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The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of
expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation
independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables

the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time
and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel
electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence
of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four
different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size
exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity
and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no
free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in
E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically
have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli
was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further
investigation.

Video Link

The video component of this article can be found at http://www.jove.com/video/52357/

Introduction

It has been estimated that membrane proteins account for approximately 20-30% of the genes coded in all sequenced genomes ' including the
human genome 2, Given their critical role in many biological processes, for example transport of metabolites, energy generation and as drug
targets, there is intense interest in determining their three dimensional structure. However compared to soluble proteins, membrane proteins

are highly under-represented in the Protein Data Bank. In fact, of the 99,624 released structures in the PDB (http://www.rcsb.org/pdb/) only 471
(http://blanco.biomol.uci.edu/mpstruc/) are classified as membrane proteins. This reflects the technical difficulties of working with membrane
proteins which are naturally expressed at relatively low levels; rhodopsin is one of a few exceptions 4 Over-expression of recombinant versions
in heterologous cells often results in misfolding and poor targeting to the membrane which limits the overall level of production. Selecting the best
detergent for extraction and solubilization of a membrane protein once expressed makes subsequent purification difficult and requires careful
optimization.

Escherichia coli remains the most commonly used expression host for membrane proteins accounting for 72% (http://blanco.biomol.uci.edu/
mpstruc/) of structures solved to date which are almost exclusively from bacterial sources. Specific E. coli strains, C41(DE3) and C43(DE3),
have been isolated which do not lead to the over-expression of membrane proteins and hence avoid the effects of toxicity observed for other
BL21 strains®®. Tuning the level of recombinant membrane protein expression appears to be critical for optimizing the level of production6’7.

In many cases successful production of membrane proteins for structure determination has required the evaluation of multiple versions including
amino- and carboxy-terminal deletions, multiple orthologues to exploit natural sequence variation and different fusion proteinse'g. Therefore,
a method for the expression screening of multiple membrane proteins in parallel is essential. One commonly used approach is to fuse the

Copyright © 2015 Creative Commons Attribution-NonCommercial License January 2015 | 95 | e52357 | Page 1 of 7


http://www.jove.com
http://www.jove.com
http://www.jove.com
mailto:ray@strubi.ox.ac.uk
http://www.jove.com/video/52357
http://dx.doi.org/10.3791/52357
http://www.jove.com/video/52357/
http://www.rcsb.org/pdb/
http://blanco.biomol.uci.edu/mpstruc/
http://blanco.biomol.uci.edu/mpstruc/
http://blanco.biomol.uci.edu/mpstruc/

L]
lee Journal of Visualized Experiments www.jove.com

protein to green fluorescent protein (GFP) enabling expression to be tracked without the need to purify the protein. In this way, information about
expression level, stability and behavior in different detergents can be assessed with small amounts of un-purified material®'%.

In this article we describe a streamlined protocol for cloning and expression screening of membrane proteins in E. coli using fusion to GFP as a
reporter of production and subsequent characterization of detergent: protein complexes (Figure 1).

1. Construction of Expression Vectors
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Use PCR Infusion cloning to construct up to 96 expression plasmids in parallel using the vectors pOPINE-3C-GFP and pOPIN-N-GFP which
add either cleavable C-terminal or N-terminal GFP-His6 fusions to the sequences13 respectively.

Note: The choice of vector is dictated by the topology of the protein since the GFP needs to be expressed in the cytosol, thus for a protein
with a cytosolic N-terminus and extracellular C-terminus we would use pOPIN-N-GFP and for an extracellular N-terminus and cytosolic C-
terminus in we would use pOPINE-3C-GFP. Where both termini are cytosolic we would use pOPINE-3C-GFP unless there is functional
reason not to tag the C-terminus.

Amplify the DNA sequences encoding the membrane proteins with primers incorporating the following extensions shown:

pOPINE-3C-GFP (Forward primer — AGGAGATATACCATG; Reverse primer — CAGAACTTCCAGTTT) and pOPIN-N-GFP (Forward primer
— AAGTTCTGTTTCAGGGCCCG; Reverse primer — ATGGTCTAGAAAGCTTTA).

Analyze the PCR reaction by agarose gel electrophoresis. Once clean PCR products have been obtained, add 5 U Dpnl to each well (make
up in 5 pl of 1x Dpnl reaction buffer). Purify the PCR products using magnetic beads in a 96-well format.

Note: Dpnl is added to remove the template vector; this step is not necessary if genomic DNA is used as template.

Add 1 pl (100 ng) of the appropriate linearized vector to each well of a PCR plate.

