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Abstract

Objective: This study explores the prediction of near‐term suicidal behavior using

machine learning (ML) analyses of the Suicide Crisis Inventory (SCI), which mea-

sures the Suicide Crisis Syndrome, a presuicidal mental state.

Methods: SCI data were collected from high‐risk psychiatric inpatients (N = 591)

grouped based on their short‐term suicidal behavior, that is, those who attempted

suicide between intake and 1‐month follow‐up dates (N = 20) and those who did not

(N = 571). Data were analyzed using three predictive algorithms (logistic regression,

random forest, and gradient boosting) and three sampling approaches (split sample,

Synthetic minority oversampling technique, and enhanced bootstrap).

Results: The enhanced bootstrap approach considerably outperformed the other

sampling approaches, with random forest (98.0% precision; 33.9% recall; 71.0%

Area under the precision‐recall curve [AUPRC]; and 87.8% Area under the receiver

operating characteristic [AUROC]) and gradient boosting (94.0% precision; 48.9%

recall; 70.5% AUPRC; and 89.4% AUROC) algorithms performing best in predicting

positive cases of near‐term suicidal behavior using this dataset.

Conclusions: ML can be useful in analyzing data from psychometric scales, such as

the SCI, and for predicting near‐term suicidal behavior. However, in cases such as

the current analysis where the data are highly imbalanced, the optimal method of

measuring performance must be carefully considered and selected.
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1 | INTRODUCTION

Suicide is a widespread and devastating public health concern, albeit

a potentially preventable one. Globally, an estimated 8,00,000 suicide

deaths occurred in 2012. Suicide was the second leading cause of

death among people aged 15–29 years (World Health Organization,

2016) and is the tenth leading cause of death in the United States

(Hedegaard, Curtin, & Warner, 2018). However, despite decades of

effort dedicated to researching and preventing the phenomenon,

national rates of suicide have steadily risen in recent years (Hede-

gaard et al., 2018).

A critical component of suicide prevention is research on risk

factors for suicidal behavior (SB). Numerous researchers have

developed their own, often overlapping, sets of risk factors which aim

to predict future SB and divide the population into high and low

suicide‐risk groups (Kraemer et al., 1997). However, despite the

density and variability of risk assessment literature, recent system-

atic reviews indicate that many suicide prediction models have poor

predictive abilities and practical utility (Belsher et al., 2019; Franklin

et al., 2017). These findings emphasize the complexity of SB, as well

as the methodological limitations present in traditional suicide

research, which ultimately result in poor clinical significance (Franklin

et al., 2017).

One such limitation is that traditional statistical approaches

commonly used in suicide research require researchers to guess at a

small number of risk factors and their interrelatedness prior to

running statistical analyses (Walsh, Ribeiro, & Franklin, 2017). This

inherent limitation results in simplistic models which fail to capture

the variety and complexity of suicide risk factors (Franklin et al.,

2017). However, recent computational advances allow for improved

suicide risk‐factor research that was not possible using traditional

methodologies. One such example is the emergence of machine

learning, where algorithms work to find patterns by using sets of

input data, rather than explicit programming instructions.

Supervised machine learning maps input variables to predefined

outcomes. In this context, an algorithm would use given data to

predict whether a patient would engage in SB or not. Machine

learning (ML) has already been implemented in retrospective suicide

risk analysis and statistically predicted SB with seemingly greater

predictive validity than did traditional methods (Walsh et al., 2017;

Walsh, Ribiero, & Franklin, 2018). ML has also been used in the

analysis of electronic medical records of approximately 3 million

patients; here, short‐term SB following mental health specialty visits

and primary care visits were retrospectively predicted with seem-

ingly greater ability than extant suicide risk assessment tools (Simon

et al., 2018). Promising results were also found by a prospective ML

analysis of patients' verbal and nonverbal suicide thought markers,

where SB was predicted with 85% classification accuracy (Pestian

et al., 2017).

However, a deficit exists in ML studies that analyze prospective

and proximal suicide prediction data. Prospective, longitudinal

studies measure participants at two or more time points to see how

certain factors influence specific outcomes, allowing the

establishment of genuine suicide risk factors which may differ from

retrospective correlates (Franklin et al., 2017). Additionally, clinicians

and concerned families and friends are more often tasked with

assessing proximal, rather than long‐term, suicide risk in a patient

(Rudd, 2008). Therefore, a shifted focus from long‐term/trait pre-

dictors of suicide to imminent/state predictors of suicide is essential

for clinical practice and significance.

