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Abstract

Controlling for too many potential confounders can lead to or aggravate problems of

data sparsity or multicollinearity, particularly when the number of covariates is large in

relation to the study size. As a result, methods to reduce the number of modelled covari-

ates are often deployed. We review several traditional modelling strategies, including

stepwise regression and the ‘change-in-estimate’ (CIE) approach to deciding which

potential confounders to include in an outcome-regression model for estimating effects

of a targeted exposure. We discuss their shortcomings, and then provide some basic al-

ternatives and refinements that do not require special macros or programming.

Throughout, we assume the main goal is to derive the most accurate effect estimates

obtainable from the data and commercial software. Allowing that most users must stay

within standard software packages, this goal can be roughly approximated using basic

methods to assess, and thereby minimize, mean squared error (MSE).

Key Messages

• The main goal of a statistical analysis of effects should be the production of the most accurate (valid and precise) ef-

fect estimates obtainable from the data and available software.

• This goal is quite different from that of variable selection, which is to obtain a model that predicts observed outcomes

well with the minimal number of variables; this prediction goal is only indirectly related to the goal of change-in-esti-

mate approaches, which is to obtain a model that controls most or all confounding with a minimal number of

variables.

• We illustrate some basic alternative modelling strategies that focus more closely on accurate effect estimation as

measured by mean squared error (MSE) and which can be implemented by practitioners with limited programming

and consulting resources.
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Introduction

We have recently reviewed traditional approaches to con-

founder selection for outcome (risk) and treatment (propen-

sity) models, including significance-testing and ‘change-in-

estimate’ (CIE) approaches.1 We argued that the main goal

of a statistical analysis of effects should be the production of

the most accurate (valid and precise) effect estimates obtain-

able from the data and available software. Allowing that

most users must stay within standard software packages,

this goal can be roughly approximated using basic methods

to minimize estimated mean squared error (MSE). We here

provide an illustrated overview of this approach.

Scope, aims and assumptions

As with our initial review,1 our coverage is not intended for

highly skilled practitioners; rather, we target teachers, stu-

dents and working epidemiologists who would like to do

better with data analysis, but who lack resources such as R

programming skills or a bona fide modelling expert commit-

ted to their project. Throughout, we assume that we are

applying a conventional risk or rate regression model (e.g.

logistic, Cox or Poisson regression) to estimate the effects of

an exposure variable X on the distribution of a disease vari-

able Y while controlling for other variables, and that the

outcome is uncommon enough so that distinctions among

risk, rate and odds ratios can be ignored. The other variables

include forced variables, such as age and sex, which we may

always want to control, and may also include unforced vari-

ables about which we are unsure whether to control.

We also assume that data checking, description and

summarization have been done carefully.2 Finally, we as-

sume that all quantitative variables have been: re-centreed

to ensure that zero is a meaningful reference value present

in the data; and rescaled so that their units are meaningful

differences within the range of the data;3 and that univari-

ate distributions and background (contextual) information

have been used to select categories or an appropriately

flexible form (e.g. splines) for detailed modelling.3

Elsewhere we have discussed the issues involved in sim-

ply adjusting for all measured potential confounders.1 This

approach can be valid when the number of covariates is

not too large in relation to the study size and the included

covariates are not highly predictive of exposure.

Nonetheless, controlling too many variables can lead to or

aggravate problems arising from data sparsity or from high

multiple correlation of exposure with the controlled con-

founders (which we term multicollinearity), in which case

one may seek to reduce the number of modelled covariates.

There are of course variables for which control may be

inappropriate based on preliminary causal considerations.

These include intermediates (variables on the causal path-

way between exposure and diseases) and their descend-

ants4 and any other variable influenced by the exposure or

outcome.5–7 These also include variables that are not part

of minimal sufficient adjustment sets, whose control may

increase bias.4–11 We assume that these variables have

been identified and eliminated e.g. using causal dia-

grams4,6,8 to display contextual theory,12 leaving us with a

set of potential adjustment covariates (often called ‘poten-

tial confounders’), including those variables that we are

reasonably confident would reduce bias if controlled and

our study size were unlimited. We focus only on basic se-

lection from these variables, leaving aside many difficult

issues about model specification and diagnostics,3,13–19

time-varying exposures and confounders, interactions and

mediation.20–23

Multicollinearity and mean squared error:
modified CIE approaches

One issue that is not explicitly considered or discussed in

most epidemiological strategies is that of multicollinearity

of covariates with exposure, i.e. when exposure is nearly a

linear combination of other variables in the model. This

problem becomes most obvious in propensity-score ana-

lyses when the exposure is so well predicted that there is

little overlap in the exposed and unexposed scores. With

multicollinearity, exposure effect estimates become un-

stable, as reflected by large standard errors.

