necessarily indicates rapid learning that, if extrapolated from
(dotted line continuation), quickly reaches impossibly large
values of accuracy. The 500-trial linear model meanwhile
necessarily fits a flatter line (i.e., putatively “slower” change)
than the models fit to a smaller number of trials. The 500-trial
model thereby misses, by design, the early rapid changes of the
learning curve. The slopes, beginning levels, and ending levels
of performance diverge between all models. All models
extrapolate to impossible levels of accuracy (i.e., over 100%).

been the power function (e.g., Anderson et al., 1999;
Crossman, 1959; Newell & Rosenbloom, 1981; Snoddy,
1926; Stratton et al., 2007). In fact, the ubiquity with
which power functions were found to appropriately
describe learning data led to the moniker “power law
of learning.” Yet more recently, the appropriateness
of power functions as an empirical description of
learning has been called into question (Heathcote et
al., 2000; Stratton et al., 2007). One of the primary
arguments therein has been that while power functions
often provide a good fit to group-level aggregates (i.e.,
when averaging across many participants’ learning
curves), other functional forms are more appropriate
for describing the learning curves of individual
participants. This was seen, for instance, in seminal
work by Dosher and Lu (2007) in the perceptual
domain, who found that exponential functions provided

a superior fit to individual perceptual learning data as
compared to power functions (see also Heathcote et al.,
2000).

Our aim here was to extend the consideration of the
functional form of perceptual learning in three distinct
ways from the previous literature. First, while previous
work has argued that exponential functions are the
most appropriate for fitting individual perceptual
learning data, most of these assessments have
nonetheless used some degree of aggregation across
learners and/or across trials (e.g., Dosher & Lu, 2007),
leaving uncertainty about the best-fitting shape at the
individual trial-by-trial level (e.g., the best-fitting shape
to the five points given by the average of trials 1–100,
101–200, 201–300, 301–400, and 401–500 will not
necessarily be the best-fitting shape when considering
trials 1–500 continuously). Previous work by our
group has demonstrated the theoretical and empirical
justifications for implementing continuous-time models
of learning (i.e., without aggregating data at the level
of trials or individuals; Kattner, Cochrane, Cox, et
al., 2017; Kattner, Cochrane, & Green, 2017; for
similar arguments regarding trial-by-trial variation, see
Kumar & Glaser, 1993; Zhang et al., 2019a). Indeed,
the arguments for disaggregated analyses of learning
can be made succinctly a priori: Because theories of
learning consider learning that accumulates with each
learning event (i.e., trial) and within individual learners,
inferences regarding such learning should consider
by-trial and by-individual learning trajectories.

Instead, the use of sparse “block-level” performance
(e.g., psychometric function or staircase point
estimates) implies within-block stationarity of
performance while overfitting trajectories of learning.
Overfitting arises from the disregard for degrees of
freedom in generating point estimates, when using
stepwise procedures, that imply noise-free estimates
of performance (Kattner, Cochrane, & Green, 2017).
Implicit within-block stationarity precludes certain
questions regarding the functional form of learning.
Variations in learning curves occurring in short periods
of time (i.e., intrablock) cannot be captured; this
is especially likely to be the case early in learning.
Yet, while in our previous work, we have shown that
these time-continuous methods (implementing an
exponential form) outperformed aggregation-based
fitting techniques, we did not have the data in this
previous work that were necessarily to adjudicate
between other possible forms (e.g., power functions).
As such, our first goal here was to examine whether,
using time-continuous fitting methods, there was more
support for exponential than power functional forms of
perceptual learning (which would provide converging
support for the arguments made by Dosher & Lu, 2007,
among others).

Here we note that our specific approach differs from,
while also complementing, other research that has
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attempted to examine perceptual learning in a more
continuous fashion. This includes work by Zhang
et al. (2019b), in which stimuli during learning were
controlled by an adaptive algorithm. While there are
strong virtues to such systems (e.g., in terms of efficiency
and model-based task design), they nonetheless create
confounds between participant response, trial number,
and stimulus strength (i.e., in making stimulus strength
the outcome measure of interest). These confounds
have the potential to then influence the process of
learning itself (Ahissar & Hochstein, 1997; Hung &
Seitz, 2014; Lin et al., 2017; Wang et al., 2013) and,
as such, could also influence the functional form. The
adaptive stimulus approach stands in contrast with the
methods employed here, which used a constant range
of stimuli over the duration of learning and in which
participant behavior is the outcome measure (although
this latter approach presents its own confound with
difficulty, namely, that the task becomes easier for
participants as they learn).

Second, previous work has frequently considered
just the “base” (i.e., three-parameter) form of the
exponential and power families. These produce very
characteristic shapes that would constrain the possible
mechanistic underpinnings. For instance, exponential
decay, in which the proportion of change remaining is
a function of time elapsed (i.e., constant hazard rate),
implies a single mechanism of change (i.e., each unit
of input [time] produces one particular proportional
amount of change); power-law functions, in contrast,
imply multiple averaged or cascading mechanisms of
change (as the rate of change slows per unit [time]). Yet,
there are augmentations to the base parameterizations
that allow for the examination of specific additional
hypotheses (i.e., these do not just add free parameters
and thus additional flexibility in fitting; the additional
parameters also carry clear and interpretable meanings).
In the case of power functions, one common example is
an additional parameter to model theoretical “quantity
of prior learning” (Heathcote et al., 2000). Additions to
the exponential function allow, for example, modeling
of multiple learning processes using several rate
parameters (Newell et al., 2009; Reddy et al., 2018)
or an initial acceleration or “slow start” of learning
(Brooks et al., 1995; Leibowitz et al., 2010; Newell et al.,
2001). The cumulative Weibull function adds a single
shape parameter to the three-parameter exponential
function and thereby allows for an interpolation
between the simplest exponential function and a fully
sigmoid function akin to a logit or probit (Gallistel et
al., 2004; Leibowitz et al., 2010). The shape parameter
corresponds to a deceleration or acceleration of the
hazard, with a more sigmoid-like function indicating
a slow start to learning and an accelerating hazard
rate (potentially corresponding to various empirical
suggestions of “early” and “late” stages of perceptual
learning; e.g., Fahle, 2005; Shibata et al., 2014). As