One such predictor of imminent risk is the Suicide Crisis In-

ventory (SCI), which measures symptoms of the proposed Suicide

Crisis Syndrome (SCS). The scale was previously found to be pre-

dictive of short‐term SB among psychiatric inpatients (Galynker et al.,

2017). SCS appears to be a distinct mental state that may precede SB

by 4–8 weeks and shows promise in assessing imminent suicide risk

in clinical settings (Yaseen, Hawes, Barzilay, & Galynker, 2019). Pa-

tients exhibiting SCS experience a feeling of entrapment/frantic

hopelessness which can be understood as an urgent need to escape

coupled with a hopelessness of escape, in addition to one or more of

the following symptoms: affective/emotional disturbance, loss of

cognitive control, hyperarousal, and social withdrawal (Bloch‐
Elkouby et al., 2020; Schuck, Calati, Barzilay, Bloch‐Elkouby, &

Galynker, 2019). Data gathered by the SCI thus offers a prospective

look into short‐term suicide risk.

In this context, the purpose of this study was to achieve three

aims. The first aim was to establish whether ML analysis of the SCI

would be appropriate for predictions of future SB. The second aim

was to compare the predictive power of three ML algorithms

(random forest, logistic regression, and gradient boosting). Finally,

our third aim was to compare three sampling methods (split sample,

Synthetic minority oversampling technique (SMOTE), and enhanced

bootstrap) to determine which would yield the best results.

2 | METHODS

2.1 | Study setting

Patient participants admitted to a psychiatric inpatient unit at the

Mount Sinai Health System for suicidal ideation or suicide attempt

from January 10, 2016 until January 10, 2019 were recruited. The

Icahn School of Medicine at Mount Sinai institutional review board

approved the study (inpatients: Human Subjects: 16‐01350, Grants
and Contracts Office: 16‐2484 [0001]).

2.2 | Informed consent and study procedures

Inpatient clinicians referred potential participants to the study and

provided diagnoses for consenting participants using the fifth edition

of the Diagnostic and Statistical Manual of Mental Disorders (DSM‐
5). The study's exclusion criteria were homelessness, lack of any

means of contact, inability to understand the consent form, or a

medical condition that may affect participation. Within 72 h of

admission, eligible patients were approached by trained research
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assistants who explained the study, its risks and benefits, and the

method of compensation. Consenting participants were given a study

battery to complete, and a few measures were administered again 48

h prior to discharge. Patients were contacted 4 weeks following

initial intake for a one‐month follow‐up, which was conducted over

the phone or in person per their preference and convenience.

2.3 | Measures

2.3.1 | Suicide Crisis Inventory

The SCI is a validated self‐report instrument designed to measure the

intensity of the SCS (Galynker et al., 2017). The SCI version used in

this study includes 49 items measuring 5 sub‐scales on a 5‐point
Likert scale, and was administered during the discharge interview. In

the ML analysis, the input data for each of the 591 participants was

thus a vector of 49 different integers ranking their self‐reported
severity of certain feelings or symptoms associated with SB from

0 (“Not at all”) to 4 (“Extremely”).

The first and central SCI sub‐scale is Entrapment/Frantic

hopelessness, which describes a feeling of being trapped and a need

for escape and is measured by items such as, “Felt helpless to

change.” Panic‐dissociation is the second sub‐scale, describing an

altered sensorium and panic‐associated derealization (e.g., “Felt

strange sensations in your body or on your skin”). The third sub-

scale is Ruminative flooding, which is a feeling of uncontrollable,

racing thoughts, and is associated with somatic symptoms such as

headaches (e.g., “Felt your head could explode from too many

thoughts”). The fourth and fifth subscales are Emotional pain (e.g.,

“Had a sense of inner pain that was too much to bear”) and Fear of

dying (e.g., “Became afraid that you would die”), respectively

(Galynker et al., 2017).

Items in the 49‐item SCI measure SCS Criterion A Entrapment/

Frantic hopelessness, Criterion B1 Affective discontrol, and Criterion

B2 Loss of cognitive control. Criterion B3 Hyperarousal and Criterion

B4 Social withdrawal are directly measured in later versions of

the SCI.

