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The temporal evolution of surface strain, resulting from a combination of

normal and tangential loading forces on the fingerpad, was calculated from

high-resolution images. A customized robotic device loaded the fingertip

with varying normal force, tangential direction and tangential speed. We

observed strain waves that propagated from the periphery to the centre of

the contact area. Consequently, different regions of the contact area were subject

to varying degrees of compression, stretch and shear. The spatial distribution of

both the strains and the strain energy densities depended on the stimulus direc-

tion. Additionally, the strains varied with the normal force level and were

substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force

levels well within the range of common dexterous manipulation tasks. While

these observations were consistent with some theoretical predictions from con-

tact mechanics, we also observed substantial deviations as expected given the

complex geometry and mechanics of fingertips. Specifically, from in-depth ana-

lyses, we conclude that some of these deviations depend on local fingerprint

patterns. Our data provide useful information for models of tactile afferent

responses and background for the design of novel haptic interfaces.
1. Introduction
How the complex interactions between human skin and external objects are

translated to tactile information remains to a large extent an enigma. It is

clear, however, that these interactions result in specific spatio-temporal patterns

of strain in the skin and subjacent tissues that depend on the mechanical prop-

erties of both the object and the fingertip. The tactile mechanoreceptors

embedded in the fingertips respond to various aspects of these stresses and

strains with action potentials [1–4]. The resulting afferent signals ultimately

allow the brain to extract high-level features of the object (e.g. shape, texture

and weight) in a context-dependent manner, or to trigger-specific actions

(e.g. grip force adjustments). Understanding the biomechanics of both the

skin and subcutaneous tissue is therefore fundamental for our understanding

of the human tactile sensory system.

Several attempts have been made to measure the stresses and strains in the

skin resulting from a given stimulus, and to model skin properties using these

measurements. Most of these studies focused on normal loading of the finger

by points, lines or flat loading surfaces. These studies show that the geometry

of the fingertip has a profound effect on stress distribution and intensity [5].

While reasonable predictions of skin deflection under different indentation profiles

have been obtained with homogeneous elastic models, even higher accuracy has
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resulted from finite-element model simulations (FEM) based on

multi-layered skin [6–9] and models based on incompressible

fluid-filled membranes [10–12]. The pressure distribution

measured under normal indentation showed asymmetric distri-

bution profiles again underlining the importance of the

complex geometry of subcutaneous tissues for its responses to

mechanical loading [13,14]. Furthermore, tangential stresses

occur in the fingertip in response to fully normal (non-tangen-

tial) loads, with amplitudes that depend on surface friction [15].

Measured and modelled deformations have been related to

afferent responses recorded in primate peripheral nerves. The

afferent responses of SA-1 afferents in response to normally

loaded bars and edges could be precisely predicted based on

maximal compressive strain and local strain energy density

[1,2,16,17]. Importantly, however, these models accounted for

static stimuli; aspects of the dynamics might be better predicted

by FA-1 afferents. Given the complex geometry and continuum

mechanics of the fingertip, the stresses and strains that the

different types of mechanoreceptors are subjected to are con-

siderably impacted by their location within the skin.

Interestingly, FEM studies indicate that stresses are concen-

trated at fingerprints and papillae ridges, the very sites where

mechanoreceptors are preferentially located [18,19]. Much less

is known, however, about the skin mechanics under simul-

taneous normal and tangential loading, even though

everyday manipulation tasks (e.g. grip and explorative touch)

nearly always include a tangential loading component

(e.g. object weight, static or sliding frictional forces). The finger-

tip appears to be viscoelastic with respect to tangential stresses

and shows increasing stiffness with increasing strain amplitude

[20–23]. Individual afferents responding to tangential force

stimuli show unique directional sensitivity profiles [24]. Given

the complex structure of the fingertip, FEM analyses of its

biomechanical properties require a large number of free par-

ameters to accurately describe the geometry and the

mechanics with high fidelity (e.g. thickness and elasticity of

the different layers, fingerprint geometry, etc.). It is therefore

very important to fit these models with precise data.