such, our second goal was to examine whether any such
augmented versions of the functional forms provided
better fits than the three-parameter versions (when
appropriately penalized for the additional flexibility).

Third, and last, previous work on the functional
forms of perceptual learning has generally focused
exclusively on learning on the initial trained task.
However, the extent to which perceptual training
transfers to new stimuli/tasks is another major
consideration in the domain of perceptual learning.
Typically, though, learning generalization has been
tested via a single block of a new task, with performance
on the new task being aggregated over the entire
block (e.g., trained for 1,000 trials on Task 1 and
then generalization assessed via 100 trials on Task 2).
In previous work, we have shown that this type of
procedure conflates two independent ways in which
learning can potentially generalize—“immediate
transfer” (where training on Task A produces an
immediate benefit on Task B) and “learning to learn”
(where training on Task A does not produce an
immediate benefit to Task B but does allow Task B
to be learned more quickly than Task A). Because
these two routes to learning generalization may
be associated with very different mechanisms, it is
important to differentiate between them. As such,
our third goal was to examine the functional form of
learning generalization, in a time-dependent fashion,
in conjunction with an investigation of the functions
characterizing initial learning.

In this current work, we took inspiration from the
perceptual learning studies of Ahissar and Hochstein
(2000) and Wang and colleagues (2013), who each
demonstrated differential learning generalization as a
function of task difficulty. Specifically, greater learning
generalization has been seen when participants were
trained on easier as compared to harder versions of the
tasks (Ahissar & Hochstein, 1997; Liu, 1999; although
see also Jeter et al., 2009; Cohen & Weinshall, 2017,
whose empirical-data/computational modeling has
suggested the true driving force of the phenomenon
is the difficulty of the generalization tasks rather
than the training tasks). The enhanced generalization
in response to easier training regimes was then in
turn seen as evidence for distinct mechanistic loci of
learning, with mechanisms of learning on easy tasks
being more general and mechanisms of learning on
difficult tasks being more specific (reviewed in Ahissar
et al., 2009). However, previous work examining
difficulty-influenced generalization relied on aggregated
measures of performance, thereby possibly conflating
processes of generalization that may have been time
dependent (i.e., initial performance vs. learning to tune
visual perception to novel stimuli; see Ahissar et al.,
2009, Figure 4). Although some time-evolving aspects
of difficulty and generalization have been considered,
such as linear models fit to block-level d-prime
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(Wang et al., 2013), no previous examination of
generalization has used functionally appropriate
methods sensitive to rapid changes in performance.
By using by-trial models of the most empirically
appropriate functions, we specifically tested for
two possible routes to difficulty modulations in
generalization. First, we tested whether immediate
benefits of previous training would be evident at the
start of generalization. Second, we tested whether
learning within the generalization task would be faster
or slower as a function of training task.

Methods

Participants and materials

We recruited participants (n = 132, Mage = 19.0,
SDage = 0.7, 70 female, 72% White, 13% Asian, 15%
other, multiple, or no response) from the University
of Wisconsin–Madison Introduction to Psychology
participant pool. All participants read and signed
consent forms and were compensated with course
credit. All procedures comply with the Declaration
of Helsinki and were approved by the University of
Wisconsin–Madison Institutional Review Board.

Participants were assigned to one of four groups.
Two groups completed a texture oddball detection
task (Ahissar & Hochstein, 1993, 2000; see Figure 2A)
while two groups completed a dot-motion direction
discrimination task (Ball & Sekuler, 1987; Liu, 1999;
Wang et al., 2013; see Figure 2B & Supplementary

Material). Within each of these tasks, one group
completed an easier version (26 texture oddball
detection, 31 dot-motion direction discrimination)
while one group completed a more difficult version
(30 texture oddball detection, 45 dot-motion
direction discrimination). Participants were assigned
pseudorandomly to one difficulty group. The
recruitment target was 20 retained participants per
condition; after exclusions, we closely matched this
target (see Results).

All stimuli were presented on a 22-in. Dell monitor
using Psychtoolbox 3 (Brainard, 1997; Kleiner et al.,
2007) in MATLAB, on a Dell PC running Windows 10.
Viewing distance was approximately 59 cm and was not
fixed.

Procedure

All participants completed two days of training
involving eight blocks of a perceptual learning task.
Short breaks were allowed between each block. The
first six blocks (four on the first day and two on
the second) involved training on a single stimulus
reference orientation (i.e., texture orientation or mean
dot-motion direction). The last two blocks tested
generalization of learning by training on an orthogonal
reference orientation. Before the first block and the
seventh block, each participant completed four trials
with very large orientation offsets and slower timing in
order to familiarize them with the reference orientations
within the phase of the task. Training stimulus sets
remained constant throughout the experiment.