To combine bias and variance considerations when

dealing with genuine confounders, consider estimation of

an exposure effect measure represented by a single coeffi-

cient b, such as a rate difference or log risk ratio. The bias

B in an estimator of b is the difference between the ex-

pected value (mean) l of the estimator and the ‘true’ popu-

lation value b, so B¼ l – b. The standard error (SE) of the

estimator is just its standard deviation around that mean l;

SE2 is thus the estimator’s variance. The mean squared

error (MSE) of the estimator of b combines these proper-

ties via the equation MSE ¼ B2 þ SE2.24–27 Reducing mul-

ticollinearity by dropping variables can decrease the

variance (SE2) component of the MSE, but may also in-

crease the bias B in the estimator of b if the dropped vari-

ables are indeed necessary to adjust for, given the retained

variables. Thus we seek ways of reducing the SE of the esti-

mator (e.g. by removing a source of multicollinearity)

without seriously increasing its bias B, so that the MSE is

reduced.24,25,27

Several formal methods seek to minimize MSE in effect

estimation with uncertain confounders, but require special

programming.19,28,29 We will describe a more crude ap-

proach that extends ordinary CIE approaches1 to consider
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estimated MSE minimization using ordinary software out-

puts. Suppose we selectively delete confounders from a full

model and see what happens to the exposure coefficient es-

timate and its standard error. Assuming the full-model esti-

mate is unbiased, we can then estimate the bias Breduced

from the deletion by the difference between the reduced-

model estimate b̂reduced and full-model estimate b̂full. This

step leads to the following equations for estimating the

change in MSE (DMSE) from reducing the model by delet-

ing the confounder:

DMSE ¼ MSEreduced– MSEfull

¼ Breduced
2 þ SEreduced

2– SEfull
2

¼ ðb̂reduced–b̂fullÞ2– SEfull
2– SEreduced

2
� �

¼ DBð Þ2– D SE2
� �

where (DB)2 estimates the squared-bias increase from the

deletion and D(SE2) estimates the variance decrease from

the deletion. A positive difference, i.e. (DB)2 > D(SE2), in-

dicates that the deletion increased the MSE; a negative dif-

ference indicates that the deletion reduced the MSE. We

say ‘indicates’ because, of course, we have only rough esti-

mates of B, SE and MSE, and b̂full, which will be approxi-

mately unbiased only when the model, the set of measured

confounders and the sample size are all sufficient for ap-

proximate validity. This approach is illustrated in Box 1,

with an example involving two correlated variables, so-

dium and potassium intake.

Box 1

We consider an example from a study of sodium in-

take in infancy (age 4 months) and blood pressure at 7

years.30 The analysis involved adjusting for a relatively

large number of potential confounders (see Table 1). A

potentially important confounder was potassium intake

at the same age, which was strongly correlated with

sodium intake (r ¼ 0.81). This was reflected in an in-

crease in the standard error for the sodium coefficient

when potassium was also included in the model.30

The authors therefore note that ‘due to high sodium-

potassium correlations, effect of sodium independent

of potassium could not be estimated with reasonable

precision’, and they therefore did not control for potas-

sium in the analyses.

We did RMSE analyses (Table 1), which showed that

although there was an increase in the SE of the so-

dium coefficient when potassium is included in the

model (compare model 1 with model 2a), the reduc-

tion in SE from deleting potassium from the model is

offset by the increase in bias (sodium RMSE ¼ 0.294

with potassium excluded vs 0.290 with potassium

included). Thus, controlling for potassium appears to

be no worse in accuracy, in addition to having smaller

approximate bias.

Next, consider potassium as the main exposure: we

obtain a lower RMSE (0.095) for the potassium coeffi-

cient when including sodium compared with excluding

sodium (0.130); thus controlling for sodium appears to

be preferable.

As with CIE, the exposure-coefficient change resulting

from covariate deletion can be assessed by examining the

estimated change directly, and also with a collapsibility

test, i.e. a test of the hypothesis that the deletion does not

change the exposure coefficients.31–33 One caution to these

approaches is that an accurate assessment of confounding

may require examining changes from moving groups of

variables. Regardless of the number of covariates being

deleted, however, if there is one exposure term X, then a

one degree of freedom chi-squared statistic for this hypoth-

esis is vc
2¼ (DB)2/D(SE2).33 Deleting a variable when

DMSE > 0 is equivalent to deleting the variable when vc
2

< 1, which corresponds to P > 0.32 for collapsibility.