2.3.2 | Columbia Suicide‐Severity Rating Scale

The Columbia Suicide‐Severity Rating Scale (CSSRS; Posner et al.,

2011) is a semi‐structured interview that assesses the severity of

current and lifetime suicidal thoughts and behaviors. The “lifetime

and recent” form was administered to patients during the initial

intake and the “since last assessment” form was used at the 1‐month

follow‐up. SB at follow‐up is defined as any aborted, interrupted, or

actual suicide attempt as categorized by the CSSRS made between

intake and follow‐up sessions. Participants' lifetime suicide ideation

and ideation at intake were also measured using the CSSRS, with a

score of 0 indicating an absence of ideation and a score of 1 through

5 indicating the presence of ideation.

2.4 | Algorithms used

Three predictive algorithms were used in this study (logistic regres-

sion, random forest, and gradient boosting) and were implemented

using the sklearn and XGBoost packages available in Python v3.5.2.

All code was written using Jupyter notebooks. The entire study

sample (N = 591) was utilized in each algorithm and sampling com-

bination. Therefore, the percentage of participants who attempted

suicide between intake and follow‐up dates (cases 3.4%) and per-

centage of participants who did not (controls 96.6%) remained the

same across all methods.

2.4.1 | Logistic regression

Logistic regression is designed to find a link between input data and a

binary outcome variable (Hosmer Jr., Lemeshow, & Sturdivant, 2013).

Here, the input data are responses to the 49 items of the SCI and the

output variable is whether the participants demonstrated SB be-

tween intake and follow‐up sessions.

When using logistic regression, the assumption is made that the

outcome y is linked linearly to the input vector X via the logistic

function

Prðy ¼ 1Þ ¼ fðxÞ ¼
1

1þ e−ðβ0þβ1x1þ…þβnxnÞ

where β1,…,βn represent the weights for each predictor x1,…,xn (for

this study, n = 49). The ideal weights of each input variable, or the

relative contribution of each of the 49 SCI items in predicting the

outcome, are estimated via maximum likelihood estimation, an iter-

ative method for estimating parameters in a probability distribution

that seeks coefficient weights for the input variables that best

separate the classes.

2.4.2 | Random forest

Random forest makes predictions by using an ensemble of decision

trees. Each decision tree is composed of a subset of input variables at

each node and the consensus prediction among the ensemble is the

final output prediction. In this case, each tree is constructed using a

subset of the 49 SCI questions as nodes and the outcome of 0 (con-

trol) or 1 (case) as the output. Each decision tree is created using

bootstrapped samples, which are samples where participants are

drawn from our dataset with replacement (Breiman, 1996). One

hundred such trees were created in this analysis. For each bootstrap

sample, a decision tree is created such that the best splits are chosen

from among a random sample of inputs. Each split is determined

using Gini impurity, which measures how well a potential split sep-

arates the samples of each class in that particular node (Menze et al.,

2009). This algorithm takes advantage of bagging, a.k.a. bootstrap

aggregating. If we draw B bootstrap samples from our original
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dataset D , we get B prediction functions, f̂1;…; f̂B. These can be

combined to make a bagged prediction function

f̂avg ¼ Combineð̂f1ðxÞ;…; f̂BðxÞÞ

which yields the final prediction. It should be noted that the boot-

strap samples used to create the decision trees differ from those

used in the bootstrap sampling technique described later.

2.4.3 | Gradient boosting

While random forest uses an ensemble of decision trees created in

parallel, gradient boosting builds decision trees sequentially. Both

methods create trees from a subset of inputs. However, gradient

boosting creates trees in a manner which corrects for errors made in

previous trees using a process called gradient descent in which

“steps” are iteratively taken toward an ideal function which mini-

mizes the error (Friedman, 2001). In other words, a strong learner is

created from an ensemble of weak learners in a process called

“boosting.”

2.5 | Sampling methods

2.5.1 | Split sample

Here, 70% of the data was used to train models using the aforemen-

tioned algorithms and the remaining 30% was used to test their pre-

dictive capabilities. Due to the vast imbalance between the numbers of

controls and cases, a stratified split approachwas usedwhere the ratio

of controls/cases in the total dataset was maintained in each portion.

Although this approach does not make use of the entire dataset in

building the models, it is a commonly used sampling technique in ML.

2.5.2 | Synthetic minority oversampling technique

SMOTE is used to create artificial data points of the minority class

(cases). SMOTE was used to oversample cases to comprise 50% of

the training set. The oversampling was applied after the data were

split into training and testing samples to ensure that the cases in the

testing set are true cases and not synthetically created.

2.5.3 | Enhanced bootstrap

Here, a predictivemodelwas created using the entire dataset, applying

this model to that same dataset and gathering the apparent results.