Figure 2. Depictions of each perceptual learning paradigm. (A) Texture oddball detection task and (B) dot-motion direction
discrimination task. For further details, see the Supplementary Material. ISI = XXX.



Journal of Vision (2021) 21(13):5, 1–16 Cochrane & Green 5

Two perceptual learning tasks, modeled after Ahissar
and Hochstein (2000) and Wang, Zhou, and Liu (2013;
only within-difficulty generalization), were employed in
separate groups of participants. Task parameters were
largely taken from these studies (see also Figure 2). Two
difficulty orientation offsets were used in each task:
easy (texture: 30°; motion: 8°) and difficult (texture:
16°; motion: 4°). All participants were trained for
approximately one hour on each of two days (840 per
day texture, 800 per day motion). The first 75% of trials
used one reference angle (16° texture, 40° motion), while
the last 25% of trials tested for generalization to another
reference angle (106° texture, 130° motion). Additional
task information is reported in the Supplementary
Material.

Analysis

Nonlinear learning models were fit in R using the
TEfits package (Cochrane, 2020 model code reported in
the Supplementary Material). As in the original studies
cited above, outcomes in texture detection were defined
as thresholds while outcomes in dot-motion were
defined as d-prime. Learning functions are described in
detail in the TEfits documentation. Note that in Ahissar
and Hochstein (2000), texture detection thresholds
were fit using the “Quick function,” an alternative
parameterization of the Weibull function (Strasburger,
2001), whereas TEfits uses a numerically different but
functionally equivalent parameterization of the same
psychometric function (see TEfits documentation).
TEfits threshold values are parameterized as the
stimulus strength (i.e., Stimulus Onset Asynchrony
(SOA)) necessary to achieve 75% accuracy. For the
dot-motion direction discrimination data, we first
used the TEfits function tef_acc2dprime to calculate
a by-trial d-prime using a Gaussian kernel–weighted
percent hits and false alarms (kernel half-width half-max
of two trials). Vectors of d-primes were estimated
for each participant’s training and generalization
separately, and then the d-primes from this vector were
fit using a least squares (i.e., maximum likelihood)
loss function. We note that, while we did induce some
smoothing and loss of temporal precision by using
this Gaussian kernel, in practice, a two-trial half-width
half-max induces very little smoothing and is much
smaller than any typical blockwise analysis of learning.
Texture oddball detection data were fit by maximum
likelihood as well (i.e., minimizing the error of model
predictions given the Bernoulli likelihood function).
Maximum likelihood estimation utilized 2,000
randomly initialized parameter combinations, each
followed by a Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization run, for each participant for each
model, to increase the chances that the best-fitting

model was indeed the global likelihood maximum
rather than a local maximum.

Analyses were guided by the goal of identifying the
best-fitting mathematical function describing changes
in performance associated with practice. The primary
candidate functional forms of learning included
three-parameter power and exponential functions, as
examined in similar previous studies (Crossman, 1959;
Dosher & Lu, 2007; Heathcote et al., 2000; Leibowitz
et al., 2010; Newell & Rosenbloom, 1981; Newell et al.,
2009; Snoddy, 1926). Broadly, the exponential family
takes the form in Equation 1. In contrast, the power
family takes the form in Equation 2.

start + (asymptote − start)time×rate (1)

start + (asymptote − start) × timerate (2)

Each of these functions allows a parameterization
with three free parameters describing (a) the starting
point of performance (i.e., y-intercept at Trial 1), (b) the
rate or time constant of change, and (c) the asymptotic
level of performance expected with an infinite amount
of experience. A common augmentation of the power
function includes an extra parameter, conceptualized
as “amount of previous experience” (Heathcote et al.,
2000), which adds a great deal of flexibility to the shape
of the power function (see Equation 3; note that the
final multiplicative term is a normalizing constant to
allow clear interpretation of starting and asymptotic
values).

start + (asymptote − start) × (time + previousT ime)rate × 1
previousT imerate (3)

Two four-parameter extensions of the exponential
function were also tested: (a) an equally weighted
combination of two exponential functions (Reddy et
al., 2018; see Equation 4) and (b) a Weibull function
(Gallistel et al., 2004; see Equation 5). The Weibull
function is of particular interest; it is an extension of
the exponential function to learning that may start
quickly and decelerate or start slowly, accelerate, and
form a sigmoid learning function.

start+.5 × (asymptote − start)time×rate1 +.5 × (asymptote − start)time×rate2 (4)

start + (asymptote − start)(time×rate)shape (5)

Each of the equations above shows the simplest
representation of each functional form; in practice,
each parameter of the functions in Equations 1 to 5 was
monotonically transformed (e.g., sign-flipped or log-
transformed) for ease of estimation and interpretation
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Figure 3. Example parameterization of a three-parameter exponential model (with the three-parameter power model using
parameters with the same implications). Black line represents estimated performance on a given trial (with the parameter values of
a = .4, b = 7.0, c = .1, d = 0, and e = 0). All models included these parameters, with more complex models having additional
flexibility in shape [rate]. Each bottom panel changes the single labeled parameter (all other parameters identical to the top panel).
Variations in parameters included (a) starting point of d-prime or threshold [0.3]; (b) rate of change in initial learning [5], specified as
a log time constant; (c) asymptotic d-prime or threshold [0.02]; (d) difference between d-prime or threshold initial training start and
generalization start [−0.1]; and (e) difference between rate of change in initial training and rate of change in generalization [−1].