We recently showed that increasing the tangential force

between a surface and the finger (similar to that present

during object lifting) creates partial slips in the contact area

that precede full slip of the object [25,26]. These partial slips

first occur at the periphery of the contact area, and then propa-

gate to the centre of contact. They are associated with

progressively reduced stable contact and are tuned to the direc-

tion of stimulation [27]. These findings, that some parts of the

skin are in stable contact with the surface while other parts

are sliding, necessarily imply that surface strains take place

within the contact area. In this study, we measure these strains

by imaging the contact between the fingerpad and a smooth

transparent glass surface while applying various normal

and tangential loads that induce sliding in four directions (prox-

imal, distal, radial and ulnar). Green–Lagrange strains were

then derived with high spatio-temporal resolution from the

displacement field obtained using computer vision techniques.

We observe highly patterned and reproducible strain

waves coming from the periphery of the contact area and pro-

pagating towards its centre. These observations contrast with

theoretical predictions based on contact mechanics theory.

Our results provide information for the design of more precise

fingertip models and novel haptic interfaces. Furthermore,

they will inform peripheral afferent models that predict

responses to tangential loading.
2. Methods
2.1. Participants and data collection
Eight healthy volunteers participated in the study (eight males,

aged 23–29) after giving informed consent. The local ethics

committee approved the study.

A detailed description of the apparatus has been published

previously [27]. In short, a transparent, horizontal glass plate

was attached to two force/torque transducers (ATI nano 43, acqui-

sition rate 1 kHz) and mounted horizontally on the end effector of

an industrial robot (four-axis SCARA Denso HS-4535G). The sub-

ject’s right index finger was placed in a support that ensured a

precise guiding of the nail position and a constant angle between

the long axis of the distal phalanx and the horizontal glass plate

(approx. 208; figure 1a). The normal force (W ) applied to the

fingertip was servo-controlled, whereas the tangential force (F )

developed as a consequence of the controlled movements of the

robot’s end effector in the horizontal plane.

Images of the fingerpad were recorded through the glass

plate by a camera (Mikrotron MC1362, resolution 1280 � 1024

pixels, up to 200 frames per seconds, fps) that was placed

below the plate and had a clear view of its contact with the

finger. A high contrast between fingerprint ridges and valleys

was achieved by an optical arrangement which took advantage

of the total internal reflection principle (figure 2b; [27,28]). The

optics were adjusted to obtain a constant resolution of

52 pixels mm21. A reference pattern printed on the glass plate

was visible on each frame (bottom of figure 2b).

For each trial, the glass plate was first loaded on the fingertip at a

given normal force, W. This load was kept as constant as possible

during thewhole trial through a closed-loop force controller (W stan-

dard deviation ranged 5.8–8.9% across subjects; figure 1c; [27]). The

glass plate started to move tangentially 2 s after finger contact to

minimize occlusion phenomena [29]. The plate moved in a given

direction with a constant speed (except for an initial transient lasting

less than 150 ms), for a total displacement of 14 mm. This distance

ensured that the contact zone went from a fully stuck state to a

fully developed slip state [27]. Following this displacement, the

glass plate was then moved away from the fingertip. The frame

rate was adjusted with the tangential speed to ensure 10 frames

per millimetre (i.e. 50–200 fps for speeds 5–20 mm s21).

The experimental protocol was repeated five times in four

directions (distal, proximal, radial and ulnar; figure 1b) and

with varying normal force and speed (table inset, figure 3). In

short, for each participant, 140 trials were performed (five

repetitions � four directions � seven force per speed conditions),

with experimental conditions applied in a randomized order

within blocks of the same force condition.

