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With the progress of the aging population, bone-related diseases such as osteoporosis
and osteoarthritis have become urgent problems. Recent studies have demonstrated the
importance of osteoclasts in bone homeostasis, implying these will be an important
mediator in the treatment of bone-related diseases. Up to now, several reviews have been
performed on part of osteoclast biological behaviors such as differentiation, function, or
apoptosis. However, few reviews have shown the complete osteoclast biology and
research advances in recent years. Therefore, in this review, we focus on the origin,
differentiation, apoptosis, behavior changes and coupling signals with osteoblasts,
providing a simple but comprehensive overview of osteoclasts for subsequent studies.
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1 INTRODUCTION

The human skeleton is a complicated structure that aids mobility, controls calcium levels in blood,
supports soft tissue and organ, and is a place for adult hematopoiesis. Continuous remodeling is
necessary to maintain these critical capabilities by minimizing bone damage accumulation and
preserving both bone mechanical strength and calcium balance (Clarke, 2008; Feng and McDonald,
2011). Remodeling of the bone is a tightly coupled process involving osteoclasts and osteoblasts. And
osteoclasts are the body is only bone-resorbing cells, and they are essential for bone remodeling.

Osteoclasts are multinucleated cells created by the fusion of osteoclast progenitor cells (OCPs) with the
capacity to dissolve bone matrix via secreting H+, Cl−, cathepsin K (CTSK), and matrix metalloproteinases
(MMPs) in the resorption zone in response tomacrophage colony stimulating factor (M-CSF) and receptor
activator of NFkB ligand (RANKL).In addition, the differentiation and activity of osteoclasts are closely
regulated by apoptosis and molecules produced by cross-talk between osteoclasts and osteoblasts, which
contribute to homeostatic conditions in bone. While proper modulation ensures normal function of the
skeleton, an imbalance may result in both postmenopausal and secondary forms of osteoporosis like
diabetes-associated and glucocorticoid-induced osteoporosis (Albright, 1940).

With the improvement of molecular and genetic tools, our comprehension of osteoclast biology has
evolved significantly. Several reviews have been performed on part of osteoclasts biological behaviors such
as differentiation, function, or apoptosis (Teitelbaum and Ross, 2003; Rubin and Greenfield, 2005).
However, few reviews have shown the complete osteoclast biology and recent advancements in studies. In
this chapter, we collected the latest findings on osteoclast to provide references for follow-up studies.

2 THE DIFFERENTIATION OF OSTEOCLASTS

2.1 The Differentiation Process of Osteoclasts
Osteoclasts are formed by the fusion of OCPs from the monocyte/macrophage lineage of the
bone marrow which is produced from hematopoietic stem cells (HSCs) (Udagawa et al., 1990).
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HSCs do not form mature cells directly; instead, they yield a
variety of oligopotent progenitor cells, which then
differentiate into lineage-specific progenitor cells, building
a hierarchy branching tree. HSCs drop their ability to self-
renew and transform into multipotent progenitors (MPPs)
with pluripotency (Morrison and Weissman, 1994;
Christensen and Weissman, 2001). After a series of cellular
differentiation, MPPs become oligopotent progenitors, which
include common myeloid progenitors (CMPs) (Akashi et al.,
2000), megakaryocyte–erythrocyte progenitors (MEPs)
(Pronk et al., 2007), and common lymphoid progenitors
(CLPs) (Kondo et al., 1997; Karsunky et al., 2008; Serwold
et al., 2009). Pre-monocytes originate from CMPs and further
develop into OCPs. Then, OCPs enter the blood circulation
and recruit to bone remodeling units (BRUs) under the action
of factors like sphingosine-1-phosphate (S1P) (Kikuta et al.,

2011) and stroma-derived factor 1 (SDF-1) (Zhang et al.,
2008). Finally, the mature osteoclasts are formed by the
cellular fusion of OCPs in the BRUs in the stimulation of
factors such as M-CSF and RANKL. Furthermore, in the
inflammatory and immunological environment, monocytes
or tissue-specific macrophages (macrophages that dwell in
tissues) are an important source of osteoclasts (Yao et al.,
2021). In the fetus, erythromyeloid progenitors are
responsible for forming osteoclasts involved in
hematopoiesis and fracture repair (Jacome-Galarza et al.,
2019; Yahara et al., 2020) Previous studies had shown that
primary cells like embryonic stem cells, pre-B cells and pre-
dendritic cells can also form osteoclasts (Suda et al., 1999;
Speziani et al., 2007; Gomez Perdiguero et al., 2015;
Chakraborty et al., 2018; Khass et al., 2019; Krishnamurthy
et al., 2019) (Figure 1). The physiological mechanism is

FIGURE 1 |Osteoclast differentiation. Osteoclasts are formed by the fusion of OCPs from the monocyte/macrophage lineage of the bone marrow which
is produced from hematopoietic stem cells (HSCs). HSCs do not form mature cells directly; instead, they yield a variety of oligopotent progenitor cells, which
then differentiate into lineage-specific progenitor cells, building a hierarchy branching tree. HSCs drop their ability to self-renew and transform into
multipotent progenitors (MPPs) with pluripotency. After a series of divergences, MPPs become oligopotent progenitors, which include common myeloid
progenitors (CMPs), megakaryocyte–erythrocyte progenitors (MEPs), and common lymphoid progenitors (CLPs). Pre-monocytes originate from CMPs and
further develop into OCPs. Then, OCPs enter the blood circulation and recruit to bone remodeling units (BRUs) under the action of factors like sphingosine-1-
phosphate (S1P) and stroma-derived factor 1 (SDF-1). Finally, the mature osteoclasts were formed by the cellular fusion of OCPs in the BRUs in the
stimulation of factors such as M-CSF and RANKL. Furthermore, in the inflammatory and immunological environment, monocytes or tissue-specific
macrophages (macrophages that dwell in tissues) are an important source of osteoclasts. In the fetus, erythromyeloid progenitors are responsible for forming
osteoclasts involved in hematopoiesis and fracture repair. Previous studies had shown that primary cells like embryonic stem cells, pre-B cells and pre-
dendritic cells can also form osteoclasts.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7886802

Sun et al. Recent Advances in Osteoclast Biology

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


unknown, but it shows that the source of osteoclasts is not
single.

2.2 Factors Affecting Osteoclast
Differentiation
The differentiation process of osteoclasts is stimulated by a
variety of signal molecules. However, the two most critical
factors, M-CSF and RANKL, run through the entire process of
osteoclast differentiation (Robling et al., 2006).

M-CSF, also known as colony-stimulating factor 1 (CSF-1), is a
dimeric glycoprotein linked by interchain disulfide bonds, mainly

binding with colony-stimulating factor 1 receptor (CSF1R, also
known as c-FMS), a receptor tyrosine kinase (Mun et al., 2020).
The binding of CSF1R with M-CSF is crucial for the survival,
function, proliferation, and differentiation of myeloid lineage cells,
including osteoclasts, monocytes/macrophages, microglia,
langerhans cells in the skin, and Paneth cells in the intestine
(Mun et al., 2020). M-CSF promotes RANK expression on the
OCPs membrane and enables RANK cells to initiate a response to
RANKL (Ross and Teitelbaum, 2005). Some studies have certified
the indispensable role of M-CSF, in which the M-csf gene is
mutated and expresses non-functional M -CSF protein in mice
(Wiktor-Jedrzejczak et al., 1990) As a result, these mice had fewer