(see Supplementary Material). These transformations
should have no impact on goodness-of-fit indices. All
functional forms included starting and asymptote
parameters, with differences between families and
functions occurring in the shape of the trajectory of
learning between start and asymptote. Within TEfits,
using maximum likelihood estimation, all parameters
are constrained to be within reasonable values (i.e.,
the likelihood function overwhelmingly penalizes
unreasonable values). Most important, the start and
asymptote parameters must be within a liberal range
of possibility; in this case, thresholds were limited to
be between 0 and .98 in the texture task (i.e., between
zero and two times the maximum SOA), and d-prime
was constrained between 0 and 5 in the dot-motion task
(corresponding to percent correct ranging from chance,
50%, to approximately 99.38%, or perfect accuracy
with a .62% lapse rate; see Supplementary Material
for model code). Restrictions on other parameters
(e.g., rate) should be less influential on the outcome
of the fitting, with the primary precluded outcome
being that “learning” could not happen in an extremely
small number of trials (e.g., half of learning in two

trials). This restriction on rate parameters assists in
the estimation of nonlinear functions by reducing the
ability for combinations of parameters to imitate one
another (i.e., if performance changes very little, this
should not be fit as reaching asymptote in two trials,
with a potentially large difference between start and
asymptote; instead, it should take the form of starting
performance being nearly identical to asymptotic
performance).

Assessment of functional forms necessitated fitting
parameters at the levels of individual participants
(Dosher & Lu, 2007; Heathcote et al., 2000; Stratton
et al., 2007) and using time as a continuously varying
dimension (Kattner, Cochrane, & Green, 2017). Within
participants, each possible model of interest was
fit simultaneously to both initial training and test
of generalization (see Figure 3 for examples). This
included common parameters between training and
generalization except for initial ability and rate of
learning. Start and rate parameters were estimated as
varying between training and generalization, thereby
allowing for tests of generalization. Note that, in the
Results, we also report comparisons of fits to only
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the initial training. Representative learning curves for
each function can be observed in the Results. After
obtaining a Bayesian Information Criterion (BIC) value
for each model for each participant (optimized using
TEfits), model comparisons were conducted by first
normalizing model BIC within participants to extract
Schwarz weights (Wagenmakers & Farrell, 2004).
Schwarz weights must sum to 1 within participants,
with the highest weight indicating the best-fitting
model.

Secondary statistical analyses, following the
primary Schwarz weight comparisons, primarily used
bootstrapped robust linear models (i.e., tef_rlm_boot
from the TEfits package). These models fit robust
linear models, using the R package MASS (Venables &
Ripley, 2002) to each of 2,000 data sets resampled with
replacement to inform the 95% CI. Furthermore, the
models fit robust linear models to each of 2,000 subsets
of data (random 80% without replacement) and used
the fit model to predict the held-out 20% of data. The
median proportional reduction in least squares error in
the held-out data was reported as �R2

oos.

Results

Results: Data processing and exclusions

The texture oddball detection task started with 26
easy-condition participants and 30 hard-condition
participants. Six easy-condition participants and 11
hard-condition participants were excluded due to
failures to learn. Specifically, this included participants
who did not achieve above-chance performance on
their final 200 training trials (i.e., failing to reject the
null of a one-tailed binomial test with a guessing rate
of 50%) or had accuracy on the final 200 trials of
training that was lower than accuracy on the first 200
trials of training. Each of these exclusion criteria was
calculated on raw percent correct data prior to fitting
any models. This left 20 easy-condition participants
and 19 hard-condition participants. The dot-motion
perceptual learning started with 31 easy-condition
participants and 45 hard-condition participants. Eight
easy-condition participants and 25 hard-condition
participants were excluded due to (a) not achieving
above-chance performance on their final 200 training
trials or (b) having accuracy on the final 200 trials
of training that was lower than accuracy on the first
200 trials of training. This left 23 easy-condition
participants and 20 hard-condition participants. The
rate of exclusions was quite high, particularly in the
dot-motion perceptual learning. The high number of
exclusions was unfortunate, but the current study of
learning necessitated a confirmation that all participants
learned (i.e., parameterizations of the learning function

are only sensible if participants learned). Figure 4
shows the fit values of each learning function to data
from an example participant from each study.

Results: Best-fitting models to learning and
generalization data

The primary analysis of interest involved
comparisons of the relative likelihood for each model
(i.e., Schwarz weights). Consistent with previous work
examining individual-level learning (Dosher & Lu,
2007; Heathcote et al., 2000), the simplest function from
the exponential family, the three-parameter exponential,
was the best-fitting model to the vast majority of
texture oddball detection participants (see Figure 5).
The weights of the three-parameter exponential did not
vary by difficulty (easy best fit = 95% of participants;
difficult best fit = 89.5% of participants; coefficient
of difficulty predicting three-parameter exponential
weights in a bootstrapped robust linear model, b =
−0.023, CI [−0.13, 0.065], �R2

oos = −0.0157).
Learning in dot-motion direction discrimination

meanwhile tended to be best fit by the four-parameter
Weibull model, an augmentation of the exponential
function (see Figure 6). The weights of the Weibull
models did not vary by difficulty (easy best fit = 69.6%
of participants; difficult best fit = 60% of participants;
coefficient of difficulty predicting Weibull weights in a
robust linear model, b = −0.06, CI [−0.43,0.23], �R2

oos
= −0.017). Of the participants whose learning was best
characterized by the Weibull function, 93.1% had shape
parameters over 0, indicating the benefits of the extra
parameter were derived from fitting learning with a slow
start (i.e., sigmoid shape and increasing hazard rate, as
shown in Figure 4). Nearly all of participants who were
not best fit by the Weibull function were instead best fit
by the three-parameter exponential function (25.6% of
all participants), which is equivalent to a Weibull with a
shape parameter of 0.