2.2. Data analyses
2.2.1. Force and position data
Force data were low-pass filtered with a fourth-order digital

Butterworth filter with a cut-off frequency of 80 Hz and zero

phase lag (the limiting factor was the image acquisition rate,

i.e. 50 frames s21). The glass plate displacement was determi-

ned from the reference frame displacement on the images (see

‘Displacement field’). The coefficient of dynamic friction, mdyn,

(equation (2.1)) was computed for each trial based on the ratio

of the tangential force, F, to the normal force, W, once both had

reached a plateau during total slippage.

mdyn ¼
F
W
: ð2:1Þ

2.2.2. Contact area
The apparent contact area (referred to simply as ‘contact area’

below) was obtained for each frame as previously described [27].
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Figure 1. Experimental apparatus, procedures and data analysis. (a) Experimental apparatus. The subject’s hand rested in the hand support, with the right index
finger fixed. The horizontal glass plate moved by means of a robot actuator. The plate loaded on the finger (servoed normal force) and moved sufficiently far such
that the finger was completely sliding in one of four directions with position control. (b) Stimulus directions: directions correspond to the movement of the glass
plate relative to the fixed finger. ‘Radial’ is towards the thumb side of the hand and ‘proximal’ is towards the wrist. (c) Forces, position and speed profiles during one
example trial (subject S3). Traces are aligned to movement onset; period with partial slips and full sliding shadowed in grey.
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Briefly, the images were bandpass filtered in the spatial range of

the fingerprint ridges spacing before applying mathematical mor-

phology operations (greyscale closing and then opening) to merge

together ridges and valleys. A threshold level was then computed

using Otsu’s method [30] to extract the contour of the contact zone

from the resulting greyscale images. The convex hull enclosing the

contact area was evaluated and then sampled with 50 equally

spaced coordinate points.

2.2.3. Displacement field
The displacement field was obtained using a computer vision

technique called optical flow as described in [27]. A maximum

number of features equally spaced by nine pixels were sampled

in the initial contact area (figure 2a, red dots). The algorithm of

Shi & Tomasi [31] was then used to select optimal features to

track. These features were tracked from frame to frame with sub-

pixel accuracy by applying Lucas & Kanade’s algorithm [32,33]

implemented with pyramidal refinement using 101 � 101 pixels

subwindows in Matlab (Computer Vision Toolbox). Some fea-

tures were removed or added during tracking depending on

the contact area evolution, to obtain the x- and y-coordinates of

up to 3000 features. To compute the median displacement

vector of the contact plate, the tangential displacement of the

reference pattern printed on the glass was evaluated using the

same procedure as described above.

2.2.4. Strain derivation
Green–Lagrange strains were estimated from the displacement

gradient in the contact area by equation (2.2)

1xx ¼
@u
@x
þ 0:5

@u
@x

� �2

þ @v
@x

� �2
" #

, ð2:2aÞ

1yy ¼
@v
@y
þ 0:5

@u
@y

� �2

þ @v
@y

� �2
" #

ð2:2bÞ
and 1xy ¼ 0:5
@u
@y
þ @v
@x

� �
þ 0:5

@u
@x
@u
@y
þ @v
@x
@v
@y

� �
: ð2:2cÞ

where 1xx and 1yy are the axial strain components aligned to the x
and y axes, respectively, 1xy is the shear strain, and u and v are the

displacements along x and y axes, respectively (figure 2c).

A Delaunay triangulation of the feature points sampled in the

first frame was computed (figure 2a). For each triangle, displace-

ment field gradients were derived (detailed description in

electronic supplementary material) and attributed to the centre

of the triangle. These gradients were used in equation (2.2) to com-

pute the three strain rate components. We defined strain rate as the

strain resulting from the displacement between two consecutive

frames in the image sequence. The strain rates were estimated

independently for each triangle and summed over time to

obtain the total strain as a function of time, which is the actual

deformation of the finger at a given instant relative to its initial

state. In addition, the area of each triangle was computed.
2.2.5. Principal strains
Principal strains were obtained by eigenvalue decomposition of

the strain matrix 1 (equation (2.3)). Because the strain matrix is

symmetric, the eigenvectors y1 ¼ (yx1, yy1) and y2 ¼ (yx2, yy2)