FIGURE 2 | Signal passways in the process of osteoclastogenesis under the stimulation of M-CSF. PI3K-Akt pathway: M-CSF binds to its receptor c-Fms, induces
partial phosphorylation of key sites in the c-Fms tail, and recruits the tyrosine kinase c-Src. The partially phosphorylated receptor binds to c-Src to form a c-Fms/c-Src
Protein complex. Then the complex recruits E3 ubiquitin ligase (c-Cbl) and causes it to undergo tyrosine phosphorylation. As a response, the phosphorylated c-Cbl
causes receptor ubiquitination, which further causes the receptor to be completely phosphorylated. Subsequently, the c-Fms/c-Src protein complex recruits
phosphatidylinositol 3-kinase (PI3K) to trigger the PI3K-Akt pathway for OCPs activation and proliferation. MAPK pathway: After the receptor was stimulated, the
receptor associated Grb2/Sos activates the MAPK signaling cascade, which conclusively leads to the phosphorylation and activation of the extracellular signal-regulated
kinase (ERK) to promote the formation of osteoclasts. Co-Stimulatory pathway: M-CSF also promotes the co-stimulatory pathway of nuclear factor activated T cells 1
(NFATc1). M-CSF can activate the Fc receptor common gamma subunit (FcRγ) and dnax activation protein 12 (DAP12), which further activate the tyrosine kinase Syk.
Syk forms a complex with Btk/Tec, BLNK/SLP76. The complex further activates PLCγ, initiates the PLC pathway, and dephosphorylates the transcription factor NFATc1
to promote its entry into the nucleus and induce the differentiation of precursor cells into osteoclasts.
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osteoclasts, leading to severe osteosclerosis. Several transcription
factors, notably PU.1, and a heterodimeric complex of
microphthalmia-associated transcription factor (MITF) and
TFE3, cause myeloid progenitors to develop into OCPs. PU.1
and MITF stimulate the expression of the M-CSF receptor
(c-Fms) (Iitsuka et al., 2012), and animals lacking either of

these genes develop osteopetrosis. The tyrosine kinase receptor
c-Fms is a transmembrane protein that contains numerous
tyrosine residues in the cell. M-CSF binds to c-Fms and
participates in osteoclast lineage differentiation by regulating a
number of pathways including the PI3K-Akt, MAPK, and Co-
Stimulatory pathways (Figure 2).

FIGURE 3 | Signal passways in the process of osteoclastogenesis under the stimulation of RANKL. After RANKL binds to its receptor RANK, it transduces signals
through the linker TRAF6, which recruits TAB2 and TAB1 to activate the MAPK pathway and the NF-κB pathway. NF-κB is one of the necessary transcription factors for
osteoclast differentiation. The NF-κB pathway is divided into two types: the classic pathway and the alternative pathway. In the classical pathway, TRAFs activate the IKK
complex (IKKα, IKKβ, IKKγ); under the action of the complex, the IκBmolecule undergoes phosphorylation and ubiquitination, and then degrades to release NF- κB.
In an alternative pathway, the homodimer of IKKα cleaves p100 to generate p52, which activates NF-κB. In the above two pathways, activated NF-κB dimer induces the
expression of factors such as c-Fos and AP-1, and further drives the expression of NFATc1 to promote osteoclast differentiation. In addition, the expression of NFATc1 is
also regulated by co-stimulatory pathway. FcRγ and DAP12 are important receptor molecules in the co-stimulatory pathway. They can activate the downstream tyrosine
kinase Syk after binding to the corresponding ligand. Syk forms a complex with Btk/Tec, BLNK/SLP76, and then activates the PLC pathway to induce osteoclast
differentiation. Studies have found that TRAF6 can directly activate c-Src and further trigger the PI3K/Akt pathway to promote osteoclast differentiation and proliferation.
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RANKL is found in osteoblast series and immunocytes, but it’s
more abundant in bone tissues (osteoblasts, osteocytes and
mesenchymal) than in others (Nakashima et al., 2011).
Purified osteocytes express RANKL more strongly than
osteoblasts and support the formation of osteoclasts better,
which indicates that osteocytes perform a vital function in the
process of bone remodeling (Nakashima et al., 2011). RANKL is
divided into free form and membrane-bound form, and the latter
has higher activity (Lader et al., 2001). The differentiation process
of osteoclasts is mainly regulated by RANKL. Loss of RANKL in
mice results in severe osteopetrosis, while overexpression of
soluble RANKL leads to severe osteoporosis (Kong et al., 1999;
Mizuno et al., 2002). When monocytes expressing RANK, a
member of the TNF receptor family, are exposed to RANKL,
they merge to create multinucleated osteoclasts (Li Y.-X. et al.,
2020). This procedure includes stimulation of several pathways
including NF-κB pathway, MAPK pathway and co-stimulatory
pathway (Figure 3). All of these pathways are involved in the
production of NFATc1, the master osteoclastogenic transcription
factor (Takayanagi et al., 2002).

Beyond RANKL, M-CSF, recent studies have also identified
many other factors that influence osteoclast differentiation. Post-
translational SUMO modifications are essential for regulating
osteoclast formation. Expression of SUMO-specific protease
SENP3 is down-regulated in OCPs during osteoclast
differentiation. It was shown that mice with bone marrow-
derived monocyte (BMDM) SENP3 deficiency exhibit more
severe bone loss after oophorectomy due to osteoclast
hyperactivation (Zhang Y. et al., 2020). According to a related
study, long-term exposure to cadmium (Cd) results in reduced
expression of P2X7, which inhibits the P2X7-PI3K-AKT
signaling pathway, thereby further suppresses osteoclast
differentiation (Ma et al., 2021). Selenoproteins containing
selenium in the form of selenocysteine are critical for bone
remodeling. Selenoprotein W ensures physiological bone
remodeling by preventing hyperactivity of osteoclasts. Study
identifies selenoprotein W (SELENOW) as a protein down-
regulated through RANKL/RANK/tumor necrosis factor
receptor-associated factor 6/p38 signaling by large-scale
mRNA analysis of nuclear factor (NF)-κB ligand (RANKL)-
induced osteoblast differentiation (Kim et al., 2021). RNA-
sequencing analysis revealed that SELENOW regulates
osteoclastogenic genes. SELENOW overexpression enhances
osteoclastogenesis in vitro via nuclear translocation of NF-κB
and nuclear factor of activated T-cells cytoplasmic 1 mediated by
14-3-3γ, whereas its deficiency suppresses osteoclast formation
(Kim et al., 2021). Major vault protein (MVP) (also known as
lung resistance-related protein, LRP), is the main component of
cellular ribonucleoprotein particles called vaults. Vaults are
highly conserved across species and most mammalian cell
vaults are in the cytoplasm (Esfandiary et al., 2009). Research
suggested that MVP negatively regulates osteoclast differentiation
and bone resorption via inhibition of calcineurin-NFATc1
signaling and Mvp−/− and Mvpf/fLyz2-Cre mice both exhibited
osteoporosis-like phenotypes (Yuan L. et al., 2021). MVP-
deficiency also enhanced calcineurin-NFATc1 signaling and
promoted NFATc1 activity, which led to enhanced

osteoclastogenesis and bone resorption (Yuan L. et al., 2021).
Hh pathway, an evolutionarily conserved signaling pathway,
plays critical roles in skeletal development and homeostasis,
and is regarded as a promising anabolic pathway for treating
osteoporosis and promoting bone regeneration. Researchers
found that activated Hh signaling in macrophages can strongly
inhibited RANKL-induced TRAP+ osteoclast production, F-actin
ring formation, osteoclast-specific gene expression, and osteoclast
activity in vitro. Mechanistic study revealed that activation of Hh
signaling suppressed RANKL-induced activation of JNK pathway
and downregulated protein levels of two key osteoclastic
transcriptional factors, c-Fos and its downstream target
NFATc1 (Zhang L. et al., 2020). In mouse/human bone
specimens and mouse primary BMMs, miR-128 levels were
found to be positively linked with higher Nfatc1 levels and
findings reveal a key mechanism of osteoclastogenesis
mediated by the miR-128/SIRT1/NF-κB signaling axis (Shen
et al., 2020). Exosomes, also known as extracellular vesicles,
are naturally occurring, biocompatible, and bioacive
nanoparticles ranging from 40 to 150 nm in diameter, which
play important roles in bone homeostasis. Endothelial cell (EC)-
secreted exosomes (EC-Exos) show more efficient bone targeting
than osteoblast-derived exosomes or bone marrow mesenchymal
stem cell-derived exosomes (Song et al., 2019). EC-Exos can
inhibit osteoclast activity in vitro and inhibit osteoporosis in
an ovariectomized mouse model (Song et al., 2019). Breast cancer
exosomes contribute to osteoclast differentiation and promote
bone metastasis of tumor cells (Yuan X. et al., 2021). CD137 can
also promote bone metastasis of breast cancer by enhancing the
migration and osteoclast differentiation of monocytes/
macrophages (Jiang et al., 2019). In addition, high glucose,
osteoblast-derived OPG, and notch signaling pathways were
found to stunt osteoclast differentiation (Hu et al., 2019;
Cawley et al., 2020; Ganguly et al., 2020). Irisin, melatonin,
oleuropein and loureirin B also have regulatory effects on
osteoclast differentiation (Ikegame et al., 2019; Liu et al., 2019;
Estell et al., 2020; Rosillo et al., 2020). Two widely used drugs for
the treatment of erectile dysfunction, tadalafil and vardenafil,
trigger an increase in bone mass in mice through a combination
of anabolic and anti-resorptive effects on bone, inhibiting the
target enzyme, phosphodiesterase 5A (PDE5A) mechanistically
(Kim S.-M. et al., 2020).