Appendix 1 (available as Supplementary data at IJE on-

line) gives further details, describes a generalization of this

test to exposures represented by multiple terms and sug-

gests avenues for improvement.

To illustrate the general algorithms, denote by

W1,. . .,WJ those variables (such as age and sex) that we

want forced into all our models along with exposure X be-

cause they are expected to be important confounders or

modifiers of the exposure effect measure, or because they

are known strong risk factors that everyone wants to see in

adjustment; this list could include age splines, sex and eth-

nicity indicators etc. Our chief concern will be with the re-

maining variables U1,. . .,UH, whose importance for

adjustment is highly uncertain.

Some hypothetical modelling results are shown in

Table 2. We suppose result 1 is from a full model for the dis-

ease rate with exposure, the forced variables and all poten-

tial confounders. Results 2a–d then illustrate the four

mutually exclusive possible outcomes of comparing a full

(maximal) model including the potential confounders

(forced and unforced variables) with a minimal model

including only the main exposure and the forced variables.

Result 2a suggests little or no confounding or multicolli-

nearity problems, since there is little difference between the

basic and full models; we might therefore prefer the simpli-

city of reporting estimates from the minimal model.

In contrast, result 2b suggests there is confounding by the
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unforced variables, as seen by contrasting the exposure rate

ratios from model 1 and model 2b, indicating that it is ne-

cessary to control at least some of the unforced variables.

Results 2c and 2d involve large multicollinearity, as

indicated by the difference (0.14 compared with 0.24) in

the standard error for the main exposure coefficient. The

more favourable situation is when the factors causing mul-

ticollinearity are very weak confounders, so they can be

deleted from the model without increasing the MSE of the

exposure-effect estimate. This situation is indicated when

deleting these factors leaves the exposure-effect estimate

virtually unchanged, but greatly reduces its standard error

(as in result 2c), suggesting that the minimal model pro-

vides more accurate estimates of the exposure effect (i.e. it

has a smaller MSE). Again, we caution that this smaller

standard error does not account for the preliminary testing

and is thus too small by an unknown amount.

It is more difficult to proceed when multicollinearity

arises from a strong confounder (result 2d), since the in-

crease in precision due to deleting such a confounder may

be more than offset by an increase in confounding.26 We

thus must consider the net impact of reducing the SE of the

exposure-effect estimate while increasing its bias, and we

do so by directly comparing square roots of estimated MSE

(RMSE); we use the square roots to put the results back on

the scale of the effects and biases.

In result 2d, the estimated RMSE from the minimal

model is substantially larger (0.43) than from the full

model (0.24), because the minimal model involves a large

increase in confounding and a relatively smaller decrease

in multicollinearity. The task is then to identify a com-

promise model (including some but not all the variables in

question) in which multicollinearity is reduced, but there is

negligible increase in confounding. This could occur, for

example, if the variables most responsible for confounding

were distinct from the variables most responsible for multi-

collinearity. Candidate variables can be assessed by drop-

ping each variable in turn from the full model. Of course,

this process may fail to identify any acceptable model re-

duction, in which case the options are to stay with the full

model or else turn to more sophisticated methods such as

penalized estimation or hierarchical (multilevel or mixed)

models to improve accuracy.13,34–37

Table 1 gives effect estimates without and with adjust-

ment for the Uh, which provides a basis for discussing the

plausibility of residual confounding. For example, if ad-

justment using imperfectly measured Uh removes more

than one-half of the excess rate associated with a particu-

lar main exposure, then it is reasonable to speculate that

adjustment with better Uh information would have

removed most of the excess rate. Thus it can be worth-

while to present estimates from different degrees of

adjustment.

Based on the above considerations, Box 2 outlines one

backward-deletion strategy for screening out potential con-

founders. This strategy is intended as a set of options,

Table 2. Hypothetical results from rate regressions in which a covariate is or is not a confounder or a source of multicollinearity

Model Model variables Exposure

coefficient

estimate

Rate ratio

estimate

SE for

coeff.

95% CL Coefficient

bias estimate*

Indicates

bias?

Indicates

strongly

collinear?