Similar results were found when models were fit
only to the trials in the training set (i.e., excluding the
generalization trials). In this case, in the dot-motion
task, 60% of participants were best fit by the Weibull
model, while 35% were best fit by the three-parameter
exponential model. Likewise, in the oddball detection
task, 92% were best fit by the three-parameter
exponential model.

In addition to our primary BIC analyses reported
above, we conducted model comparisons using a
similar cross-validation procedure as described above
(i.e., fitting models to random 80% subsamples
and assessing change in model log-likelihood when
evaluating the fit parameters on the held-out 20%
of data; the by-participant median out-of-sample
change in log-likelihood was used as an index of
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Figure 4. Example predicted time-evolving d-prime (left panel) and psychometric function threshold (right panel) from each learning
function fit to one participant for each task. The x-axis is overall trial number, including both initial training and generalization (the
disjunction in the curves occurs on the trial in which participants switch from initial training to the generalization task). In the left
panel, the y-axis is d-prime, or sensitivity, with greater d-prime indicating superior performance. In the right panel, the y-axis is a
Weibull psychometric function threshold indicating the number of seconds needed to achieve 75% accuracy. Lower threshold values
indicate better performance. Learning curves display characteristic differences between the power family (Power_3pars and
Power_4pars) and the exponential family (Exponential_3pars, Exponential_4pars, and Weibull). In the left panel, the Weibull function
is strikingly different from the other four functions, however, by allowing for an initial acceleration of learning and a sigmoid shape.
Note that overlapping predictions, arising from models from the same family, may be difficult to discern.

Figure 5. Texture oddball detection relative evidence for models, fit to both training and generalization trials, using each learning
function. Each participant, in both difficulty conditions, has a weight (point) for each model. Weights are normalized BIC within
participants and across models. All points above the dashed line indicate that, for a given subject, the model received more weight
than all other models combined.

model performance). Due to computational limitations,
we completed this procedure only 50 times for each
combination of participants and candidate functions,
which limits the precision of this measure (i.e.,
making within-participant comparisons less robust).
Nonetheless, the overall results were the same as the
BIC analyses reported above. In the oddball detection
task, the three-parameter exponential function led to

fits with the best average out-of-sample performance,
whereas in the dot-motion task, the Weibull function’s
fits gave the best average out-of-sample performance.

As a test of the implications of our by-subject models,
we conducted a comparison analysis in which accuracy
or d-prime had been averaged across participants for
each trial. In this case, the three-parameter exponential
function was the best-fitting model to the texture
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Figure 6. Dot-motion direction discrimination relative evidence for models, fit to both training and generalization trials, using each
learning function. Each participant, from each difficulty condition, has a weight (point) for each model. Weights are normalized BIC
within participants and across models. All points above the dashed line indicate that, for a given subject, the model received more
weight than all other models combined.

detection data (Schwarz weight: .949), while the
four-parameter power function was the best-fitting to
the dot-motion discrimination data (Schwarz weight:
.999). In the dot-motion discrimination data, then,
we recapitulated previous findings that aggregating
perceptual learning data across participants can lead to
a completely different functional form than the function
form taken by individual learners’ trajectories (Dosher
& Lu, 2007). We note that these models, although
implementing a more traditional aggregation-based
approach, have a host of theoretical weaknesses and as
such would not be recommended for future researchers
to implement (Dosher & Lu, 2007; Heathcote et al.,
2000; Kattner, Cochrane, & Green, 2017).

Results: Form of generalization

We next turned to adjudicating between forms of
generalization. Previous work has typically utilized quite
short (i.e., single blocks) generalization tests and/or
has employed significant aggregation of generalization
task data. As such, it is unclear, when generalization
has been found, whether the generalization is present
from the very first trial of the new task (i.e., “immediate
transfer”) or if, instead, the generalization manifests as
faster learning of the generalization task. To adjudicate
between these possibilities, we proceeded by testing
the parameter distributions of generalization start
and rate (themselves each parameterized as offsets
from the associated parameters in initial learning;

see Figure 3). We used fit parameters from the overall
best-fitting models for each task (i.e., dot-motion task
Weibull and oddball detection task three-parameter
exponential). Due to the explicitly one-sided nature of
the tests, we used 50,000 resamples with replacement of
the mean of participants’ parameters to estimate the
bootstrapped one-tailed lower or upper 95% bound
(i.e., generalization would only be due to decreases
in threshold, increases in d-prime, or decreases in
the amount of time taken to learn; changes in the
opposite direction could not be interpreted as successful
generalization). Due to the possibility of differences
in generalization due to task difficulty (see also next
section for explicit comparisons across difficulty
levels), we tested each task and each difficulty level
independently.

Starting texture oddball detection generalization
thresholds of participants in the easier condition
were reliably lower than their initial learning starting
thresholds (mean = −0.13, CIupper = −0.02), while
the difficult group did not demonstrate reliably lower
thresholds at the start of generalization (mean =
−0.02, CIupper = 0.1; see Figure 7). No reliable pattern
of generalization due to a decrease in time taken
to learn was evident in either difficulty condition
(rate parameter difference: easy mean = −0.48,
CIupper = 0.8; hard mean = −0.4, CIupper = 0.9). Thus,
the only evidence for any generalization was in the form
of immediate transfer.