3 OSTEOCLAST APOPTOSIS

3.1 Pathways of Apoptosis
Apoptosis in osteoclasts can be triggered by either the extrinsic
(death receptor) or internal (mitochondria) pathways
(Hengartner, 2000). Both pathways can activate caspase, which
can induce apoptosis by cleaving specific substrates (Xing and
Boyce, 2005). In addition to the above 2 classical apoptotic
pathways, there are more new insights about osteoclast
apoptotic pathways in recent years. Osteomorphs are a unique
cell type from osteoclasts and macrophage progenitors
(McDonald et al., 2021). Osteomorphs are produced by the
fission of osteoclasts into smaller, more motile daughter cells
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that possess the ability to fuse to form new osteoclasts (McDonald
et al., 2021). In contrast to osteoclasts that are attached to bone,
osteomorphs are found in the bone marrow and blood
(McDonald et al., 2021). Osteoclasts recycle via osteomorphs
during RANKL-stimulated bone resorption was found recently
(McDonald et al., 2021). Mature osteoclasts seperate into smaller
osteomorphs allow them to persist and survive for extended
periods of time until they are required again (McDonald et al.,
2021). Accordingly, osteomorphs can re-fuse into multinucleated
osteoblasts under the right conditions. This approach bypasses
the traditional apoptotic pathway and provides a new insight into
the destination of mature osteoclasts. Protective autophagy has
long been thought to have an anti-apoptotic effect. Paradoxical
effects of IL-17A on osteoclastogenesis reveal the relationship
between autophagy and osteoclast apoptosis. It is well accepted
that protective autophagy has an anti-apoptotic
effect.Researchers revealed a phenomenon that OCPs’
apoptosis was differently modulated by various concentrations
of IL-17A: apoptosis was promoted by high concentrations of IL-
17A, whereas it was inhibited by low concentrations of IL-17A
(Xue et al., 2019). However, apoptosis was decreased and
autophagy was activated by over-expression of Beclin1 under
high levels of IL-1 7A (Xue et al., 2019). Beclin1 silencing not only
inhibited autophagy, but also up-regulated apoptosis in presence
of low levels of IL-1 7A (Xue et al., 2019). Further research found
autophagy enhances osteoclastogenesis by degrading TRAF3
(Xue et al., 2019). Therefore, Beclin1-autophagy-TRAF3
signaling pathway is regard as a novel pathway to regulate
osteoclast apoptosis.

3.2 Pro-Apoptotic Factors
In addition to the traditional pro-apoptotic factors such as
transforming growth factor B (TGF-B), estrogen,
bisphosphonates, denosumab and raloxifene, many other
factors have been identified in recent years. Long-term
exposure to cadmium (Cd) results in reduced expression of
P2X7, which inhibits the P2X7-PI3K-AKT signaling pathway,
thereby further promotes osteoclast apoptosis (Ma et al., 2021).
The newly characterized gene Merlot, which encodes a highly
conserved yet uncharacterized protein in vertebrates, is an
important regulator for termination of osteoclastogenesis via
induction of apoptosis (Yamakawa et al., 2020). Krox20/EGR2
is a zinc-finger transcription factor associated with hindbrain
development, neuromyelin formation and tumor suppression
(Yamakawa et al., 2020). Recent studies have demonstrated
that this factor promotes apoptosis in osteoblasts and has a
significant sex dimorphism: the phenotype is restricted to
females (Yamakawa et al., 2020). Tussilagone (Ryoo et al.,
2020), triptolide (Wang et al., 2019) and W9 peptide (Kou
et al., 2021) are also important factors in promoting osteoclast
apoptosis.

3.3 Anti-Apoptotic Factors
For osteoclasts, classical anti-apoptotic factors include p65
protein, M-CSF, RANKL, TNF, IL-1, IL-3 and VEGF-A. In
addition to the above, src inhibitors cause osteoclast apoptosis,
but Src−/− mice osteoclast apoptosis does not increase because

other factors compensate (Xing and Boyce, 2005). PTH and
1,25(OH)2-VitD3 can stimulate the expression of RANKL and
reduce the expression of osteoprotegerin (OPG) to prevent
osteoclast apoptosis, and their local concentration plays a
decisive role in determining the survival and formation of
osteoclasts (Gori et al., 2000). New study shows that
myeloid-specific deletion of Sirt6 led to decreased ERα
protein level and apoptotic cell death in preosteoclasts, which
indicates sirtuin 6 in preosteoclasts suppresses age- and estrogen
deficiency-related bone loss by stabilizing estrogen receptor α
(Moon et al., 2019).

3.4 Other Factors
While Fas is the major receptor for FasL, another member of the
TNFRs, decoy receptor 3 (DcR3), also acts as a decoy receptor for
FasL (Yang et al., 2004). DcR3 is a molecule that binds and blocks
numerous TNF family proteins, not simply FasL, in a competitive
manner. According to reports, DcR3 serves as a ligand, inducing
macrophage transformation into osteoclasts. DcR3 also
suppresses the production of osteoclasts triggered by RANKL
via inhibiting the NF-kB and NFATc1 pathways (Cheng et al.,
2013), thereby acting as a regulator of osteoclast apoptosis.
osteoclasts could be induced to apoptosis by OPG produced
by osteoblasts. On the other hand, OPG can bind to and block
TNF-related apoptosis-inducing ligand (TRAIL), which causes
osteoclast apoptosis. Through this mechanism, OPG appears to
inhibit osteoclast apoptosis in vitro (Chamoux et al., 2008) but
whether this mechanism affects in vivo needs further study. The
effect of IL-17A on osteoblast apoptosis was dose-dependent,
with high concentrations promoting apoptosis and low
concentrations inhibiting it (Xue et al., 2019) Apoptotic bodies
(ABs) traditionally considered as garbage bags that enclose
residual components of dead cells are gaining increasing
attentions due to their potential roles in intercellular
communications (Ma et al., 2020). Both gene set and
functional analysis indicated that osteoclast derived ABs are
biologically similar with the parental cells suggesting their role
in promoting bone defect healing (Ma et al., 2020). Currently,
treatments targeting osteoclast-targeted apoptosis have been
shown to alleviate a variety of diseases, including osteoarthritis
(Deng et al., 2021).

4 COUPLING SIGNALS BETWEEN
OSTEOCLAST AND OSTEOBLAST

Bone remodeling is critical for repairing and replacing damaged
or aging bone. The temporal and spatial synchronization of bone
resorption with bone formation is referred to as coupling during
bone remodeling. The intricate interactions of osteoclasts and
osteoblasts maintain bone homeostasis. Diverse processes
mediate the coupling of bone formation to resorption during
remodeling. To accomplish coordination between bone
formation and resorption during bone remodeling,
communication between osteoclasts and osteoblast lineage
cells, as well as interactions with the canopy and the reversal
phase, are essential. (Figure 4).
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4.1 Membrane-Bound Coupling Signals
4.1.1 Gap Junction
Bone lining cells (BLCs) cover inactive (nonremodeling) bone
surfaces, particularly evident in the adult skeleton. BLC’s are
thinly extended over bone surfaces, have flat or slightly ovoid
nuclei, connect to other BLCs via gap junctions, and send cell
processes into surface canaliculi. BLCs, an osteoblast subset, have
been shown to connect with bone-bound osteoclasts (Everts et al.,
2002). The interaction between those two cells is crucial for
osteoclastogenesis to begin (Everts et al., 2002). A transmission
electron micrograph also revealed that mature osteoclasts and

osteoblasts have direct contact and that cell-cell contact occurs at
the basic multicellular level (Matsuo and Irie, 2008).