Root MSE

estimate*

Collapsibility

v2 and P-value33

1 X,W1. . .WJ, U1. . .UH 0.693 2.00 0.24 1.25,3.20 Referent 0.24

Some mutually exclusive alternative possibilities under model 2 (minimal model in which all unforced variables U1. . .UH are dropped)

2a X,W1. . .WJ 0.693 2.00 0.24 1.25, 3.20 0 No No 0.24 0, P ¼ 1

2b X,W1. . .WJ 1.099 3.00 0.20 2.03, 4.44 0.405 Yes No 0.45 9.34, P ¼ 0.002

2c X,W1. . .WJ 0.693 2.00 0.14 1.52, 2.63 0 No Yes 0.14 0, P ¼ 1

2d X,W1. . .WJ 1.099 3.00 0.14 2.28, 3.95 0.405 Yes Yes 0.43 4.03, P ¼ 0.04

*Taking model 1 as the referent (‘gold standard’).

Table 1. Associations of sodium and potassium intake at age 4 months with blood pressure (BP) at age 7 years29

Model Exposure

variables*

Coefficient

estimate

SE for coefficient Coefficient bias

estimate

Indicates

bias

Indicates large

collinear

Root MSE

estimate*

1 Sodium 0.518 0.290 Referent 0.290

Potassium 0.099 0.095 Referent 0.095

2a Sodium 0.708 0.225 0.190 Yes Yes 0.294

2b Potassium 0.206 0.074 0.107 Yes Yes 0.130

*All analyses are adjusted for energy intake at 4 or 8 months, age at BP measurement, sex, socioeconomic position (maternal and paternal education), family

social class, maternal age at childbirth, parity, birthweight, gestational age, breastfeeding, smoking during pregnancy, sodium intake at 7 years.
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rather than a prescription; it would be applicable in set-

tings in which a full model can be fit without problems,

there is not an inordinate number of potential confounders

to consider and there is no clear and strong heterogeneity.

One implementation is as follows:

B1) Fit the full model, with no exposure-covariate prod-

ucts. This model provides an average regression

across the included covariates, even if heterogeneity

is present.38–40

B2) Enter the following reduction loop, starting with the

full model as the ‘current model’:

a) For each candidate variable that remains in the current

model, re-run the model without its terms (the Uh that

represent it) and compute the resulting DMSE relative

to the current model from dropping those terms; again,

DMSE ¼ ðb̂reduced–b̂currentÞ2– SEcurrent
2– SEreduced

2
� �

b) If any candidate in the model has DMSE < 0 (indicating

its deletion reduces MSE), drop the one with the small-

est (most negative) DMSE and go to step (a) if there is

any candidate left in the model. Otherwise (if there is

no candidate Uh left in the model, or none left have

DMSE < 0), stop and use the current model.

We can also derive a parallel forward-selection strategy

starting with the basic model when there are more poten-

tial confounders to consider than can reasonably fit at once

(e.g. when using too many of them results in sparse-data

bias, thus spuriously inflating (DB)2):

F1) Fit the basic model, with no exposure-covariate

products.

F2) Enter the following expansion loop, starting with the

basic model as the ‘current model’:

a) For each candidate variable that is not in the current

model, re-run the model expanded with its terms Uh

and compute the DMSE from adding those terms.

b) If any candidate Uh not in the model has DMSE > 0

(indicating its addition reduces MSE), enter the one

with the largest DMSE and go to step (a) if any

candidate remains left out. Otherwise (if there are no

more unselected candidates, or if none left out have

DMSE > 0), stop and use the current model.

Both the above approaches can be viewed as a modifica-

tion of conventional testing strategies in one major way:

the test of the confounder coefficient is replaced by a test

of collapsibility of the exposure coefficient over the con-

founder. This test is easily constructed from ordinary out-

puts (see Appendix 1, available as Supplementary data at

IJE online) and is appropriately sensitive to the confounder

relation to exposure as well as to its relation to disease. It

can also be viewed as a modification of CIE strategy that

allows for random error in the observed change and for the

possible variance reduction from deletion.

In Box 3, these approaches are applied to a study of

atopy in Poland, and their results are compared with other

common approaches.

Box 2 Variable selection based on backward deletion

using estimated MSE reduction

1. Baseline specification

1.1 Select the variables that are appropriate to in-

clude, using a causal directed acyclic graph

(DAG) to exhibit theorized causal relations

among variables identified a priori as potentially

important for estimating the effects of interest.