The results of the dot-motion discrimination task
were similar to the texture oddball detection task.
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Figure 7. Differences between generalization parameters and training parameters. The most frequently best-fitting model was used
for each task. Central guide bars show, in green, the direction of generalization benefits (i.e., either positive or negative values,
depending on the particular parameter—i.e., for start values: “generalization,” meaning better performance at the start of the
generalization block than was observed at the start of the initial block, is indicated by higher values of accuracy for the dot-motion
task and lower values of threshold for the texture task). Shaded area indicates smoothed density. Lines indicate mean and
bootstrapped 90% CI (i.e., reflecting one-sided tests from Results).

Participants in the easier condition had dot-motion
d-prime scores at the start of the generalization task
that were reliably higher than their d-prime at the
beginning of training (mean = 0.59, CIlower = 0.09;
see Figure 7). In contrast, starting d-prime was no
higher in the generalization than in initial learning
for participants in the difficult condition (mean =
−0.11, CIlower = −0.64). The easier condition but
not the difficult condition demonstrated learning to
learn, via decreases in the time taken to learn, in
generalization (rate parameter difference: easy mean =
−0.75, CIupper = −0.01; hard mean = 0.13, CIupper =
1.33). However, due to concerns that the Weibull rate
parameters may be biased by certain patterns in the
Weibull shape parameters (shared across initial learning
and generalization) as well as due to the minority
support for the three-parameter exponential model
in the motion discrimination task, we tested possible
dot-motion generalization in the rate parameter of
the three-parameter exponential. In these analyses, we
observed null effects when comparing generalization

and learning rates in the three-parameter exponential
model (rate parameter difference: easy mean = 0.00,
CIupper = 0.91; hard mean = 0.56, CIupper = 1.75).
As a whole, then, there was greater support for an
immediate-transfer mechanism of generalization than
one involving learning to learn.

Results: Generalization by difficulty interactions

Given the lack of differences in functional form
by difficulty, using each experiment’s most common
best-fit models (i.e., three-parameter exponential or
Weibull), we next assessed the degree to which training
task difficulty moderated generalization. Figure 7
shows that easy conditions did appear to lead to greater
generalization of learning in the form of starting ability.
This is consistent with previous reports (e.g., Ahissar
& Hochstein, 1997; Wang et al., 2013) while adding
information about the time course of generalization.
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In each task, we tested for the effect of difficulty on
starting generalization in two ways. In the first method,
we fit a bootstrapped robust linear model predicting
the generalization starting parameter using difficulty
condition while controlling for each participants’
training start parameters. In the second, we normalized
the magnitude of the generalization start parameter
by dividing it by the difference between a participant’s
asymptotic level and their training start. We then fit
a bootstrapped robust linear model to predict this
proportional benefit of generalization using difficulty
condition.

In oddball texture detection, training on the easy
condition generalized more than that training on the
difficult condition (b = 0.11, CI [0.003, 0.2], �R2

oos
= 0.0988). However, this effect was lost when the
generalization benefit was calculated as a proportion
of total learning (b = −0.12, CI [−0.9,0.63], �R2

oos
= −0.0122). Likewise, when examining dot-motion
orientation discrimination parameters directly, the
easy condition generalized more than the difficult
condition (b = −1.1, CI [−2, −0.24], �R2

oos = 0.2106).
When calculating dot-motion generalization benefit
as a proportion of learning, there was no difference
between difficulties (b = 0.03, CI [−0.77,0.69], �R2

oos
= −0.0116).

We next used bootstrapped robust linear models to
predict generalization rate using difficulty condition
while controlling for training rate. There were no
differences in generalization of learning rate between
difficulty conditions for either learning paradigm.
Clearly, to the extent that differences in generalization
due to difficulty were evident, these group differences
were due to immediate benefits in performance rather
than differences in the rate of generalization.

Recovery analyses

Newell and Rosenbloom (1981) famously described
“curve fitting” of learning as a “black art.” Despite 40
years of computational and empirical advances that
have massively enhanced our abilities in this space,
we nonetheless remain fundamentally limited by the
basic mathematical facts that lead to models’ ability
to imitate one another. To determine the extent to
which our models were empirically separable using our
analytical methods, we conducted a recovery analysis.
Each participant had five sets of fit model parameters
from the primary analyses reported above. From those
each of those model’s parameters, we simulated new
data sets to test the ability of the true generative model
to fit the simulated data better than the other models.

In these analyses, the primary measure of interest
was the extent to which the two three-parameter models
were distinct from one another. This has a theoretical
basis, as the family-level distinction has the deepest

implications for the field of perceptual learning, but
it also has a practical basis. Participants’ parameters
in their four-parameter models, each of which was
nested within a three-parameter model, may not have
provided a learning trajectory that was truly separable
from the simpler three-parameter model. In this case,
the likelihood penalty introduced in the BIC calculation
would lead to the simpler model being chosen even
when the true generative model was more complex.
Because of this, we report here only the ability to
recover the three-parameter power or exponential
models. Full recovery analyses with every combination
of models are reported in the Supplementary Material.

We simulated 40 new data sets from each participant’s
parameters for their dot-motion discrimination and
texture oddball detection three-parameter models. The
texture oddball detection accuracies were simulated
from a Bernoulli distribution with the models’ by-trial
fit probabilities. The dot-motion discrimination
model fit d-primes were first converted to accuracy
probability values by assuming zero bias (i.e., p(hit)
= p(correct rejection)), and by-trial accuracies were
simulated from a Bernoulli distribution with these
probabilities and randomly distributed “same-stimuli”
and “different-stimuli” trials.