are orthogonal, i.e. y1
.y2 ¼ 0. The eigenvalues e1 and e2 are the

principal strain, and thus correspond to eigenvectors that are per-

pendicular in the xy plane. The principal strains e1 and e2 also

correspond to the maximal tensile and compressive strains. The

principal strain decomposition is thus equivalent to a rotation

of the reference frame, so that the shear strain is cancelled and

the axial strains take their maximal and minimal value

1 ¼ 1xx 1xy
1xy 1yy

� �
¼ vx1 vx2

vy1 vy2

� �
� e1 0

0 e2

� �
� vx1 vx1

vy1 vy2

� ��1

: ð2:3Þ
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2.2.6. Strain energy
A given stimulus applied to the fingertip transfers a certain

amount of mechanical energy to the skin. This energy is trans-

formed into deformations of the fingertip and into heat. The

upper bound of the total energy transferred to the fingertip is

the external work applied to the fingertip. An estimate of the

total external work applied by the stimulus to the fingerpad

(Uext) was evaluated by computing the integral of the tangential

force along the displacement of the stimulus, from 0 to the dis-

placement value reached when the tangential force was 90% of

its plateau sliding value. This instant occurred just before the

‘steady-state slip’ [27].

By assuming an isotropic elastic material, it was also possible

to compute the deformation energy specifically related to the

observed surface strain. The strain energy density function, ud

(expressed in J m23), can be written as a function of the strain

components (1xx, 1yy and 1xy; see equation (2.4)). We considered

the cases of plane strain. The strain energy density was evaluated

for each triangle in each frame, based on each total strain com-

ponent. Young’s modulus and Poisson’s ratio values were
chosen in the range of in vivo measurements, i.e. E ¼ 1 MPa

and n ¼ 0.4 [5,22].

ud ¼
Eð1� nÞ

2ð1þ nÞð1� 2nÞ ð1
2
xx þ 12

yyÞ þ
En

ð1þ nÞð1� 2vÞ 1xx1yy

þ E
ð1þ nÞ 1

2
xy: ð2:4Þ

The total strain energy, U (mJ), was obtained by integrating the

strain energy density over a given volume. As we did not

measure the strains in the depth direction, the simplest estimate

was to assume the surface strains to be uniform for a given depth

(and the strains components related to the z-axis to be zero).

Therefore, we integrated the strain energy U over the whole con-

tact area and a depth corresponding to about half the distance

between the bone and the stimulus during loading, i.e. 2 mm

([24]; equation (2.5)).

U ¼
ð

ud dV, ð2:5aÞ

≃ 0:002

ð
ud dS, ð2:5bÞ

� 0:002
X

T

ui
d � Ai: ð2:5cÞ

Finally, we computed the ratio of the total strain energy to the

total external work (ratio ¼ U/Uext), which is an estimate of

the proportion of the stimulus energy actually deforming the

skin at its contact surface. Again, this ratio was evaluated

when the tangential force reached 90% of its plateau sliding

value. Equations (2.4) and (2.5) show that the value of the

strain energy U is directly proportional to both the Young mod-

ulus and the depth of integration. Those values were fixed in this

study; future work might adjust these values to specifically

match the fingers of different subjects.

2.2.7. Strain normalization across subjects
Strains were experimentally obtained using unstructured meshes

that differed across subjects. As the strain patterns were qualitat-

ively and quantitatively similar across subjects, we obtained an

average strain pattern, normalized across all subjects. We used a
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least-square procedure [34] to fit an ellipse on the 50 coordinate

points of the contour of the contact area in the first frame of each

trial. The geometric transformation (translation, scaling and

rotation) was computed to fit this ellipse to a standard normalized

ellipse and then applied to each triangle centre coordinate over the

whole image sequence. Each strain component was then inter-

polated from the transformed mesh to a rectangular mesh defined

on the standard ellipse. We computed the average value of each

strain component across the five repetitions for each condition and

for each individual subject (see electronic supplementary material,

figure S1A). Then, the average values across all subjects were

computed. Unless otherwise stated, the strain maps presented in

this paper result from this averaging procedure.