Using a multichannel pipettor add x pl of purified PCR insert to the appropriate wells of the PCR plate. Ensure that all products are in the
range of 10-250 ng.

Add (9-x) pl of water to the well and transfer the whole 10 pl to a tube containing the dry-down in-fusion reagent. Leave for 30 sec.

Mix contents briefly by pipetting up and down. Transfer the reactions back to the original PCR plate and seal.

Incubate for 30 min at 42 °C in a thermocycler.

Immediately transfer the reactions to ice as soon as the reaction is complete and add 40 pl of TE (10 mM Tris, pH 8.0, 1 mM EDTA).

. Freeze at once or transform into competent cells. For transformation, use 3 pl of the diluted reaction per 50 ul aliquot of high competency (> 5

x 10° transformants/pg) competent E. coli cells.

Add 1 ml of LB agar supplemented with 50 ug/ml carbenicillin per well of a 24-well tissue culture plate (for cloning, prepare wells for 2 x
number of constructs).

Following outgrowth, Following outgrowth plate out 25 pl and 25 pl of a 1 in 5 dilution of the culture onto the agar containing 24-well tissue
culture plates.

Spread the cells by gently tilting the plate.

Dry the plate with the lid off for 10-15 min at 37 °C or in a flow hood at room temperature.

Replace the lid and turn the plate upside down and incubate overnight at 37 °C.

Pick two colonies and mini-prep the vectors.

PCR verify the constructs using the construct specific reverse primer and a vector specific forward primer (e.g. pPOPIN_FOR GAC CGA AAT
TAA TAC GAC TCA CTA TAG GG).

2. Transformation of E. coli Expression Strains

Note: Prior to performing this protocol, E. coli competent cells are made, aliquotted and stored frozen at -80 °C as described previously13.
Membrane protein expression is routinely screened in two strains, Lemo21(DE3) and C41(DE3)pLysS. To aid interpretation of the results it can
be helpful to include a positive control, e.g. a plasmid expressing GFP or a membrane protein fused to GFP known to express and an empty
vector negative control.

SO hrWN =

7.

Thaw the aliquotted E. coli on ice. Add 3 ul of mini-prepped expression plasmid to each aliquot of competent cells.

Incubate the mix on ice for 30 min.

Heat-shock the cells for 30 sec at 42 °C.

Allow cells to recover on ice for 2 min and then add 300 ul of power broth to each tube.

Incubate for 1 hrin a 37 °C static incubator.

Prepare the LB Agar in a 24-well tissue culture plate, supplemented with 50 ug/ml carbenicillin and 35 pug/ml chloramphenicol. Add rhamnose
to a final concentration of 0.25 mM to the wells containing Lemo21 (DE3).

Note: If the product is likely to be toxic the wells containing C41(DE3) pLysS can be supplemented with 1% (w/v) glucose.

Transfer 30 pl of cells from the transformation mix onto the LB Agar plates. Spread and dry the plate as described in 1.13-1.15.

3. Preparation of Overnight Starter Cultures

Note: Always prepare overnight cultures the day after transformation never from an old transformation plate.

1.

Add 0.7 ml power broth to each well of a 96-well deep-well plate supplemented with 50 pug/ml carbenicillin and 35 pg/ml chloramphenicol. Add
rhamnose to the wells containing Lemo21 (DE3) to a final concentration of 0.25 mM. Optionally, supplement C41(DE3) pLysS with 1% (w/v)
glucose; see above (2.6 note).

Pick one colony from the overnight transformation plates into each well. Seal the block with a gas-permeable seal.
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3.

Shake the block at 250 rpm in an incubator with a large throw (e.g. a 25 mm orbit) or at 600 rpm in an incubator with a small throw (e.g. a 4.3
mm orbit) at 37 °C overnight.

4. Growth and Induction of Cultures

3.
4.
5

Add 3 ml of power broth supplemented with 50 pg/ml carbenicillin and 35 pg/ml chloramphenicol to each well of 24-well deep-well plate. Add
L-rhamnose (and glucose) as described in section 3.1. Use 3 ml of culture to allow harvesting in duplicate and to allow for some evaporation
of water through the gas permeable seal.

Set up the expression cultures by adding 150 pl of Lemo21 (DE3) or C41(DE3) pLysS overnight cultures to each well of the 24-well deep-well
blocks.

Shake the blocks at 37 °C until the average O.D. at 595 nm is ~0.5 through the plate.

Induce expression by adding IPTG to the cultures to a final concentration of 1.0 mM IPTG.

Grow the cultures overnight (18-20 hr) with shaking at 20 °C.