1.2 Divide the variables into three classes: (i) the

main exposure X; (ii) forced-in variables (e.g.

age, sex) which are always included in the model

(W1. . .WJ); and (iii) the non-forced variables

which will be candidates for deletion (U1. . .UH).

1.3 Run a ‘full’ model including all main exposure

terms, forced-in variables and non-forced vari-

ables from 1.3, with no exposure-covariate prod-

ucts. [If full model does not converge or the

results indicate sparse-data bias, change to a for-

ward-selection strategy, or use hierarchical

(multilevel or mixed) or penalized modelling

methods.]

2. Variable selection

Enter the following reduction loop, starting with

the full model as the ‘current model’:

2.1 For each candidate variable that remains in the

current model, re-run the model without its terms

(the Uh that represent it)and compute the result-

ing DMSE relative to the current model from

dropping those terms:

ðb̂reduced–b̂currentÞ2– SEcurrent
2– SEreduced

2
� �

2.2 If any candidate has DMSE < 0, drop the one

with the smallest (most negative) DMSE and go

to step 4.2 if there are any candidates left in the

model. Otherwise (if there is no candidate Uh left

in the model, or none left have DMSE < 0), stop

and use the current model.

3. Assessment of heterogeneity (effect-measure

modification)

3.1 Assess heterogeneity in a series of supplementary

analyses, focusing on covariates of a priori interest
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Box 3

We consider an example from a study of the preva-

lence of atopy in a small town and neighbouring vil-

lages in Poland in 2003.41 In the current analysis, we

estimate the association between ‘no current unpas-

teurized milk consumption’ and current atopy status. It

was plausible that lack of unpasteurized milk con-

sumption could increase the risk of atopy. Because

drinking unpasteurized milk happens mostly in rural

settings, however, there are a number of other expos-

ures which may be related to both unpasteurized milk

consumption and the prevalence of atopy.

Main exposure: never drinking unpasteurized milk (1:

never vs 0: regularly/sometimes).

Forced variables: age-group (seven categories), sex.

Potential confounders:

Live in town (yes/no) or village

Live on a farm (yes/no)

Contact (regular/occasional) with cows, pigs, poultry,

sheep or goats, horses

Work (regular/occasional) milking cows, cleaning barns,

collecting eggs

Firstborn (yes/no)

Number of siblings (1, 2, 3þ)

Current smoker (yes/no)

Lived in town (yes/no) or village as a child

Lived on a farm (yes/no) as a child

Parents were farmers (yes/no)

Family kept cows, pigs, poultry, sheep or goats, horses.

Basic model

Model 1 in Table 3 shows the results of the basic ana-

lysis for milk, adjusted for the forced variables (age-

group and sex).

Full model

Model 2a in Table 3 shows the results of the full max-

imum likelihood (ML) model, adjusting for all potential

confounders; there is a substantial change in the odds

ratio for milk (from 2.46 to 1.50), but there is also an in-

crease in the SE for the coefficient estimate (from 0.225

to 0.257). Model 2b is the full model fit using the Firth

adjustment for coefficient-estimate bias.42,43 This is

used as the ‘standard’ to estimate the bias of the other

models, and is combined with the bootstrap SEs to esti-

mate the RMSE. Overall, the milk coefficients from the

full models have a much lower RMSE (0.262, 0.251)

than in the basic model (0.567) because the increase in

SE from including all potential confounders is small in

comparison with the change in the coefficient estimate.

Traditional stepwise regression

Model 3a in Table 1 shows the results of a forwards

stepwise logistic regression (using P < 0.20 as the cri-

terion for inclusion) with milk, age group and sex as

forced variables; Town, Firstborn, Current smoker,

Town as a child, Parents farmers, Parents kept poultry

and Parents kept horses were also selected. Model 3b

is again a forwards stepwise logistic regression but

uses P < 0.05 as the criterion for inclusion. Model 3c

and d are the backwards stepwise procedures with

P < 0.20 and P < 0.05, respectively.

AIC

Model 4a in Table 1 shows the results of using the Akaike

Information Criterion (AIC)14 where variables were forward

selected to achieve the largest increase in AIC at each

step. Model 4b is from using AIC for backwards deletion.

BIC

Model 5a and b was selected in parallel to 4a and b

but using the Bayesian Information Criterion.14

Relative change-in-estimate approach

Only town residence (in addition to the forced vari-

ables of age group and sex) produced a substantial

change in the estimate for milk; once this was in the

model, no other variable changed the milk odds ratio

estimate by more than 10%, leading to model 6a.