2.2.8. Fingerprint directional gradient field
The fingerprint directional gradient field (i.e. local fingerprint

orientation) was evaluated based on the algorithm described in

[35], for the first and the last image in each sequence. Briefly, gra-

dients in x- and y-directions were obtained for each pixel and

averaged over 32 � 32 pixels subwindows.

2.2.9. Theoretical contact model
We compared our empirical data with that predicted by a

Hertzian contact model between the finger and the glass, with

the addition of friction as obtained by Cattaneo [36] and Mindlin

[37], allowing partial slips. Even if Hertz contact assumptions are

not perfectly met, this theory has been shown to predict contact

properties (e.g. contact area) with good accuracy under normal

and tangential loads [27]. The finger was modelled as an isotropic

elastic sphere, and the glass plate was modelled as a rigid flat sur-

face. Therefore, the contact area is a circle in this model. Using the

Boussinesq–Cerruti equation, and based on the traction profiles

obtained by [36] and [37] for partial slip of the contact area, we

obtained the displacement field (u,v) across the contact area for a

given tangential force (more details can be found in electronic sup-

plementary material). This model is limited to the partial slip

phase and does not predict strains during the full slip phase.

The different parameters needed to compute the displacement

field were extracted from data in this study (coefficient of friction,

contact radius) or obtained from the literature (Young’s modulus

and Poisson’s ratio; [5,22]). Displacement gradients were obtained

numerically, and the strains were derived using equation (2.2).

The strain energy density was estimated using equation (2.4).

2.3. Statistical analyses
All image processing, strain calculations and modelling were

performed with Matlab (The MathWorks, Inc., USA). Some stat-

istical analyses were computed with R (www.r-project.org). The

influence of direction, force and velocity on the measured vari-

ables was analysed using repeated-measures ANOVAs. The

five repetitions were averaged for every condition. Given the

unbalanced design of the experiment (table inset, figure 3), sep-

arate ANOVAs were performed with direction � force and

direction � velocity as factors. Sphericity was checked by

Mauchly’s test and, if needed, corrected with the Greenhouse–

Geisser or Huynh–Feldt coefficients depending on epsilon. For

directional data (figures 6 and 7), circular statistics were applied

after doubling the angles and applying modulo 3608 to obtain

angles ranging 0–3608.
3. Results
Typical profiles for force, speed and stick ratio (SR; ratio of the

stuck area to the total contact area) are presented in figure 1c.

We defined a transient period (shaded in grey) that starts just
after movement onset and ends when the tangential force

plateaus. Strains were evaluated during this period.

As previously observed [25], the coefficient of friction varied

across subjects but always followed the same trend, decreasing

with the normal force ( p , 0.001; repeated-measures ANOVA;

figure 3) according to a power law (m ¼ aWb with a ¼ 1.63+
0.31 and b ¼ 20.33+0.09; mean+ s.d.). The sliding speed

(but not the direction) influenced the coefficient of friction

( p ¼ 0.002; superimposed coloured traces in figure 3, top

panels). Friction increased with speed and reached a plateau

level at approximately 10 mm s21 with no significant differ-

ences between 10 and 20 mm s21. The initial contact area

varied with the normal force ( p , 0.001).

3.1. Empirical strain patterns
Figure 4a presents normalized experimental data when the

glass plate was translated in the ulnar direction (speed

5 mm s21, 2 N normal force, data for the other directions

with the same force and speed are shown in figure 4b). The

illustrated measurements extend to the end of the transient

period, when the strain rate had returned to zero and the

fingerpad reached a homogeneous ‘steady-state slip’ [27].

Subject-specific traces are provided in electronic supplementary

material, figure S1A.