4.1.2 EFNB4(Ephrin B2)/EPHB4
Osteoblasts and osteoclasts interact through cell-to-cell direct
contact during bone remodeling (Everts et al., 2002). Ephrin
signaling can mediate this interaction (Zhao et al., 2006; Takyar
et al., 2013; Tonna et al., 2016). Ephrin B (B1∼B3), the cell-surface
molecules, interacts with EPHB (B1∼B6), which is their cognate
receptors. The Ephrin B protein family is made up of
transmembrane proteins that have cytoplasmic domains,

FIGURE 4 | Coupling signals between osteoclast and osteoblast. To accomplish coordination between bone formation and resorption during bone remodeling,
communication between osteoclasts and osteoblast lineage cells, as well as interactions with the resorption pit and others are essential. Coupling signals between
osteoclast and osteoblast can be classified into five categories; The membrane-bound coupling signals are mainly composed of five coupling signals: gap junction,
EFNB2/EPHB4, NRP1/SEMA3A, FAS/FASL, RANK/RANKL; Soluble coupling signals released from osteoblast mainly refer to the soluble factors acting on
osteoclasts released by osteoblasts such as sRANKL, M-CSF,WNT5A,WNT16, OPG, LPA, CT-1, OncostatinM, SLT3, CXCL16; Soluble coupling signals released from
osteoclast mainly refer to the soluble factors acting on osteoblasts released by osteoclasts such as SEMA4D, SIP, CTHRC1, C3, Sclerostin, WNT10B, BMP6, Vesicular
coupling factors; Matrix-derived coupling signals are factors released by matrix which is mediated by osteoclast degradation during bone resorption such as TGF-B1,
IGF-1, PDGF-BB; Vesicular coupling signals mainly refers to exosomes, microvesicles, and apoptotic bodies. These membrane-containing EVs can deliver proteins,
lipids and mRNAs through exocytosis and endocytosis to promote coupling. Furthermore, the resorption pit, cellular canopy, and reversal phase could also play a role in
the coupling between osteoclast and osteoblast.
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mediating bidirectional signal transduction by interacting with
EPHB-expressing cells. Ephrin B2 (EFNB2) located on the
osteoclast membrane, binds to the EPHB4 receptor on the
surface of osteoblasts. It is believed that EPHB4-mediated
activation of EFNB2 initiates backward signaling (from
osteoblast to osteoclast), which reduces osteoclast development
by inhibiting the osteoclastogenic c-Fos/NFATc1 signaling
pathway. Forward signaling (from osteoclast to osteoblast) is
enhanced by EFNB2-induced activation of EPHB4, which
promotes osteoblast development while inhibiting apoptosis
(Tonna et al., 2014). Correspondingly, in a transgenic mouse
model, excessive expression of EPHB4 in osteoblasts also
enhances bone density (Zhao et al., 2006).

4.1.3 FASL/FAS
FASL/FAS pathway is one of the two primary pathways on
osteoclast apoptosis, and estrogen-induced osteoclast apoptosis
is mediated by this mechanism. Estrogen-induced upregulation
of FASL in osteoblasts causes pre-osteoclast apoptosis, indicating
that the survival of osteoclasts is aided by a paracrine signal
produced by osteoblasts. Furthermore, conditional deletion of
Fasl in osteoblasts increases the number and function of
osteoclasts, leading to a reduction in bone density (Wang
et al., 2015).

4.1.4 Semaphorin 3A (SEMA3A)/NRP1
Axonal growth cone guidance molecules are known as
semaphorins, which are found in a wide range of tissues, such
as the brain and skeleton (Negishi-Koga et al., 2011). Although
SEMA3A is involved in the formation of central nervous system
components, several studies suggest that it is also involved in
bone modeling and remodeling (Behar et al., 1996; Fukuda et al.,
2013). In vivo, sensory neuron-derived SEMA3A is needed for
normal bone growth, according to certain studies (Fukuda et al.,
2013). Additional research has identified that SEMA3A secreted
by osteoblast inhibits osteoclast differentiation and promotes
bone formation (Hayashi et al., 2012). They also discovered
that when NRP1 expression was suppressed by short shRNA,
SAMA3A’s inhibitory effect on osteoclast development was
eliminated, demonstrating that SAMA3A suppresses
osteoclastogenesis by binding to NRP1. By the WNT/B-catenin
pathway, its binding to NRP1 reduces RANKL-induced osteoclast
differentiation and promotes osteoblast differentiation (Hayashi
et al., 2012).

4.1.5 RANKL/RANK
Outside-in or reverse signaling within osteoblasts by RANKL is
another membrane-bound coupling activity that has just been
discovered. When it was observed that a RANKL-binding agent
that inhibited osteoclast production also improved bone
formation in vivo and encouraged osteoblast differentiation
in vitro, this mechanism was discovered (Adams et al., 2006).
Knocking down Rankl in the target osteoblastic cells prevented
the latter impact, implying that RANKL signaling inside
osteoblast precursors was to blame (Adams et al., 2006). This
was validated in an inflammatory arthritic animal model, where
the RANKL-binding agent both inhibited bone resorption and

encouraged bone formation (Kato et al., 2015). Understanding
the mechanisms is especially essential now that anti-RANKL
treatment for osteoporosis is becoming more widely used. Recent
research has found that, while RANKL reverse signaling is a
membrane-bound activity, it is mediated via the release of
extracellular vesicles (EVs) from the osteoclast rather by
cell–cell interaction.

4.2 Soluble Coupling Signals Released From
Osteoblast
4.2.1 sRANKL
Soluble RANKL (sRANKL), which is secreted by osteoblasts, could
connect with its receptor RANK, which is present on OCPs,
activating downstream signaling pathways involved in cell
development and maturation. Mice lacking RANK or sRANKL
have identical phenotypes, suggesting that the sRANKL/RANK
signaling axis is critical for bone remodeling (Kong et al., 1999; Li
et al., 2000). In mice, the omission of sRANKL leads to serious
osteopetrosis because of lack of osteoclasts, whereas overproduction
of sRANKL causes significant osteoporosis (Kong et al., 1999;Mizuno
et al., 2002). Therefore, for osteoporosis and related skeletal disorders,
inhibiting sRANKL signaling is a potential therapeutic objective.

4.2.2 M-CSF
Osteoblasts can secrete M-CSF, which binds to its receptor c-Fms
expressed onmacrophages and osteoclasts. At an early age, mice with
a thymidine insertion in theM-csf gene, which causes M-CSF deficit,
show a decrease in macrophages and osteoclasts (Kim J.-M. et al.,
2020). Nevertheless, these traits vanish with age. In these mice,
application with recombinant M-CSF or generation of soluble
M-CSF from osteoblasts increases the number of osteoclasts and
alters the phenotypes of osteopetrosis, indicating that M-CSF is
needed for the generation of osteoclasts in youthful mice, but
does not rule out the possibility of compensating systems that are
not relying on M-CSF (Kim J.-M. et al., 2020).

4.2.3 WNT5A
The WNT system regulates osteoblastogenesis and
osteoclastogenesis via both B-catenin-dependent (canonical)
and -independent (noncanonical) mechanisms, which are both
important for maintaining bone balance. WNT5A, a
noncanonical WNT ligand, is highly produced in osteoblasts
and combines with the tyrosine kinase-like orphan receptor 2
(ROR2) on osteoclast membranes (Oishi et al., 2003). WNT5A
enhances RANKL-induced osteoclastogenesis by activating the
Jun–N-terminal kinase (JNK) MAPK cascade, which upregulates
RANK expression in osteoclasts. The conversion of bone
marrow-derived monocytes (BMM) into mature osteoclasts
was hindered in mice with heterozygous ablation of Wnt5a or
Ror2. Mice with osteoblast-targeted knockout of Wnt5a or
osteoclast-target knockout of Ror2 showed similar
abnormalities in osteoclastogenesis (Movérare-Skrtic et al., 2014).