Model 6b is from the analogous backwards procedure

and resulted in the same model.

RMSE

Model 7a in Table 1 shows the results of using RMSE

reduction for forward selection in two different ways.

Model 7a1 used (at each step) the larger of the two

models being compared as the reference for estimat-

ing RMSE reduction, and is thus analogous to the

other procedures, whereas model 7a2 used the full

model as the reference for each step. Model 7b is the

backwards version of the same procedure. Model 7b1

used (at each step) the larger of the two models being

compared as the reference (for estimating the RMSE),

whereas model 7b2 used the full model as the refer-

ence for each step.

Penalization

Following previous recommendations,37,44 we included

two analyses with weakly informative shrinkage priors

for each coefficient. The first analysis used a log-F(1,1)

(Haldane) prior distribution for each coefficient, which is

equivalent to using an F(1,1) prior distribution for the
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odds ratio (antilog) from each coefficient, and assigns

95% probability to the odds ratio falling between 1/648

and 648. The second analysis used a log-F(2,2) (standard

logistic) distribution for each coefficient, which is equiva-

lent to using an F(2,2) prior distribution for the odds

ratio from each coefficient, and assigns 95% probability

to the odds ratio falling between 1/39 and 39. The priors

were imposed by adding two pseudo-observations for

each coefficient to the actual data file, with weights of

1=2 for the F(1,1) prior and weights of 1 for the F(2,2)

prior, then fitting the full model to the augmented data

set by maximum likelihood, with the constant term

replaced by an indicator for ‘actual-data record’ and

weights of 1 for all actual-data records.36,45,46

Discussion

In this example, all of the modelling approaches yielded

reasonably similar findings—the full model (Firth bias-

adjusted) yielded an OR of 1.47, and all of the other

approaches produced ORs in the range of 1.42 to 1.51.

The RMSEs were also similar, smaller than that of the

full model and substantially smaller than that for the

basic model. The fact that there exist models with lower

estimated RMSE than the models selected by the RMSE

procedures 7ab (using the larger of the two models as

the reference) illustrates how a procedure that selects

or rejects variables one at a time (forwards or back-

wards) does not always find the model with the overall

optimal value of the criterion being used.

In this example, Town is the only variable whose inclu-

sion/exclusion in the model has much impact on the

exposure effect estimate. Town is also highly predict-

ive of the outcome. Thus, all methods select it, and

whatever else they happen to select makes very little

difference for any of the measures considered. For the

same reasons, the bootstrap 95% CIs (which take vari-

able selection into account) were in general only

slightly larger than the ‘standard’ 95% CIs. We there-

fore see little apparent advantage of one method over

another in this example. Nonetheless, in a setting with

strong confounding by intercorrelated groups of mul-

tiple confounders, we might find more stark differ-

ences among the results from different methods.

Some limitations

As with most variable-selection procedures including step-

wise and CIE, confidence intervals obtained by combining

the final point estimate and SE from the above strategy are

not theoretically valid. Simulation studies24,25 so far sug-

gest that this invalidity is negligible in typical settings, due

to the high significance level and therefore liberal inclusion

implicit in using DMSE ¼ 0 as the decision point.

Nonetheless, the strategy could be improved by using boot-

strapping or cross-validation to estimate DMSE and set

confidence intervals.

A further problem with using CIE strategies for logistic

regression is that it is possible the change in estimate is

largely due to more sparse-data bias (i.e. too few subjects

at crucial combinations of variables) in the full-model esti-

mate b̂full rather than increased confounding in the

reduced-model estimate b̂reduced. For a binary exposure X

and disease Y, this problem becomes noticeable when there

are much fewer than about 4 subjects per confounder coef-

ficient at each exposure-disease combination; for example,

with 7 confounder terms we would want at least 4(7) ¼ 28

subjects in each cell of the two-way XY table for some as-

surance that sparse-data bias in b̂full is small. One way to

avoid this problem is to switch to penalized estimation;

it is also possible to apply the above reduction algo-

rithms after minimal penalization to reduce sparse-data

bias.44–48

Another problem however is that logistic coefficients

are in general not collapsible, in that there will be differ-

ences between the actual (underlying) coefficients with and

without a given covariate if the covariate predicts the out-

come, even if that covariate is not a confounder by virtue

of being independent of exposure.6 This difference will be

negligible unless the outcome is common, in which case it

will be advisable to switch to estimation of collapsible ef-

fect measures (such as risk ratios and differences), e.g. by

regression standardization.13

Discussion

Like more sophisticated but computationally intensive

methods,19 the strategies we describe differ from stepwise

regression and other purely predictive approaches, in that

their goal is to improve accuracy of exposure effect esti-

mates rather than to simply predict outcomes. At the same

time, recognizing that the gap between state-of-the-art

methods and what is done in most publications has only

grown over time, they are intended to fall within the scope

of the limits on software and effort that constrain typical

researchers. Thus, parsimony is replaced by the goal of

minimizing error in effect estimation.