A progressive strain wave was observed, propagating from

the periphery to the centre of the contact area with the largest

strain values located at the periphery of the contact. The strain

wave was compressive ahead of the stuck area and tensile

behind it. Depending on the stimulus direction, either the com-

pressive part (ulnar, proximal and radial directions) or the

tensile part (distal direction) was dominant (figure 4). The cen-

tral undeformed zone was shifted distally in the distal and

proximal cases, laterally in the radial case, and medially in

the ulnar case (figure 4). These asymmetries were particularly

apparent with large displacements (t2–t4) and less so at small

displacements (t1). We also observed that skin at the border of

the contact area lost contact with the glass plate in regions of

high compressive strain during proximal translations.

3.2. Principal strains
As explained in Methods, the principal strains that were

computed from eigenvalue decomposition of the strain

matrix represent directions without shear strain, i.e. with

only compressive or tensile strains. Both the final tensile and

compressive strain values depended on direction ( p , 0.001;

figure 5a). Strain amplitude increased with increasing normal

force ( p , 0.001) while speed did not affect the final strains.

Compressive strain was higher than tensile strain in all direc-

tions but distal ( p , 0.001; corrected Welch paired t-test). The

peaks of both tensile and compressive strain rate were affected

by speed ( p , 0.001).

As observed previously, tensile and compressive strain

profiles were symmetric for small deformations (t1), but

asymmetric when plate displacement and fingertip defor-

mation increased. Specifically, for ulnar stimulation, we

observed compressive strain on the right lateral side of the

contact area and tensile strain in the superior central part of

the contact area (figure 5b).

Most of the compressive strains were aligned to the stimu-

lus direction. Indeed, the distribution of compressive strains

peaks along the stimulus direction (aligned vertically in

figure 5c, bottom). On the other hand, most of the tensile

http://www.r-project.org
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strains were observed perpendicular to the stimulus direction

in the radial and ulnar cases (aligned horizontally in

figure 5c, top right). No obvious pattern was observed for

the distal and proximal direction (figure 5c, top left).
3.3. Fingerprint effect
We observed significant torsion of the fingerprint ridges in

the contact area as a consequence of tangential loading

(figure 6). In short, the fingertip ridges tended to rotate, so

that the fingertip’s directional gradient field (orange lines in

figure 6a,b) aligned to the stimulus direction. For instance,

in response to ulnar stimulation, the distal part of the finger-

tip rotated anticlockwise, whereas the lower part rotated

clockwise (figure 6c). Indeed, the differences between finger-

print gradient angle distribution at initial contact (traces in

black) and final slipping state (in colour) were dramatically

dependent on stimulus direction (figure 6d ).

The four initial orientation distributions were the same for

each stimulus direction and specific to a subject’s fingerprint

(superimposed in black in figure 6d for a given subject). The

two-sample Kuiper’s test was used to compare initial and

final fingerprint orientation distributions. Of the 1120 recorded

trials, 1099 showed a statistically significant difference in the

orientation distribution ( p , 0.05, not corrected for local corre-

lations). Of the 21 non-significant pairs (1.9%), 17 were trials at

the lowest normal force (and thus the smallest deformations).

We observed that the histograms shifted and peaked towards

the stimulation direction (coloured traces in figure 6d). This

was verified by comparing the kurtosis of the direction
distribution, which was higher at the final state compared

with the initial state for all directions but distal.
3.4. Strain energy
Figure 7 shows the evolution of the strain energy rate (dU/dt)
over stimulus displacement, as well as the final strain energy

(bar graphs). The cumulated energy increased monotonically

until the end of the trial. The strain energy rate peaked close

to t3 (figure 1c), i.e. the moment of transition to full slip (corre-

lation: r ¼ 0.74). The peak rate and total energy varied with the

stimulus direction and increased with normal force ( p , 0.01

in both cases). Additionally, the strain energy rate peaked

later at higher forces ( p , 0.001). Faster speeds resulted in

increasing strain rate peaks ( p , 0.001) that did not change

the total amount of strain energy accumulated during the

full trial.

The distribution of deformation energy stored in the tis-

sues was markedly different depending on the stimulus

direction (figure 7, bottom row), but also differed across

subjects (electronic supplementary material, figure S1B).