4.2.4 WNT16
In humans, theWNT16 gene is tightly correlated to cortical bone
thickness, BMD, and fracture risk. WNT16 is mainly derived
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from osteoblasts, and it is almost not expressed in osteoclasts
(Movérare-Skrtic et al., 2014). WNT16 has a direct and indirect
inhibitory effect on osteoclastogenesis. WNT16-induced JUN
phosphorylation enhances OPG expression in osteoblasts,
allowing for both direct and indirect inhibition of
osteoclastogenesis via the noncanonical JNK MAPK cascade
(Kim J.-M. et al., 2020). Researches have shown that Wnt16
deletion causes a specific loss in cortical bone density and an
increase in cortical porousness, as well as spontaneous fractures
with no trabecular bone changes.

4.2.5 OPG
OPG, also known as osteoclastogenesis inhibitory factor
(OCIF), is a secreted glycoprotein produced by cells in the
lungs, liver, and spleen (Simonet et al., 1997; Yasuda et al., 1998;
Li Y. et al., 2007). B cells have been found to be the predominant
source of OPG in mouse bone marrow, accounting for 64% of all
bone marrow OPG production (Li X. et al., 2007). OPG, as a
decoy receptor, could bind to RANKL and block its binding to
RANK. As a result, the primary signaling pathway of osteoclast
differentiation and activation was shut down. Osteopetrosis is
observed in mice over-expressing OPG due to the absence of
osteoclasts (Simonet et al., 1997). Tnfrsf11b (OPG) knockout
mice have osteoporosis as a result of uncontrolled osteoclasts
(Bucay et al., 1998).

4.2.6 LPA
LPA is a bioactive phospholipid produced by a variety of cells,
such as osteoblasts and activated platelets. Osteoblast-derived
LPA could adjust osteoclast formation and apoptosis
(Panupinthu et al., 2008). In osteoclasts, the LPA receptors
LPA1, LPA2, LPA4, and LPA5 are expressed at differing
proportions (Del Fattore et al., 2008). The binding of LPA to
the receptor has the potential to control calcium signaling and
cause NFATc1 nuclear accumulation in osteoclasts (Lapierre
et al., 2010) which enhances OCPs fusion and promotes
osteoclastogenesis (David et al., 2010; McMichael et al., 2010).
LPA was also found to suppress osteoclast apoptosis and induce
morphological changes in mature osteoclasts (Lapierre et al.,
2010).

4.3 Soluble Coupling Signals Released From
Osteoclast
4.3.1 Semaphorin 4D (SEMA4D)
Sema4D is a molecule involved in axon guidance that is
significantly expressed in osteoclasts (Negishi-Koga et al.,
2011). SEMA4D, which is produced by osteoclasts, binds to
Plexin-B1 on the membrane of osteoblasts and prevents their
differentiation (Negishi-Koga et al., 2011). Mechanistically,
SEMA4D binding to PLXNB1 triggers the small GTPase
RHOA, suppressing osteoblast differentiation by inhibiting
insulin-like growth factor-1 (IGF-1) signaling (Kim J.-M. et al.,
2020). Sema4D may also influence the localisation of osteoblasts
to a specific location by inducing osteoblast migration via RhoA
activation (Zhang et al., 2015). Sema4d-deficient mice had
significantly higher bone density, trabecular thickness, and

bone strength than wild-type mice, according to research.
Anti-SEMA4D antibody treatment prevents bone loss and
encourages bone development in a mouse model of
postmenopausal osteoporosis without influencing osteoclast-
mediated bone resorption, indicating that SEMA4D may be a
possible pharmacological object for osteoporosis and other
decreased bone density diseases (Pederson et al., 2008).

4.3.2 Cardiotrophin-1 (CT-1)
Although the number of osteoclasts inmice with totalCt-1 deletion
is high, their resorptive efficiency and bone formation are low,
suggesting that coupling factor production is reduced (Walker
et al., 2008). CT-1 was found in osteoclasts in situ and has been
demonstrated to induce osteoblast development in vitro and bone
growth in vivo (Walker et al., 2008). Despite the fact that the
biological source of CT-1 within bone appears to be limited to
osteoclasts, CT-1 stimulates bone formation via several pathways.
These include actions on early precursors to promote osteoblast
development at the expense of adipogenesis (Walker et al., 2008)
and actions on osteocytes to inhibit sclerostin synthesis (Walker
et al., 2010). CT-1 also promotes the expression of RANKL in the
osteoblast lineage, which encourages the production of osteoclasts
(Richards et al., 2000). As a result, CT-1 has a variety of effects,
including coupling factor activity.

4.3.3 Sphingosine 1 Phosphate (S1P)
Sphingosine is phosphorylated by sphingosine kinase (SPHK) to
produce sphingosine 1 phosphate (S1P), which stimulates
osteoblastogenesis (Pederson et al., 2008; Ishii et al., 2009).
RANKL stimulation on OCPs can increase S1P production
and S1P attaches to the S1P receptor found on osteoblasts,
causing them to migrate and survive more. The expression of
RANKL is then upregulated by S1P-activated osteoblasts,
resulting in promoting osteoclast formation (Ryu et al., 2006).
Additional researches have revealed that S1P is involved in the
control of osteoclastogenesis as well as communication between
osteoclasts and osteoblasts or T cells (Ryu et al., 2006).

4.3.4 Collagen Triple Helix Repeat Containing 1
(CTHRC1)
The soluble molecule CTHRC1 is generated by mature
osteoclasts, which stimulates osteoblast differentiation in
stromal cells (Takeshita et al., 2013). Although the CTHRC1
receptor in osteoblast has yet to be detected, recombinant
CTHRC1 can promote bone formation by causing stromal cell
recruitment and osteoblastic differentiation. Correspondingly,
Cthrc1 deletion in osteoclasts causes reduced bone density and
impaired bone production. As mature osteoclasts come into
touch with hydroxyapatite and calcium, Cthrc1 expression
increases, according to new research (Takeshita et al., 2013).

4.3.5 Complement Component C (C3)
During osteoclastogenesis, C3 expression is increased, and C3
generated from osteoclasts is degraded to C3a, resulting in the
induction of osteoblastogenesis (Matsuoka et al., 2014). C3a binds
to its receptor expressed on stromal cell lines and primary
calvarial osteoblasts. A C3a receptor (C3AR) antagonist
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reduces the osteogenic activity of conditioned medium derived
from osteoclast, whereas a C3AR agonist stimulates osteoblast
differentiation. The expression of C3 in bone is significantly
increased in ovariectomies (OVX)-induced osteoporosis, and a
C3aR antagonist prevents bone formation in OVX mice, which
suggests C3a might regulate the pairing of bone resorption to
production in a high turnover model (Matsuoka et al., 2014).

4.3.6 Other Factors
WNT/B-catenin signal is one of the important signals regulating
cell proliferation and differentiation, and WNT10B is a ligand of
WNT/B-catenin signal (Chen et al., 2017). WNT10B induces
osteoblast maturation and causes human bone marrow stromal
cells to become more mineralized through activating the canonical
WNT signaling pathway (Bennett et al., 2005; Pederson et al.,
2008).Wnt10b-deficientmice have lower trabecular bonemass and
osteocalcin levels in their blood (Pederson et al., 2008). Sclerostin,
which is encoded by the SOST gene, is an anti-anabolic protein that
inhibits bone growth (Balemans et al., 2001;Winkler et al., 2003). A
study found that sclerostin is generated in osteoclasts of elderly
mice (Ota et al., 2013). Mechanistically, Sclerostin inhibited the
function of BMP6 and BMP7 inmouseMC3T3-E1 cells by binding
to them with high affinity (Kusu et al., 2003). Human
mesenchymal stromal cells migrate and mineralize in the
presence of BMP6 in osteoclast-conditioned media, indicating it
may play a role in coupling osteoclasts and osteoblasts in addition
to Vesicular RANK (Pederson et al., 2008). OncostatinM, SLT3,
CXCL16 also factors secreted by osteoclasts (Sims and Martin,
2020).