A related point is that, as with parsimony, pursuit of

goodness-of-fit may lead to inappropriate decisions about

confounder control; in particular, some variables may not

be included in the model because they do not significantly

improve the fit, even though they are important confound-

ers. ‘Global’ tests of fit are especially inadequate for con-

founder selection13 since there can be many ‘good-fitting’
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Table 3. Model-adjusted associations of current unpasteurized milk consumption with current atopy status40

Model Model variables* Exposure

coefficient

estimate

SE for

coefficient

OR 95% CL

for OR

Estimated

bias and

RMSE

Bootstrap SE†

for coefficient

Bootstrap 95%

CL‡ for OR

1 (basic) Milk 0.899 0.225 2.46 1.58, 3.82 0.516

0.567

0.236 1.59, 3.97

2a (ML full) Milk

All other variables#

0.406 0.257 1.50 0.91, 2.48 0.023

0.262

0.261 0.89, 2.46

2b (Firth)42,43 Milk

All other variables#

0.383 0.252 1.47 0.91, 2.40 0.000

0.251

0.251 0.89, 2.37

3a (forwards stepwise,

P < 0.20)

Milk

Town

Firstborn

Current smoker

Town as a child

Parents farmers

Parents kept poultry

Parents kept horses

0.390 0.244 1.48 0.91, 2.38 0.007,

0.261

0.261 0.87, 2.43

3b (forwards stepwise,

P < 0.05)

Milk

Town

Current smoker

Town as a child

Parents kept poultry

0.383 0.243 1.47 0.91, 2.36 <0.001

0.261

0.261 0.88, 2.44

3c (backward stepwise,

P < 0.20)

Milk

Town

Firstborn

Current smoker

Parents farmers

Parents kept poultry

Parents kept horses

0.398 0.244 1.49 0.92, 2.40 0.015

0.261

0.261 0.88, 2.47

3d (backward stepwise,

P < 0.05)

Milk

Town

Current smoker

Parents farmers

Parents kept poultry

Parents kept horses

0.414 0.244 1.51 0.94, 2.44 0.031

0.265

0.263 0.93, 2.61

4a (forwards AIC) Milk

Town

Horses

Firstborn

Current smoker

Parents kept poultry

0.381 0.243 1.46 0.91, 2.36 �0.002

0.260

0.260 0.86, 2.39

4b (backward AIC) Milk

Town

Horses

Firstborn

Current smoker

Parents kept poultry

Parents kept horses

Parents farmers

0.398 0.244 1.49 0.92, 2.40 0.015

0.262

0.262 0.88, 2.48

5a (forwards BIC) Milk

Town

Current smoker

Parents kept poultry

0.393 0.243 1.48 0.92, 2.39 0.010

0.264

0.264 0.88, 2.45

(Continued)
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models that correspond to very different confounder effects

and exposure effect estimates.26

Parsimony and goodness-of-fit are helpful only to the

extent they reduce variance and bias of the targeted effect

estimate. The general inappropriateness of parsimony as a

goal in causal analysis is supported by simulation studies in

which full-model analysis has often outperformed conven-

tional selection strategies.24,25,27 This result raises the

question: if we can control for all potential confounders,

then why wouldn’t we? If indeed we have numbers so large

that there is no problem from controlling too many vari-

ables, we would generally expect covariate elimination to

provide little benefit for the accuracy of effect estimates.

But the harsh reality is that even databases of studies with

hundreds of thousands of patients often face severe limits

in crucial categories, such as the number of exposed cases.

Coupled with the availability of what may be hundreds or

even thousands of variables, some kind of algorithmic ap-

proach to potential confounders becomes essential.49,50

The strategies we describe are designed for common bor-

derline situations in which control of all the variables may

be possible, but some accuracy improvement may be ex-

pected from eliminating some or all variables whose inclu-

sion is of uncertain benefit.