Strain energy (U) was compared with the total external

work performed on the fingertip (Uext). The median of ratio

U/Uext across all subjects was 0.50 (95% confidence interval:

0.36–0.65). Thus, given our assumptions—an elastic model of

the fingertip with E ¼ 1 MPa and v ¼ 0.4, and a uniform displa-

cement along the depth and limited to a layer of 2 mm—about

half of the total external energy was used to mechanically

deform the contact area during the stick to slip transition.
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3.5. Model predictions
Figure 8a shows the simulated evolution of the contact area

strain in response to an ulnar stimulus, from the start of

tangential loading to just before the instant of full slip (t3).

As expected, the model predicted strain waves propagat-

ing from the periphery to the centre, with the largest

component being aligned to the stimulus direction. We

observed qualitative similarities between the data and the

model, most convincingly right after stimulus onset (i.e. for

small strains). Indeed, the initial strain distributions (around

t1) were in qualitative agreement with the data for all com-

ponents. Those similarities did not hold for larger strain

(t22t3, final), where we observed three key differences

between the model and the data. First, at the end of the tran-

sition from stick to slip, the simulation predicted that the

fingertip would be deformed symmetrically across the con-

tact area (excluding the centre), and that the highest strains

would be observed at the contact area periphery. However,

major asymmetries were observed in the experimental

stimulus-aligned strain component, which showed not only

a dominance of either compression or stretch, but also asym-

metries in other components (e.g. comparing the second and

third rows in figures 4a and 8a). Second, the model predicted

the highest strain rates at a distance from the periphery,

whereas the empirical data revealed that the highest strain

rates actually and uniformly occurred at the very periphery

of the fingerprint. Third, the model could not possibly cap-

ture the torsion effect described in the previous section and

attributed to the fingerprint ridges.
4. Discussion
We measured the patterns of strain in fingertip skin as a

smooth glass plate was slipped across its surface. We have

observed how strain waves formed starting at the contact
area periphery and moving towards the area’s centre as less

and less of the skin was in stable contact with the glass.

The strain amplitude and total energy density scaled with

the normal force exerted on the finger up to 5 N. The range of

force that we tested produced strains up to 50%. It was observed

by Wang & Hayward [22] that under local traction, skin behaved

almost linearly until a ‘knee’ value around 40–50% where the

skin became much stiffer, a value that was likely not exceeded

in this study. In addition, we did not observe any specific

influence of tangential speed on the strains, as the strain rates

simply scaled with speed. We concluded that the skin behaves

elastically in the range of tested velocities [23]; fingertip visco-

elasticity is therefore an unlikely explanation for the observed

deviations from the theoretical model.

We also observed that amplitude and shape of the strain

varied across directions, and found that this result could

partly be attributed the fingerprint ridges. Indeed, local tor-

sions were observed during traction, which tended to set the

fingerprint perpendicular to the stimulus direction. The finger-

prints play an important role in the mechanical properties of

the fingertip skin. As observed by Wang & Hayward [22],

the skin is locally stiffer along the fingerprints than across

them. Take together, theirs and our observations imply that

fingerprints shape how the finger is deformed during tangen-

tial traction. The role played by human fingerprints is not fully

understood yet. For instance, it has been proposed that they

increase friction and improve tactile discrimination capabili-

ties. Fingerprints could shape or filter the vibrations elicited

in the skin when scanning rough textures in a way that

helps the nervous system to process them [38–40].

We quantified the proportion of mechanical energy that

contributed to the observed strains to 50% (on average).

This approximation should be taken with caution as it is

directly dependent on two parameters taken from the

literature (i.e. Young’s modulus of 1 MPa and uniform defor-

mation across 2 mm depth). Further investigation is needed

to quantify how these parameters vary across subjects but



rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20150874

10
also within subject trials (for instance as a function of the

moisture level). Nevertheless, this study provides a reference

value that can easily be adapted to different parameters and,

accordingly, different finger properties. This study also

demonstrates that the measured surface strains have a signifi-

cant contribution to the overall deformation of the contact

area that may be encoded by local tactile mechanoreceptors.