5. Analysis of Expression by In-gel Fluorescence

PoN
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Harvest in duplicate. Transfer 1 ml of culture from each well into a square well, conical bottom, 96-well deep-well block.

Note: Harvest in duplicate in case of breakage of the block or to allow the testing of an alternative detergent if desired.

Seal the blocks and harvest the cells by centrifugation at 6,000 x g for 10 min.

Invert the block and decant the media. Tap the block gently onto a paper towel to drain remaining media.

Seal the plates and store at -80 °C for a minimum of 20 min. Optionally, leave the experiment at this point and the block processed when
convenient.

De-frost the pellets for 20 min at room temperature.

Use either a multi-channel pipette or an orbital shaker (1,000 rpm for 10 min) at 4 °C to resuspend the cells completely in 200 pl of lysis buffer
(50 mM NaH,PO,4, 300 mM NaCl 10 mM Imidazole 1% v/v Tween 20, adjust the pH to 8.0 using NaOH).

Add 20 pl of the DLPI solution (20 ul DNasel (4,000 units/ml), 20 mg lysozyme, and 20 ul protease inhibitor cocktail in a final volume of 2 ml
of water). Incubate for 10 min with shaking (~1,000 rpm) at 4 °C.

Add 25 pl of 10% n-Dodecyl B-D-maltoside (DDM).

Incubate for 60 min with shaking (~1,000 rpm) at 4 °C.

Centrifuge the deep-well block at 6,000 x g for 30 min at 4 °C.

. Transfer 10 pl of the cleared lysate to a microtitre plate and add 10 yl of SDS PAGE gel loading buffer (100 mM Tris, pH 6.8, 4% w/v SDS,

0.2% w/v Bromophenol blue, 10% v/v B-mercaptoethanol, and 20% v/v glycerol). CAUTION! DO NOT BOIL THE SAMPLE.

Load 10 pl of sample from step 5.11/well onto SDS PAGE gel(s) and run at 100-120 V (constant voltage) in a cold room until the dye front
reaches the bottom (2-2.5 hr).

Place the gel onto an imager (e.g. with a blue-light filter to detect the GFP fusion proteins). The exposure time is chosen to ensure that the
brightest bands are not saturated.

6. Scale-up of Cell Cultures

PN WN =

Transform an aliquot of competent E. coli as described in section 2.

Pick a colony into 10 ml of power broth (supplemented as described in section 3) and grow overnight at 37 °C.
Dilute 5 ml of the overnight culture into 500 ml power broth.

Grow with shaking at 250 rpm at 37 °C until the O.D. at 595 nm is ~0.5.

Induce expression by adding IPTG to a final concentration of 1.0 mM.

Grow overnight with shaking at 250 rpm at 20 °C.

Harvest cells by centrifugation at 5,000 x g for 15 min.

Discard supernatant. Cell pellets can be stored at -80 °C.

7. Preparation of Membranes

aorOD

Thaw cells (if necessary) at room temperature and resuspend in 1x PBS pH 7.5 at a volume of 5ml per gram of cell pellet; Increase volume
as necessary until viscosity reduces to a runny consistency. Add MgCl, to final concentration of 1 mM, DNAse | to final concentration of 10
ug/ml and one pre-packaged protease inhibitor tablet per 20 g of cell pellet. Break open cells using a chilled cell disrupter at a pressure of 30
kpsi.

Pellet the unbroken cells and debris at 30,000 g for 15 min at 4 °C. Transfer supernatant to an ultra-centrifugation tube.

Collect the total membrane fraction by spinning down the supernatant in an ultra-centrifuge at 200,000 x g for 1 hr at 4 °C.

Discard the supernatant.

Re-suspend the membrane pellet in ice-cold 10 ml PBS pH 7.5 using a cell homogenizer. 1 ml resuspended membranes are required for
each detergent. Optionally, at this stage, flash freeze the membrane suspension in liquid nitrogen and store at -80 °C.

8. Solubilization and Analysis of the Membrane Fraction

Thaw membrane fraction (if necessary), and for each detergent to be used for solubilization, aliquot 900 pl of the membrane suspension into
a 1.5 ml polyallomer micro-centrifuge tube.

Add 100 pl of each freshly prepared detergent (10% w/v solutions of DDM, DM, Cymal-6 and LDAO) to a final concentration of 1% to the
specified 1.5 ml tube. For solubilization of eukaryotic membrane proteins cholesterol hemisuccinate (0.2% final concentration) can be added
to the detergents.
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3. Incubate the mixtures at 4 °C for 1 hr with mild agitation.

4. Pellet the detergent insoluble fraction with a bench top ultra-centrifuge, ensuring tubes are at least half-full, at 150,000 g at 4 °C for 45 min
and retain supernatant.