A number of criticisms can be made of the MSE-based

strategy in Box 2. First, it can be argued that any data-

Table 3. Continued

Model Model variables* Exposure

coefficient

estimate

SE for

coefficient

OR 95% CL

for OR

Estimated

bias and

RMSE

Bootstrap SE†

for coefficient

Bootstrap 95%

CL‡ for OR

5b (backward BIC) Milk

Town

Current smoker

Parents kept poultry

0.393 0.243 1.48 0.92, 2.39 0.010

0.264

0.264 0.87, 2.45

6a (forwards CIE) Milk

Town

0.400 0.242 1.49 0.93, 2.39 0.017

0.255

0.254 0.93, 2.56

6b (backward CIE) Milk

Town

0.400 0.242 1.49 0.93, 2.39 0.017

0.255

0.254 0.92, 2.52

7a (forwards RMSE,

larger model as

referent)

Milk

Town

Poultry

Collecting eggs

Number of siblings

Parents kept cows

Parents kept poultry

0.363 0.245 1.44 0.89, 2.32 �0.020

0.258

0.257 0.86, 2.35

7b (backward RMSE,

larger model as

referent)

Milk

Town

Poultry

Collecting eggs

Firstborn

0.350 0.243 1.42 0.88, 2.29 0.017

0.257

0.256 0.84, 2.28

8a (forwards RMSE,

full model as

referent)

Milk

Town

0.400 0.242 1.49 0.93, 2.39 �0.033

0.263

0.261 0.88, 2.45

8b (backward RMSE,

full model as

referent)

Milk

Town

Parents kept cows

Parents kept poultry

0.407 0.242 1.50 0.94, 2.42 0.024

0.264

0.263 0.89, 2.51

9a penalization by log-

F(1,1) priors§45

Milk

All other variables#

0.396 0.253 1.49 0.90, 2.44 0.013

0.253

0.253 0.90, 2.42

9b penalization by log-

F(2,2) priors¶45

Milk

All other variables#

0.389 0.250 1.47 0.90, 2.41 0.006

0.246

0.246 0.90, 2.36

*All analyses are adjusted for age group and sex.
†Based on 4000 bootstrap samples.
‡Bias-corrected and accelerated (BCa) with 4000 resamples.56

#Town, farm, cows, pigs, poultry, sheep/goats, horses, milking cows, cleaning barns, collecting eggs, firstborn, number of siblings, current smoker, lived in

town or village as a child, parents were farmers, family kept cows, family kept pigs, family kept poultry, family kept sheep or goats, family kept horses.
§Equivalent to F(1,1) prior for odds ratio; 95% prior limits are 1/648, 648.
¶Equivalent to F(2,2) prior for odds ratio; 95% prior limits are 1/39, 39.
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based model reduction will produce biased estimates be-

cause it depends on the assumption that it is not necessary

to control the omitted variables (conditional on control of

the included variables).51 We regard this criticism as some-

what misguided insofar as every epidemiological estimate

suffers from some degree of bias from uncontrolled con-

founders, differential subject selection and measurement

error (in both exposures and confounders); the key ques-

tion is then whether the bias from omitting a variable is of

contextual importance.

Second, as we have emphasized, simple selection meth-

ods (such as stepwise, CIE and apparent MSE change) do

not take account of random variability introduced by data-

based model selection. Thus, without cross-validation or

some other adjustment, the standard error of the resulting

effect estimate is not correctly estimated by taking the

standard error computed from the final model.15 With

methods that focus on the effect estimate, however, the

eliminated variables are generally those that have only

weak relations to exposure or disease, the resulting prob-

lem is limited.25 Where such problems are of concern, they

can be mitigated by the use of shrinkage, penalization and

related hierarchical methods,13,14,34–36,45,46,52,53 model

averaging,54,55 cross-validation19 or bootstrapping.56

Third, the MSE approaches we describe may encounter

technical difficulties in precisely the situation of most con-

cern here, namely when there is multicollinearity. As we

mentioned, sparse-data bias is a chief concern along with

related artefacts due to sample-size limitations, which

again suggests using in the MSE algorithms the bias-

reduced estimates available in commercial software.45,46

The strategies we have presented in this paper are in no

sense optimal; rather they are rough but transparent heur-

istics which attempt to mitigate some of the difficulties of

common approaches without introducing too much new

machinery or subtle statistical concepts. Regardless of the

strategy adopted, however, it is important that authors

document how they chose their models, so that readers can

interpret their results in light of the strengths and weak-

nesses attendant on the strategy that they used.

Supplementary Data

Supplementary data are available at IJE online.
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