Several previous studies showed that responses of type I

afferents (SA-1 and FA-1) were closely related to strains

within finger [1,2,16,17]. Therefore, it seems obvious that

skin afferents will respond to the strain patterns documented

in this study; as the partial slip increases, so will strain

spread, intensity and energy. The afferent recruitment and

firing rate should also increase, and the neural population

response might thus provide information about the slip

state of the finger.

To fully characterize the complete deformation of the

skin, skin models must add components perpendicular to

the stimulus surface. These components should include a

compressive component perpendicular to the surface, global

shearing of the fingerpad relative to fixed tissues (nail

or bone), and surface strain outside the contact area. These

components could contribute significantly to the total defor-

mation energy, yet are much more complex to measure.

Deformations also take place outside the contact area,

particularly near the contact area border. These deformations

invoke direction-selective responses in mechanoreceptors

across the whole fingerpad, and thus convey relevant infor-

mation about stimulus direction [24]. The extent to which

remote tactile receptors could convey information about

localized, transient finger-object slips remains to be demon-

strated. Finally, this experiment was conducted with a flat

glass surface, rather than a ‘natural’ surface like wood,

suede or silk. Everyday ‘natural’ materials typically show

larger values for static friction than dynamic friction, which

is not the case for glass [27]. In these cases, Terekhov &

Hayward [41] proposed that there exists a minimal adhesion

surface area that suddenly slips once a tangential force

threshold in reached. Nevertheless, even with natural sur-

faces, strains should appear at the border of the contact

before overt slips occur, as presently observed.

An elastic model roughly predicted the compression and

stretch region. However, it failed to explain the exact direc-

tion-dependent patterns of deformation observed. While the

choice of elastic properties could be justified, the substantial

deviations observed are most likely explained by the devi-

ation from two assumptions of the model: (i) homogeneity

and isotropy (as shown by the specific effect of the finger-

prints) and (ii) spherical geometry. First, the specific local

geometry, the layout of the skin layers and underlying tissues

and the presence phalange bone most likely affects the

observed strain patterns. Second, the finger is clearly not

spherical. In short, while Hertzian contact theory and linear
elasticity qualitatively explain first-order phenomena, they

fail to explain the complex strain patterns observed in

our data.

The two low-threshold, fast-conducting afferents most clo-

sely linked to the detection of local frictional slips in humans

have small receptive fields and are called type FA-1 and

SA-1, i.e. fast and slowly adapting afferents, respectively [42].

FA-1 afferents comprise about 50% of all from human finger-

tips, whereas SA-1 constitute about 25% [43]. They both

respond promptly to slips in or close to their receptive fields

(i.e. to ‘localized slips’), whereas type SA-1 afferents in addition

encode local static strain patterns. Type SA-1 responds poorly

to vibratory frequencies above 10 Hz, whereas type FA-1 is

most sensitive to vibrations with frequencies between 5 and

50 Hz, i.e. close to the upper range of frequencies captured

by our video recordings (50 Hz). In contrast, Pacinian corpus-

cles (or type FA-2) that comprise less than 10% of the

afferents from the human fingertip show their highest sensi-

tivity to 200–300 Hz vibrations, i.e. events far beyond what

we have captured in this study. However, experimental evi-

dence and their locations in the tissues suggest that type FAII

is primarily important for encoding global mechanical transi-

ents. It thus seems reasonable to claim that we in this study

have captured events of direct relevance for the large majority

of the low-threshold afferents in the human fingertip involved

in encoding localized slip.
4.1. Perspectives
In addition to motivating further research on the neurophy-

siological encoding of mechanical states and events in the

finger, this work has implications for the design of haptic

interfaces and tactile displays. Indeed, tactile interfaces can

produce tangential skin traction [44]. Given our results, it

seems possible that a pattern of traction such that one side

of the finger is compressed, and the other side is stretched

may produce the sensation of a tangential force component

or even a slip in the absence of actual tangential force.
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