These results were intentionally overfit, meaning the resulting model

fits too closely to that particular dataset and thus cannot be general-

ized to new data. To correct for this, bootstrap samples were drawn

and predictivemodelswere built using these sampleswithout splitting.

The created models were then applied to the same samples used to

create them, which again yields results that are overfit. Each of these

bootstrap models were then applied to the original dataset and the

difference in performance metrics was calculated and averaged over

the number of bootstrap samples drawn. This difference, called the

“optimism,” quantifies the amount of overfitting.Weused500 samples,

each of size 591 (equaling our N number). Adjusted results were ob-

tained by subtracting the optimism from the apparent results to pro-

vide bias‐corrected results (Tibshirani & Efron, 1993).

2.6 | Indices of predictive performance

Scores for most of the performance metrics described below range

from 0 to 1, with a higher score indicating superior performance. The

two exceptions are the Brier score, which also ranges from 0 to 1 but

with a lower score indicating superior performance; and the net

benefit, which directly measures the benefit versus harm of different

approaches in terms or patients treated correctly.

2.6.1 | Classification accuracy/balanced accuracy

Classification accuracy is the ratio of correct predictions (true posi-

tives and true negatives) over the total number of predictions. If we

create a confusion matrix of each possible

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)

Then the classification accuracy is defined as

TPþ TN
TPþ TNþ FPþ FN

However, when dealing with imbalanced data, classification ac-

curacy can be misleading. In the current analysis, there was a large

difference between the number of cases (3.4%) and controls (96.6%)

in the dataset, meaning a classification accuracy of 96.6% could be

achieved by simply predicting that all patients will not exhibit SB.

Balanced accuracy provides an alternative which avoids the

potentially inflated results seen in classification accuracy. Defining

the true positive rate (TPR, or sensitivity) and true negative rate

(TNR, or specificity) as follows

TPR ¼
TP

TPþ FN
; TNR ¼

TN
TNþ FP

then

Balanced accuracy¼
TPRþ TNR

2
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This metric gives us the average accuracy across each class. If the

conventional classification accuracy is high solely due to an imbalance

in the outcome classes, then the balanced accuracy will drop to 50%

(Broderson et al., 2010).

2.6.2 | Precision/recall

Precision is the fraction of true positive predictions over all positive

predictions, true or false. Recall is the fraction of true positives over

the sum of true positives and false negatives.

Precision¼
TP

TPþ FP
; Recall¼

TP
TPþ FN

These metrics are important because their scores rely on

correctly predicting true positives (cases), which is a challenge in any

dataset which contains a heavy imbalance toward the controls.

2.6.3 | Brier score

The Brier score measures the mean squared difference between the

predicted probability of a certain outcome for a particular instance

and the actual outcome, in this case, whether a patient attempts

suicide. For binary outcomes, the Brier score is defined as

Brier score¼
1
N

∑N
t¼1 ðft − otÞ

2

where ft is the predicted probability for example t, ot is the actual

outcome of example t and N is the total number of examples in the

sample. Because the Brier score measures the mean squared differ-

ence between the predicted probability of a certain outcome for a

particular instance and the actual outcome, lower Brier scores indi-

cate better performance (Fernández et al., 2018). However, for

imbalanced datasets, the Brier score may appear very promising

overall but poor for the rare class (cases; Wallace & Dahabreh, 2012).

For this reason, the Brier score is prone to optimism similar to

classification accuracy and Area under the receiver operating char-

acteristic (AUROC; Collell, Prelec, & Patil, 2018).

2.6.4 | Area under the receiver operating
characteristic

AUROC is calculated by plotting the false positive rate (FPR)

FPR¼
FP

FPþ TN

on the x‐axis and the true positive rate on the y‐axis across different
discrimination thresholds and then measuring the area under this

curve. This value represents the probability that the classifier will

rank a randomly chosen case higher than a randomly chosen control

(Fawcett, 2006). However, when a dataset is highly imbalanced,

AUROC may fail to reflect a model's true predictive abilities. Spe-

cifically, when controls greatly outnumber cases, the FPR can be

expected to be small, leading to a larger and less informative AUROC

score (He & Garcia, 2009).

2.6.5 | Area under the precision‐recall curve

The Area under the precision‐recall curve (AUPRC) is a scalar value

of the area under a precision‐recall plot, which shows precision

values for the corresponding recall values for different thresholds. As

these plots focus on precision and recall, which estimate a model's

ability to detect true positive cases, they are able to express less

misleading interpretations of classifier performance for imbalanced

datasets relative to the AUROC. For our dataset, AUPRC may be a

more appropriate and informative metric than AUROC (Saito &

Rehmsmeier, 2015).