Given simulated data from each model, we then fit
both three-parameter models to the data using the
same methods as the primary analyses. One change
was made, namely, that the number of optimization
runs was only 200, or 10% of the primary analyses’
number of optimization runs. This was due to the time
constraints of running a very large number of models;
we believe the reduction in optimization runs would not
appreciably reduce the quality of our estimates.

Across the 40 simulations from the oddball
detection data, the by-participant (across-simulation)
recovery of learning models was not strong (mean
within-participant d-prime = 0.372). In addition,
38.5% of participants had a bias toward the power
model (within these, mean bias = 0.117) while 48.7%
of participants had a bias toward the exponential
model (within these, mean bias = 0.155). In contrast,
by-participant recovery of dot-motion was better
(mean within-participant d-prime = .652); 14% of
participants had a bias toward the power model
(within these, mean bias = 0.065) while 81.4% of
participants had a bias toward the exponential model
(within these, mean bias = .305). In combination,
these analyses indicate that the dot-motion direction
discrimination results are likely to be more robust
than the results of the oddball detection task. In the
oddball texture detection learning, then, the strength
of our inferences is particularly limited by a likely
upper bound on the ability to adjudicate between
models.

The limitations indicated by the model recoverability
results in both tasks demonstrate that, at the level of
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individual learners or small sample sizes, adjudicating
between models may be nearly impossible. This
provides further reason to use large sample sizes such
as ours (relative to much perceptual learning work) to
detect population-level trends in the best-fitting models
to perceptual learning data. See the Supplementary
Material for further recovery analysis results.

Discussion

Here, in two different perceptual learning
experiments, we examined the best-fitting functional
form of learning on a by-trial and by-participant
scale. Overall, functions coming from the exponential
family provided the best trial-level fits to almost all
participants’ learning. In an oddball detection task,
improvements were overwhelmingly best characterized
by a simple three-parameter exponential model
of change. Meanwhile, in a dot-motion direction
discrimination task, improvements in d-prime were
best characterized by a Weibull or a three-parameter
exponential function. Because the three-parameter
exponential function is nested within the Weibull
function (i.e., the latter is an extension of the former
with one extra parameter), both experiments repudiate
the "power law of learning" (Newell & Rosenbloom,
1981) and corroborate evidence for exponential
functions over power functions (Dosher & Lu, 2007).
The dominance of the exponential family was uniform
across levels of task difficulty, thereby precluding the
possibility that difficulty-related variations in learning
may lead to distinct shapes. This thus provides a
unique converging data point on the issue, as previous
research has often utilized adaptive algorithms to
generate stimulus difficulty (i.e., has attempted to
match subjective difficulty across participants, whereas
here we had versions that differed in stimulus strength
constants). The evidence for the exponential family was
independent of whether comparisons were being made
between models fit to only training data or to training
data plus generalization data.

The nested nature of the three-parameter exponential
function within the Weibull function also carries the
implication that all models utilizing the three-parameter
exponential function would be equally well fit by
the Weibull function. That is, the three-parameter
exponential function is a special case of the Weibull
function, and as such, all learning best fit by the
three-parameter exponential function can likewise be
seen as being characterized by a special case of the
Weibull. Model comparisons between these two models
served simply to test whether the extra "start speed"
(i.e., change in hazard rate or “shape”) parameter of
the Weibull function was statistically justified through
a sufficient reduction in model error. The results of

the dot-motion learning experiment demonstrate the
utility of comparing these nested models to assess
the appropriateness of the shape parameter. In other
words, although all learning was best fit by a Weibull
function, some of these Weibull functions could be
reduced to the three-parameter exponential function
without compromising model fit.

Support for an exponential family of change
implicates a mechanistically simple process of learning
in each paradigm. The novelty of the continuous-time
approach to learning thereby corroborated earlier work
in perceptual learning that supported a unitary process
of change underlying learning (Dosher & Lu, 2007),
as compared to averaged or cascading processes (e.g.,
Ahissar & Hochstein, 2004). While oddball detection
learning was best characterized as arising from learning
a constant proportion on each learning event (i.e.,
constant hazard rate), in many participants, dot-motion
direction learning was better characterized by including
a parameter that allowed the hazard rate to either
increase or decrease. The overwhelming majority of
these latter participants displayed an acceleration
in learning (i.e., a sigmoid function). An increasing
hazard rate appears to indicate an interaction between
a simple exponential mechanism of learning and a
second mechanism that prevented immediately constant
learning and thereby slowed down initial learning (e.g.,
a “releasing”mechanism). This mechanistic explanation
remains speculation, however, and the current results
provide the impetus for a more thorough investigation
of the potential dissociations or interactions between
simple learning processes and modulatory mechanisms
that may inhibit the initial learning rate. It may be
possible to identify distinct processes, for example, by
using convergent methods (i.e., higher-dimensional
data). In addition, future work should explore the
experimental conditions and the performance indices
for which initial learning is slowed down in comparison
to conditions under which the hazard rate is constant.

Regardless of the precise mechanistic underpinnings
of the Weibull learning observed here, it stands in
stark contrast to any power-family model. While
power-family models implement a decreasing hazard
rate, the increasing hazard rate allowed by the Weibull
function or any other sigmoid function (and observed
in many participants here) is quite the opposite. The
lack of a decreasing hazard rate also puts the present
results in contrast to a body of work that posits a fast
early phase of perceptual learning that is followed
by a slower phase (e.g., Ahissar & Hochstein, 1997;
Newell et al., 2009). Due to the scarcity of previously
reported by-trial methods in perceptual learning, as well
as a lack of direct comparisons between accelerating
and nonaccelerating functions, we cannot know the
extent to which our results are anomalous. Indeed,
previous work has used comparisons that explicitly
compare functions that allow a constant or decelerating
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hazard rate, or a combination of the two (e.g., using an
APEX function, which itself subsumes a power and an
exponential function; Dosher & Lu, 2007; Heathcote
et al., 2000). Nonetheless, our results uniformly lack
support for a decelerating hazard rate, such as that
which could be instantiated by a power function or a
“fast then slow learning”model.