Note: The effectiveness of detergent solubilization can be estimated using a fluorescent plate reader by measuring the GFP fluorescence of
the solubilized membranes with the detergent insoluble fraction resuspended in the same volume of PBS.

5. Analyze the mono-dispersity of the different detergent : membrane protein complexes using fluorescence-detected size exclusion
chromatography (FSEC).

6. For FSEC analysis, equilibrate a size exclusion column with a broad fractionation range, e.g. 5,000 to 5,000,000 in molecular weight, with
running buffer (20 mM Tris pH 7.5, 150 mM NaCl, 0.03% DDM) at a flow rate of 0.3 ml/min. Use this buffer for all samples, i.e. it is not
changed for each detergent tested.

7. Inject 100 pl of solubilized membranes onto the column at a flow rate of 0.3 ml/min. Monitor elution profile using fluorescence optics
(excitation at 488 nm and emission at 512 nm). If an inline fluorescence monitor is not available, collect the fractions and read the
fluorescence in a plate reader.

8. Import elution volume and fluorescence intensity data into a spreadsheet program for graphical display.

9. Analyse remaining solubilized membrane material by in-gel fluorescence as described in section 5.

Representative Results

The SEDS family of proteins (shape, elongation, division, and sporulation) is essential for bacterial cell division. These integral proteins typically
have ten transmembrane domains with both amino and carboxy termini inside the cell. To exemplify the protocol described above, 47 SEDs
orthologues were cloned into the vector pOPINE-3C-eGFP. A small scale expression screen of the constructs was carried out in two E .coli
strains, Lemo21(DE3) grown in the presence of 0.25 mM rhamnose to block leaky expression and C41(DE3) pLysS, which are routinely used for
the expression of membrane proteins5'8.

Detergent solubilized lysates of induced cultures were analyzed by SDS-polyacrylamide electrophoresis. Using in-gel fluorescence to visualize
expressed GFP fusion proteins showed that between the two strains 38 out of the 47 SEDs constructs were produced. Interestingly there were
differences between the two expression strains. Of the 38 expressed constructs, only 18 were produced in both strains, 14 only expressed in
Lemo21(DE3) and 6 only in C41(DE3) pLysS. Overall, there was a higher success rate for the Lemo21(DE3) compared to the C41(DE3) pLysS
(38 vs 24). However the observation that some proteins appeared to be strain specific means that screening in both is useful.

Representative data for 24 of the 47 SEDs constructs are shown in Figure 1. The intensity of the bands gives an indication of the level of
expression, e.g. the fusion protein in well C4 in Figure 1A and 1B is expressed well in both strains however the additional lower molecular
weight bands suggest that the protein is partially degraded. In many lanes there is a band which corresponds in size to GFP alone. A qualitative
assessment of the integrity of the protein can be carried out by looking at the intensity of fusion protein relative to the free GFP; e.g. G4 and

H4 are completely broken down to free GFP in C41(DE3) pLysS (Figure 1B) whereas in the Lemo21(DE3) there is some intact protein (Figure
1A). For 14 out of the 38 expressed proteins the intensity of the free GFP band is similar to that of the fusion protein, for 21 the intensity of the
free GFP band is greater than that of the fusion protein and a minority of the fusion proteins (3/38 expressed) e.g. F6 and G6 in Figure 1A have
relatively little free GFP compared to the fusion protein.

Two of the constructs that expressed well in the primary screen B5 (high intensity bands for free GFP and fusion proteins) and G6 (little free
GFP) were expressed and a total membrane fraction prepared from 500 ml cell culture. Resuspended membranes were divided into aliquots and
analyzed by fluorescence-detected size exclusion chromatography (FSEC). The FSEC profiles are presented in Figure 2A and 2B respectively
and show that the two SEDs proteins behave differently in the four detergents tested. In one case (Figure 2A: sample B5) the protein only gave
a symmetrical peak with little aggregation in DDM which would therefore be the detergent of choice for subsequent purification. By contrast the
other fusion protein (Figure 2B: sample G6) gave a similar profile in all detergents tested.

'/;Ioning '/;_xpression Test fSc:reening results: In gel '/I:Iuorescence Size
= Design primers. *Transform into Lemo21(DES) fluorescence Exclusion (FSEC)
* PCR to produce clean products. and C41(DE3) plyss. «Thaw cells. =Scale up cells.
+Clone using Ligase Independent +Set up overnight cultures. *Lysecells sHarvestcells.