4.4 Matrix-Derived Coupling Signals
4.4.1 TGF-B1
One of the most prevalent proteins in the bone matrix, TGF-B1,
modulates osteoblasts and osteoclasts, assisting to remodel the
bone (Kim J.-M. et al., 2020). TGF-B1 is non-covalently binding
to the bone matrix protein latency-associated protein (LAP),
which maintains it dormant by hiding the TGF-B1 receptor-
binding regions (Dallas et al., 1994; Sengle et al., 2011). As a
result, TGF-B1 resides inactive in the bone matrix until it is
secreted during osteoclastic bone resorption (Tang et al., 2009).
The bone mesenchymal lineage cells are then recruited by
functional TGF-B1, leading them to move to resorptive sites
and develop into bone-forming osteoblasts.

4.4.2 IGF-1
The insulin-like growth factor is an important regulator of
osteogenesis (Bautista et al., 1990). Among them, insulin-like
growth factor 1 (IGF-1) is the most plentiful growth factor in the
bone matrix, capable of maintaining bone mass in adults.
Mechanically, the acidic environment during bone resorption
activates IGF-1, and activated IGF-1 stimulates the osteoblast
differentiation of recruited mesenchymal stem cells (MSC) by
activating the mammalian target of rapamycin (mTOR), thus
keeping apt bone microstructure and quality (Xian et al., 2012).
Mice lacking the IGF-1 receptor (IGF-1R) in preosteoblast cells
have lower bone mass and mineral deposition rates than wild-
type mice, according to relevant research.

4.4.3 PDGF-BB
Another growth factor that could play a role in the coupling
mechanism is homodimeric platelet-derived growth factor, which
is made up of two B units (PDGF-BB). Both osteoblasts and
osteoclasts produce PDGF-BB, which is also released from the
matrix (Canalis, 2021). The ability of PDGF-BB to induce blood
vessel formationmay also provide progenitor cells for later
differentiation into osteoblasts and bone formation (Xie et al.,
2014).

4.5 Vesicular Coupling Signals
Cells express a variety of membrane-containing EVs, such as
exosomes, microvesicles, and apoptotic bodies (van der Pol et al.,
2012). EVs are discharged from the cell via exocytosis and can
connect with target cell surface receptors as well as transfer
intracellular components such as proteins, lipids, messenger
RNAs (mRNAs), and microRNAs to the target cell’s cytosol
via endocytosis. The target cell could be proximate, or the EVs
could be delivered to a more distant place, including possible
circulation. EV transport of membrane-bound RANK and
microRNAs may represent additional coupling mechanisms
within the BMU. EVs have been reported to be released by
osteoclasts. (Huynh et al., 2016): Exosomes were discovered in
cell cultures containing both osteoclast progenitors and
developed osteoclasts using electron microscopy. A small
percentage of these EVs were enriched for RANK on the
membrane and suppressed osteoclast formation in vitro.
Recently, it was discovered that such vesicles containing
RANK produced by mature osteoclasts increased bone
production by triggering RANKL reverse signaling to activate
Runx2 (Ikebuchi et al., 2018). This would imply that EVs
enriched for RANK on their cellular membrane could
stimulate reverse RANKL signaling in the early osteoblast lineage.

5 OTHER MECHANISMS TO PROMOTE
COUPLING

5.1 The Effect of the Resorption Pit
The ways by which osteoclasts transmit coupling signals are not
restricted to matrix release, signaling molecule secretion, or
microvesicle release. Osteoclasts also transmit signal by leaving
a resorptive pit once resorption is complete. Once attracted to the
resorbed bone surface, osteoblast lineage cells may detect changes
in topography. When rat calvarial cells were cultivated on bone
slices having crevices created by osteoclasts or mechanically
excavated grooves, the cells produced bone preferentially in
those flaws, filling them to a flat surface (Gray et al., 1996).
This shows that, while chemicals may be necessary to bring cells
to the surface, it is the architecture of the bone that directs them.
Osteoclasts exert remote control over osteoblast activity by
defining the size and shape of the resorptive pit to be filled.
Once this process is begun, the participating cells must also detect
the spatial limitations and communicate with one another via
chemical communication when the space has been filled. This
may entail gap junctions or communication processes between
osteoblasts that are dependent on cell contact (Tonna and Sims,
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2014). Because these in vitro studies used bone lacking osteocytes
(Gray et al., 1996), the osteocytes are not necessary for osteoblasts
to respond to topographic clues, at least in vitro. They may,
however, have a distinct role during the in vivo filling of pits left
by osteoclasts. Osteocytes detect and respond to mechanical
strain via their fluid-filled lacunocanalicular network of
communication channels. This highly complex communication
system (Buenzli and Sims, 2015) might provide an additional
coupling mechanism.

5.2 A Cellular Canopy as a Mechanism to
Promote Coupling
Researchers first postulated the existence of a cellular canopy that
arises during the onset of remodeling and extends over the active
BMU. Hauge took many years to identify the bone remodeling
compartment (BRC) in human biopsies (Hauge et al., 2001). It
was proposed that lining cells detached from the bone surface at
the beginning of the remodeling cycle and established a distinct
compartment that migrated with the osteoclast throughout the
remodeling cycle.

BRCs were postulated to involve sinusoidal endothelial cells
and to function as a component of the circulatory system. The
vasculature’s link to the BRC provided a pathway for osteoclast
precursors or even partially differentiated inactive osteoclast
precursors (Mizoguchi et al., 2009). Capillaries linked with the
canopy also enable for the entry of other cells, such as
mesenchymal precursors (Eghbali-Fatourechi et al., 2007),
immunological, and endothelial cells.

The canopy, it has been proposed, not only creates a separate
BRC but is also essential for the reversal phase to be completed.
This is based on the finding of incomplete canopies at locations
of reversal phase halt in biopsies from osteoporotic patients;
these are unusual regions of uncoupling where bone formation
is not detected after bone resorption (Andersen et al., 2014;
Jensen et al., 2015). It’s possible that the canopy keeps local
coupling factor concentrations high enough to facilitate
precursor recruitment or drive osteoblast differentiation and
bone formation. Osteoblast lineage cells, osteoclasts, endothelial
cells, vascular cells, and immune cells may exchange factors and
impact precursors given by the related vasculature in this BRC
(Kristensen et al., 2013); neuronal cells may also come into close
contact with the canopy at active remodeling locations,
according to recent research (Sayilekshmy et al., 2019). It’s
also been suggested that the osteoblast lineage cells that
make up the canopy contain target cells for coupling activity
(Delaisse, 2014), which could be a way by which membrane-
bound osteoclast-derived substances come into touch with
osteoblast precursors or perhaps the canopy cells themselves.
In this situation, the signal to bone lining cells in touch with the
osteoclast to raise the canopy would contribute to the coupling
process.

5.3 The Reversal Phase
The reversal phase is the stage between bone formation and bone
resorption. Bone lining cells were discovered at the bottom of
resorption pits near the end of resorption, where they clear

demineralized collagen to pave the pits for the involvement of
osteoblasts to produce bone (Villanueva et al., 1986; Everts et al.,
2002). This discovery opened the possibility that they could be
stimulated to become matrix-producing osteoblasts, as seen on
bone surfaces in PTH-treated animals (Kim et al., 2012). When in
situ hybridization and immunohistochemistry were utilized in
BMUs from human trabecular and Haversian (cortical) bone, the
possibility was confirmed (Abdelgawad et al., 2016; Lassen et al.,
2017). From lining cells near osteoclasts to plump, active
osteoblasts near bone-forming surfaces, there was a consistent
transition in marker expression and cellular morphology
(Abdelgawad et al., 2016). This points to a reversal phase in
which osteoblast differentiation proceeds until a sufficient mass
of mature osteoblasts is achieved, after which matrix formation
takes place (Abdelgawad et al., 2016).