2.6.6 | Net benefit

Net benefit differs from the other metrics presented here because it

explicitly quantifies the value of treating a TP (i.e., someone who

would attempt suicide in the near‐term without treatment) and not

treating a false positive. Net benefit is calculated as (Peirce, 1884;

Vickers & Elkin, 2006):

Net benefit¼
true positive count

n
−
false ‐ positive count

n

�
pt

1 − pt

�

where pt is the threshold probability, or the minimum probability of

SB where treatment is warranted (Vickers, van Calster, & Steyerberg,

2019). In this study, net benefit is the number of cases per 100

patients who can be correctly treated for near‐term SB

without unnecessarily treating controls (patients who will not exhibit

near‐term SB).

When pt is varied over a range, the different net benefits for

each approach can be plotted to create a decision curve where the

x‐axis and y‐axis represent pt values and net benefit, respectively.

This plot also includes net benefit results for the naïve “Treat all”

and “Treat none” approaches where treatment is provided to all or

none of our sample, respectively, allowing visual comparison of each

approach. Their differences can be used to calculate the reduction

in how many controls are incorrectly treated for near‐term SB per

100 patients without a decrease in the number of cases who are

correctly treated:

ðnet benefit of the model – net benefit of treat allÞ
ðpt=ð1 – ptÞÞ

� 100:
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The “Treat none” approach is represented in the decision curve

graph as a horizontal line at y = 0, since it involves no TPs or FPs.

2.7 | SCI item ranking

We used a chi square test to rank the SCI items by their weighted

contribution in predicting near‐term SB.

3 | RESULTS

3.1 | Patient characteristics

The sample consisted of 591 participants in total, 20 of whom

attempted suicide at a one‐month follow‐up and 571 of whom did

not (Table 1). Participants differed significantly on the basis of

ethnicity, in that a greater than expected percentage of Hispanic/

Latino participants attempted suicide between intake and 1‐month

follow‐up (p < 0.05). Furthermore, intake suicide ideation was pre-

sent at a higher rate among participants who demonstrated SB at

follow‐up when compared to those who did not (p < 0.05). Age varied

between groups as well, with a Mann–Whitney U‐test indicating that

participants with a follow‐up suicide attempt tended be younger

(Mdn = 25) than those without (Mdn = 36) (U = 3693, p = 0.008).

Lifetime SB and suicide ideation, and patients' primary diagnosis did

not vary significantly between both groups.

3.2 | ML analyses

3.2.1 | Split sample

The split sample approach produced the poorest results of the three

sampling techniques (Table 2). Across all three algorithms, precision

and recall scores were 0.000 and AUPRC's were in the 0.075–0.117

range with gradient boosting producing the highest score. Gradient

boosting also produced the lowest Brier score of 0.032. The classi-

fication accuracy fell within the 0.944–0.966 range, but these scores

are misleading due to the highly skewed balance between cases and

controls. Balanced classification accuracy was significantly lower than

classification accuracy, with all three algorithms producing scores

between 0.488 and 0.500. Finally, the net benefit scores of all three

algorithms exceeded the net benefit of treating all patients when pt

ranged from ∼4% to 25% but were lower than the net benefit for

treating none of the patients once pt exceeded 15% (Figure 1).

3.2.2 | Synthetic minority oversampling technique

When positive cases of short‐term SB were oversampled via

SMOTE, logistic regression and gradient boosting showed a modest

improvement in both precision and recall while random forest was

unchanged at 0.000 for both metrics (Table 2). AUPRC scores fell

within the 0.102–0.170 range. Brier scores for logistic regression

and random forest using SMOTE were inferior to their Brier scores

produced using split sampling, however, they were still low in

general. Lastly, all three algorithms produced greater net benefit

scores than did treating all patients when pt ranged from ∼4% to

25% but drifted below the benefit line for “Treat none” as pt
increased (Figure 2).

3.2.3 | Enhanced bootstrap

Random forest and gradient boosting produced the highest AUPRC

(random forest 0.710; gradient boosting 0.705), precision (random

forest 0.980; gradient boosting 0.940), and recall (random forest

0.339; gradient boosting 0.489) scores when using the enhanced

bootstrap approach (Table 2). Balanced accuracy scores for all three

algorithms exceeded 0.500, with random forest (0.669) and gradient

boosting (0.744) producing the highest values. The AUROC values

for random forest and gradient boosting were 0.878 and 0.894,

respectively. Logistic regression did not perform as well, showing

decreases in AUPRC and recall, but improved precision over

SMOTE.