Cloning. '5EtUP3_m|DfE’<P"55~‘“” *Zolubilisethe membranes using =Prepare membranes.
*Miniprep DNAs. cultiwre ind4 welldeep well 1% wjv DDM. *SolubiliseMembranesina
= Verify the constructs by PCR blocks., . =5pin out debriz. range of detergents (DOM,

using vector specificforward *Grow until average absorbance «Run gel. LDAC, Cymalg, DM).

primersar!dgenespecifil: :;'I:')GE s *\lizualise using blue light filter. =Run a zize exclusion column

2 u tion. : = E
IENEERITEL el 'DI.-I *Chose target=for scaleup. \r|5ua||51rgth2{}u.tputu51rg
=Erow expression cultures fluorescenceopticsora plate
avernight =t 20°C. reader.
sHarvestculuresinto 96 well.
*Freeze blocks at-30°C.
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Figure 1: Diagram of workflow for screening membrane protein expression in E. coli using a GFP reporter.
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Figure 2: Primary screen of membrane protein expression using in-gel fluorescence. Detergent lysates of E. coli cells were analyzed
by SDS-PAGE and gels imaged using Blue Epi illumination and a 530/28 filter. The results are shown for 24 constructs (labeled A4-H6 based
on their position in a 96-well plate). The positions of the bands for free GFP and GFP fusion proteins are indicated. (A) Proteins expressed in
Lemo21(DE3). (B) Proteins expressed in C41(DE3) pLysS.
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Figure 3: Secondary screen of membrane protein expression using Fluorescence-detected size exclusion chromatography (FSEC).
Total membrane fractions were extracted in four different detergents and the solubilized membrane proteins analyzed by size exclusion
chromatography using a FPLC system coupled to a fluorescence detector. FSEC profiles for (A) membrane protein B5 and (B) membrane
protein G6. The position of the peaks corresponding to aggregated protein, solubilized GFP fusion protein and free GFP are indicated. The
detergents tested are indicated below the profiles.

In the protocol described in this article, ligation independent cloning into a GFP reporter vector is combined with fluorescence detection to rapidly
screen the relative expression of multiple membrane proteins in E. coli. Vectors can be made in four working days with primary expression
screening taking a further week. In-gel fluorescence of detergent lysates of whole cells is used to rank expression hits for further analysis in

a secondary screen. The primary expression screen as presented does not require any specialist equipment apart from a shaker incubator
suitable for growing cells in deep well blocks. All other liquid handling involving 96-well SBS plates can be carried out using multi-channel
pipettes. The protocol can be readily modified to include other E.coli strains grown under different expression conditions (e.g. lower temperature).
In the case of the LEMO21(DE3) titrating the level of rhamnose (from 0 to 2.0 mM) added to modulate the rate of transcription can increase

the level of expression of some membrane proteins7 . Detergents other than DDM could be used for extraction in the primary screen though
harsher detergents may solubilize proteins from inclusion bodies and therefore give false positives. Clearly, the more elaborate the initial screen
becomes, the more time-consuming the experiment.

The secondary screen involves preparing a total membrane fraction from the expression hits identified in the primary screen. This is a critical
step as it will confirm the localisation of the fusion proteins to the membrane of the E. coli cells. Subsequent extraction of the GFP fusion

protein in different detergents is monitored by fluorescence-detected size exclusion chromatography of solubilized material to assess the mono-
dispersity of the detergent-protein complexes. This is another critical step since it identifies the most appropriate detergent for solubilization of
the membrane protein for subsequent downstream processing. However, experience shows that further optimization of the choice of detergent(s)
may still be required during purification and crystallization. Evidence of uniform behavior in different detergents including ones with a relatively
small micelle size (e.g. LDAO) appears to be good indicator of a propensity to form well diffracting crystals at least for prokaryotic membrane
proteins“. In this respect the profile shown for the membrane protein in Figure 2B appears highly favorable.
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The main advantage of using a GFP reporter is that it gives a rapid read-out of expression in un-purified samples. A disadvantage is that the
GFP fusion protein has to be removed during the purification of the protein for crystallization. In the case of the vectors used here, a rhinovirus
3C protease site enables cleavage of the GFP. Alternatively, it is straightforward to re-clone candidate proteins, identified in the screen, into
vectors which only add a polyhistidine or other affinity tag for subsequent purification. This assumes that fusion to GFP is not necessary for
expression. The main alternative to using fusion to GFP for detection of membrane protein expression and solubilization is to add only a histidine
tag. However this approach typically requires starting with a membrane fraction'® which for the evaluation of many variants would become very
time-consuming.

In summary, the main purpose of the protocol described in this article is to enable a large number of membrane protein sequence variants to be
rapidly evaluated in terms of expression and detergent solubilization and prioritized for deeper analysis.
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