On the reversal phase surface, smaller than typical osteoclasts
were found sparsely scattered amid the osteoblast lineage cells,
which was a novel finding. Their numbers fell as they got further
away from the resorption pit, showing that they were dwindling
in numbers following resorption. These osteoclasts are expected
to signal neighbouring osteoblast lineage cells through any of the
following mechanisms: matrix-derived protein release, protein
secretion, EV release, and, most crucially, membrane-bound
protein expression, given their likely interaction with
osteoblast lineage cells. Because of the dispersed nature of
osteoclasts on the reverse surface, membrane-associated
signalling may be a small factor, but they may produce
activities that aid in the osteoblast differentiation that appears
to be occurring there (Lassen et al., 2017). The discovery of the
reversal phase complicates the simple model of bone remodeling
and the role of the reversal phase still needs to be further explored.

6 BEHAVIOR CHANGES OF OSTEOCLAST

The behavior of osteoclasts is regulated by several factors.
Recently, the incidence of senile osteoporosis and
postmenopausal osteoporosis has been increasing year by year,
suggesting that aging and gender may be important factors
contributing to changes in osteoclast behavior. In the next
sections, we will discuss aging-induced or sex-associated
behavior changes of osteoclast separately.

6.1 Aging-Induced Behavior Changes of
Osteoclast
Cellular senescence, defined as the exit from the cell cycle
accompanied with the acquisition of the senescence related
secretory phenotype, plays a crucial role in health and illness,
as well as embryonic tissue remodeling (Gorissen et al., 2018). An
excess of bone resorption is a characteristic of bone aging. The
osteoclast is a component of bone tissue that is responsible for
bone resorption. In human marrow cells, there are age-related
variations in the expression of osteoclast differentiation factors
and receptors such RANKL/RANK/OPG and M-CSF (Chung
et al., 2014). Sclerostin is produced by osteoclasts in aged mice,
which may contribute to bone formation deficiency in the elderly.
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(Chung et al., 2014). Osteoclasts require relatively low levels of
ROS for differentiation and activity. Caspase-2 deficiency
increases oxidant resistance, as seen by decreased oxidative
stress-induced osteoclast apoptosis. Caspase-2 regulates bone
homeostasis by prompting oxidatively damaged osteoclasts to
apoptose (Sharma et al., 2014). Unlike the decline of osteoblast
function, osteoclast activity is maintained and even reactivated
during senescence because of reactive oxygen species (ROS)
production. ROS increases with advancing age, in part because
the ability of cells to scavenge ROS decreases progressively with
lifespan (Sharpless and DePinho, 2007). The behavior and
development of osteoclasts are regulated by ROS, which has
been known for many years (Garrett et al., 1990; Bax et al.,
1992; Steinbeck et al., 1994; Darden et al., 1996; Lee et al., 2005).
Exogenous ROS exposure especially H2O2 causes the RANK
signaling cascade to become activated, resulting in the
development of osteoclasts (Bax et al., 1992), whereas RANKL
initiation causes the synthesis of endogenous ROS, which
subsequently function as a second messenger to cause
conversion into osteoclast (Callaway and Jiang, 2015). RANKL
could enhance the level of intracellular ROS throughout
osteoclastogenesis through initiating signaling pathways that
include tumor necrosis factor receptor (TNFR)-associated
factor 6 (TRAF6) and Nox1 (Lee et al., 2005). There is
increasing evidence that the activities of important osteoclast
transcription factors such as NF-kB and NFATc1 may also be
influenced by ROS (Liu et al., 2019). Furthermore, the production
of ROS by RANKL-stimulated osteoclasts has been shown to
suppress the synthesis of antioxidant proteins like catalase (CAT)
and superoxide dismutase (SOD) (Park et al., 2014). As a result,
ROS could be regarded as a crucial signaling messenger during
osteoclastgenesis.

EV-mediated signaling also play a role in osteoclast aging. A
recent study has shown that EV generated from osteoclasts can
transfer miR-214-3p to osteoblasts and suppress osteogenesis in vitro
and in vivo (Li D. et al., 2016). Elevated expression of miR-214-3p in
human bone biopsies was linked to increased serum exosomal miR-
214-3p, and serum miR-21-3p levels were higher in elderly patients
with fractures compared to age-matched controls without fractures,
according to their findings. They also discovered that females’ serum
levels of miR-214-3p increased with age, regardless of fracture status.
Themain source of serum exosomal miR-214-3p was osteoclasts, not
osteoblasts. In an elderly mouse model of ovariectomy-induced bone
loss, elevated osteoclastic and serum miR-214-3p were also linked to
lower bone formation rates. Inhibition of miR-214-3p with an
osteoclast-targeted antagomir enhanced bone production in mice,
while targeting miR-214-3p overexpression to osteoclasts decreased
bone formation. Based on this, there is a clear need for future studies
to further delineate the role of exosomes in osteoclast in aging as well
as studies aimed at understanding the mechanisms governing their
release and uptake by cells (Qin and Dallas, 2019).

Recent findings identify a novel Cx43/miR21/HMGB1/
RANKL pathway involved in osteoclast formation/recruitment
(Davis et al., 2017). This pathway becomes impaired with age,
resulting in increased osteoclastogenesis.

Sirtuin-3 (Sirt3) is an important metabolic regulatory enzyme
that activates mTOR signaling and thus promotes

osteoclastogenesis (Ho et al., 2017). Notably, Sirt3 expression
is increased in osteoclasts during aging, suggesting that Sirt3
promotes age-related bone loss (Ho et al., 2017). Reduced TLR4
expression on the surface of osteoclast precursors and expansion
of the osteoclast precursor pool also contribute to the aging-
induced increase in osteoclast activity (Cao et al., 2005; Akkaoui
et al., 2021). Aging of bone increased CATK-mediated
osteoclastic resorption by 27% (Panwar et al., 2015).
Macrophage/osteoclast-specific deletion of Smo in mice was
found to attenuate the aging phenotype characterized by
trabecular low bone mass, suggesting that blockage of the Hh-
signaling pathway in the osteoclast lineage plays a protective role
against age-related bone loss (Kohara et al., 2020). Hypoxia
negatively affects osteoclast senescence and delays osteoclast
formation (Gorissen et al., 2018). In terms of cells, elimination
of OCPs had no significant effect on age-related bone loss (Kim
et al., 2019) whereas macrophages promoted osteoclast
production during aging (Kanagasabapathy et al., 2020).
Furthermore, doxercalferol (DOX) (Li J. et al., 2020), Cnr1
and Cnr2 receptors (Sophocleous et al., 2017), cadherin-13
(Yang et al., 2020), GD3 Synthase (Yo et al., 2019), and
Kynurenine (Refaey et al., 2017) all have a non-negligible role
in aging osteoblasts.

6.2 Sex-Associated Behavior Changes of
Osteoclast
6.2.1 Estrogens
Osteoclasts express estrogen receptor alpha (Erα) (Oursler et al.,
1991), and targeting Erα deletion in myeloid cells, which
comprise the osteoclast progenitor, resulted in an increased
osteoclast quantity and reduced trabecular bone mass
phenotype in mice (Martin-Millan et al., 2010). The absence
of Erα in myeloid cells resulted in a bone morphology similar to
that seen in ovariectomized animals. Additionally, unlike wild
type mice, ovariectomizing these mice did not result in a further
loss in trabecular bone mass or an increase in trabecular
osteoclast quantity. These findings suggest that expression of
Erα in myeloid cells, including osteoclasts, is involved in the loss
of trabecular bone mass in mice. Surprisingly, these researchers
discovered that animals with Erα deletion in myeloid cells lost
cortical bone mass after ovariectomy (Martin-Millan et al., 2010).
As a result, it seems that Erα expression in osteoclasts does not
play a role in the loss of cortical bone mass in mice. The
researchers also proved that non-nuclear Erα binding in
myeloid cells was important for estrogen’s beneficial effects on
trabecular bone using a sequence of genetic substitutions and
particular nuclear Erα ligands.