After comparisons of learning functions, we tested
the possible forms of generalization in each of our
tasks. In both perceptual learning paradigms, there
was evidence for generalization as immediate transfer
(i.e., improved starting performance), while evidence
for generalization via changes in learning rate was
inconsistent. Furthermore, and consistent with previous
research (Ahissar & Hochstein, 1997, 2000; Ball &
Sekuler, 1987; Jeter et al., 2009; Wang et al., 2013),
the degree of observed generalization differed as a
function of task difficulty. Greater generalization
was found in both tasks’ easy conditions relative to
the associated difficult conditions. However, here
it is important to note that because our methods
confounded training difficulty and generalization
difficulty, it is not possible to ascertain whether the
difficulty of the training task (e.g., as argued in
Ahissar & Hochstein, 1997) or the difficulty of the
generalization task (e.g., as argued in Jeter et al., 2009)
is the driving factor. Our approach also uncovered the
fact that the between-subjects difficulty-related effect
was not robust when generalization was calculated
as a relative rather than absolute benefit, indicating
that overall learnability differences between easy and
difficult tasks may determine performance in ways that
may imitate disproportionate benefits of easy-task
training.

To make this last point more concrete using
dot-motion perceptual learning as an example,
cross-participant d-prime increased from start to
asymptote. Although the easy condition’s first
generalization trials improved when compared directly
to their initial performance, the difficult condition’s
generalization was reliably smaller. However, the fact
that the overall amount of learning in the easy condition
was greater than the difficult conditions means that the
definition of generalization itself is not clear a priori.
Although the benefits of the easy condition relative
to the difficult condition were clear when considering
only starting parameters (keeping in mind that the two
curves shared an asymptote), there was no such effect
when considering the overall amount learned in the
different difficulty conditions.

While the results reported here provide uniform
evidence for the exponential family of learning, as
well as show novel support for a function that can
take a sigmoid shape in perceptual improvements, we
do recognize that our inferences are limited by the
relatively short timescale of the training. Two days
and 1,200 trials of training would be substantial in

many domains of learning, but perceptual learning
studies have frequently implemented an order of
magnitude more days and trials (e.g., Ahissar &
Hochstein, 1993; Cochrane et al., 2019; but for shorter
timescales of training, see Fiorentini & Berardi, 1980;
Mednick et al., 2002; Poggio et al., 1992). While the
support for the exponential function indicates that the
timescale may have minimal impact on our results (i.e.,
because of the constant hazard rate, an exponential
function is translation invariant; Heathcote et al.,
2000), future studies of longer-timescale perceptual
learning are warranted by the increases in power and
the possible process-level heterogeneity in longer-term
improvements (Shibata et al., 2014).

In our comparisons of the functional forms of
learning, we necessarily restricted our approach to a
small number of models that were drawn from the
exponential or power families. Many other possible
forms of learning would be possible to test, however.
For instance, previous work has utilized the APEX
function, a combination of power and exponential
functions. The APEX function is very useful for
conducting nested model comparisons (i.e., because it
subsumes the simpler exponential and power functions).
However, our model comparison method did not
require nested models, thereby providing the ability
for us to focus our comparisons on functions that
fell more strictly within one family or the other. Still
other investigations of functional forms in learning
have addressed forms with more mathematical (and
implied process-level) complexity (e.g., sequential
exponential functions; Dosher & Lu, 2007; sequential
power functions; Donner & Hardy, 2015; “phases” of
learning; Tenison & Anderson, 2016). In perceptual
learning, there has not been evidence supporting this
proposition (Dosher & Lu, 2007). Nonetheless, while a
wider variety of functional forms may be reasonable
to investigate in future work, our limited amount of
data per participant has constrained our ability to test
these more complex models. Alternative models could
also include characterizations of learning that do not
impose particular functional forms on trajectories
of performance (e.g., reinforcement learning or other
dynamic models; Law & Gold, 2009; Roy et al., 2021);
however, comparisons with these approaches are
outside the scope of the present work.

Conclusions

The present study involved two perceptual learning
experiments. Continuous-time modeling provided
uniform support for unitary exponential learning
processes, with a possible need to account for a
second process modulating the initial speed of learning
(possibly related to releasing the “brakes” on learning;
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Bavelier et al., 2010). There was no support for
the use of power functions to understand learning
processes, leading to the recommendation to use the
three-parameter exponential function or the more
flexible Weibull function rather than functions from
the power family in order to most appropriately
characterize the changes in processes associated with
within-individual perceptual learning. The extent to
which these two exponential-family approaches should
both be fit, as well as model comparison used to either
justify or reject the extra parameter associated with the
Weibull function, will be constrained by the quantity
and quality of behavioral data. In experiments with
sparse or noisy data, it is likely that the flexibility
of the Weibull function will lead to overfitting. The
evidence in favor of the exponential family across
behavioral paradigms and task difficulties, as well as
when incorporating both initial training and later
generalization, provides an empirical foundation for the
use of this family.

Keywords: perceptual learning, learning function,
continuous-time models
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