Estrogens increase apoptosis and prevent resorption in
osteoclasts (Kameda et al., 1997) via Fas ligand (FasL), Fas
receptor (Nakamura et al., 2007; Krum et al., 2008; Kovacic
et al., 2010), and TGF-B signaling (Hughes et al., 1996;
Robinson et al., 1996). In mice with estrogen deficiency due
to ovariectomy, loss of ERα in mature osteoclasts resulted in an
increase in FasL expression (Nakamura et al., 2007). In mice
with estrogen deficiency due to ovariectomy, loss of ERα in
mature osteoclasts resulted in an increase in FasL expression
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(Martin-Millan et al., 2010). The cause of this disparity is
unknown. The effects of estrogen on osteoclast mitochondrial
oxidative phosphorylation have also been addressed (Kim H.-
N. et al., 2020). Female osteoclasts with deleted Era, but not
males, showed trabecular bone loss, which was identical to the
osteoporotic bone phenotype seen in postmenopausal women
(Nakamura et al., 2007; Martin-Millan et al., 2010).
Furthermore, estrogen increased apoptosis and raised FasL
expression in WT, but not Erα deficient mice’s trabecular bone
osteoclasts (Nakamura et al., 2007). FasL synthesis by
osteoblasts in response to estrogen has also been shown to
act as a paracrine regulator of osteoclast apoptosis (Krum et al.,
2008). Importantly, the latter authors were unable to show that
estrogen withdrawal caused overexpression of FasL in
osteoclasts. As a result, this point is still debatable.

The ability of ovariectomy and subsequent estrogen
withdrawal to lengthen the life span of osteoclasts was also
discovered to be prevented by antibody suppression of TGF-B
(Hughes et al., 1996). Interaction of Erα with the adaptor
protein breast cancer anti-estrogen resistance protein 1
(BCAR1) (Robinson et al., 2009) and production of the
tyrosine kinase Lyn in osteoclasts appear to be required for
these effects (Gavali et al., 2019). Osteoblasts, osteocytes, and
osteoclasts also express ERβ (Crusodé de Souza et al., 2009). Its
role in these cells, however, is less well understood. Estrogen
also has effects on osteoclastic bone resorption and trabecular
bone mass, but not cortical bone mass, which are mediated
through changes in the gut wall’s permeability to bacterial
metabolites and, as a response, changes in Th17 cell
population in Peyer’s patches and T cell TNF production (Li
J.-Y. et al., 2016).

6.2.2 Androgens
Males who lose their androgens experience a loss in bone mass
as well as an increase in osteoclast-mediated bone resorption.
The effect of androgens in osteoclasts is controversial.
Androgens inhibited osteoclastogenesis in cultured bone
marrow macrophages (BMMs) or RAW264.7 monocyte-
macrophage cells, according to two papers (Huber et al.,
2001; Steffens et al., 2015). Neither androgenson stromal cells
nor osteoblast-lineage cells were responsible for this effect.
Another study employing human CD14+ peripheral blood
monocytes discovered that androgens have direct and dose-
dependent effects on osteoclast production in vitro (Michael
et al., 2005). Deletion of the androgen receptor (AR), specifically
in osteoclasts, showed no effect on in vivo osteoclast surface or
bone mass, according to a more recent study (Sinnesael et al.,
2015). The AR was likewise shown to have relatively low
expression in osteoclasts by these researchers. A second
group selectively eliminated AR in either mesenchymal or
myeloid cells in mice, and discovered that mice with AR
deleted in mesenchymal cells had a rapid turnover,
osteopenic trabecular bone phenotype (Ucer et al., 2015).
Mesenchymal cells lacking the AR were also resistant to
trabecular bone loss after orchiectomy. Surprisingly, neither
of these animals (mesenchymal or myeloid AR deletion) had a
cortical bone phenotype, and both models lost the same amount

of cortical bone when orchiectomy was performed (Ucer et al.,
2015). As a result, it appears that the regulation of cortical bone
loss by androgen deficiency is independent of AR expression in
mesenchymal or myeloid cells.

6.2.3 Other Factors
Sexual dimorphism also exists in oral bacterial infections of
alveolar bone loss. Compared to women, males have a strong
inflammatory response to bacterial infection, resulting in
increased inflammatory microenvironment, reduced
pathogenic bacteria clearance and increased osteoclast-driven
bone loss in response to differential expression of key
chemokines (Valerio et al., 2017). Additionally, tungsten has
been proven to increase sex-specific osteoclast differentiation
in murine bone according to recent research (Chou et al.,
2021). Keap1 is a negative controller of the transcription
factor Nrf2 for its activity (Yin et al., 2020). The Keap1/Nrf2
signaling pathway has been considered as a master regulator of
cytoprotective genes, and exists in many cell types including
osteoblasts and osteoclasts (Yin et al., 2020). New finding
demonstrates moderating Nrf2 activation by genetic disruption
of keap1 has sex-specific effects on bone mass in mice (Yin et al.,
2020). Protein kinase C delta (PKC-δ) functions as an important
regulator in bone metabolism and conditional knockout of PKC-
δ in osteoclasts favors bone mass accrual in males due to
decreased osteoclast function (Li S. et al., 2020).
Methylphenidate is the most prescribed psychostimulant for
ADHD patients, which also participates in the sex-associated
behavior changes of osteoclast (Uddin et al., 2018).
Methylphenidate regulation of osteoclasts in a dose- and sex-
dependent manner adversely affects skeletal mechanical integrity
(Uddin et al., 2018).

6.3 Aging and Sex Steroid Deficiency Have
Independent Effects on Osteoclasts
Aging and sex steroid deficiency have independent effects on
osteoclasts (Ucer et al., 2017). The effects of sex steroid deficiency
and aging on the osteoclasts, according to a new finding, are
independent and come from different pathways (Ucer et al.,
2017). In the former, estrogen deficiency results in increased
osteoclastogenesis, a prevailing mechanism of cortical bone loss
in both genders; the mechanism behind this is likely mediated by
mesenchymal/stromal cell-derived SDF1 (Ucer et al., 2017). Loss
of cortical bone with aging is largely attributed to decreased
osteoblastogenesis caused by increased levels of H2O2, combined
with increased osteoclastogenesis caused by aging mechanisms
independent of estrogen deficiency (Ucer et al., 2017).

7 CONCLUSION AND FUTURE
PERSPECTIVES

Osteoclasts, as an important component of the bone
microenvironment, have always played an irreplaceable role in
bone homeostasis. Abnormalities in osteoclast function can lead
to abnormal bone resorption. If osteoclasts are hyperfunctional,
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they can cause degenerative bone diseases such as osteoporosis
and osteoarthritis; if they are dysfunctional or declining, they can
cause osteosclerosis. Drugs for bone-related diseases affect the
process of bone resorption by osteoclasts in three main ways:
differentiation, function, and apoptosis. Therefore, we summarize
the biological characteristics of osteoclasts in terms of
differentiation, apoptosis, behavior changes, and coupling
signals with osteoblasts based on previous studies, in this
review. Although we have a more comprehensive
understanding of osteoclasts, we still do not know the effects
of various modulators on osteoclast behavior in the systemic as
well as in the local environment and their mechanisms of action.
Additionally, we still have a lot to learn about the processes that
control osteoclast sexual dimorphic responses. Research of this
phenomena are essential because they can shed light on the
pathophysiology of metabolic bone disorders like osteoporosis
and how individuals respond to treatment. The identification of
gene targets by understanding these mechanisms may lead to
more effective treatments for metabolic diseases of the skeleton.
As for coupling signals between osteoclast and osteoblast, rather
than simply identifying potential coupling factors, it is time to
move on to the next phase. It is imperative that we spend time
understanding the kinds of mechanisms that drive the

remodeling process, and identify the aspects of those
mechanisms that can be used to intervene in human skeletal
disorders. Furthermore, we think that interactions existing
among macrophages, osteoclasts and osteoblasts contribute to
maintaining bone homeostasis. Therefore, we believe that
pathological connections among these cells in disease states
and their negative mechanisms will be a new field for further
exploration.
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