The net benefit scores of all three algorithms exceeded the

net benefits of treating all patients and treating no patients for all

pt values from 1% to 25% (Figure 3). In clinical terms, this means

fewer controls will be incorrectly treated for near‐term SB, with

no increase in the number of cases being untreated. This differ-

ence, relative to the “Treat all” approach, increases with pt and

can be quantified using the formula described in the Methods

section. As each algorithm using enhanced bootstrap sampling was

superior to the default strategies across the entire range of

reasonable threshold probabilities, we can say that the use of any

of these models would improve patient outcomes (Van Calster

et al., 2018).

3.3 | Chi square ranking of SCI items

The chi square ranking of the top 15 SCI items is presented in Table

3. The five highest performing items represented all five factors of

the SCI (Galynker et al., 2017). The two best‐performing items, SCI‐
6 “Felt unusual physical sensations that you have never felt before”

and SCI‐32 “Felt the blood rushing through your veins” belonged to

the Panic‐dissociation factor, followed by SCI‐8 “Felt your head

could explode from too many thoughts” of the Ruminative flooding

factor. The fourth‐ranking item, SCI‐48 “Felt urge to escape the

pain was very hard to control,” reflected Entrapment/Frantic

hopelessness and Emotional pain, and the fifth‐ranking item, SCI‐5
“Became afraid that you would die,” represented the Fear of dying

factor.
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4 | DISCUSSION

Our findings indicate that the SCI, which is a postulated measure of a

putative presuicidal mental state—SCS, is predictive of short‐term SB

when analyzed using machine learning. Of the sampling techniques,

we found that the enhanced bootstrap approach produced the best

results. Of the three algorithms, gradient boosting and random forest

did not differ significantly in their respective performances and

generally outperformed logistic regression. Thus, the optimal

combination of algorithm and sampling technique in this context was

using enhanced bootstrapping along with gradient boosting or

random forest.

In a widely cited meta‐analysis, many prominent models of sui-

cide risk assessment were found to perform barely above chance

(Franklin et al., 2017). Using AUROC score as a benchmark for per-

formance, the SCI outperforms these models when using enhanced

bootstrap sampling along with random forest and gradient boosting

algorithms. Furthermore, popular instruments routinely used in

TAB L E 1 Participant demographic and clinical characteristics

Participant variables

Whole sample N = 591

(100%)

With follow‐up SA N = 20

(3.4%)

Without follow‐up SA N = 571

(96.6%) p

Gender—N (%) 0.307

Male 195 (33.0) 4 (20.0) 191 (33.5) ‐

Female 381 (64.5) 16 (80.0) 365 (63.9) ‐

Other 15 (2.5) 0 (0.0) 15 (2.6) ‐

Race—N (%) 0.192

American Indian 6 (1.0) 0 (0.0) 6 (1.1) ‐

Asian 47 (8.0) 3 (15.0) 44 (7.7) ‐

Black 146 (24.7) 1 (5.0) 145 (25.4) ‐

Pacific Islander 1 (0.2) 0 (0.0) 1 (0.9) ‐

White 218 (36.9) 6 (30.0) 212 (37.1) ‐

Other 166 (28.1) 9 (45.0) 157 (27.5) ‐

Ethnicity—N (%) 0.015*

Hispanic/Latino 191 (32.3) 12 (60.0) 179 (31.4) ‐

Not Hispanic/Latino 396 (67.0) 8 (40.0) 388 (67.9) ‐

Age—mean [sd] 37.61 [14.24] 29.70 [11.11] 37.89 [14.26] 0.008**

Years of Education—mean [sd] 14.38 [3.03] 14.77 [2.69] 14.36 [3.04] 0.553

Primary diagnosis—N (%) 0.696

Depressive disorder 298 (50.4) 10 (50.0) 288 (50.4) ‐

Anxiety disorder 45 (7.6) 0 (0.0) 45 (7.9) ‐

Bipolar & related disorder 80 (13.5) 3 (15.0) 77 (13.5) ‐

Schizophrenia spectrum disorder 43 (7.3) 3 (15.0) 40 (7.0) ‐

Obsessive compulsive disorder 1 (0.2) 0 (0.0) 1 (0.2) ‐

Trauma and stress‐related
disorders

64 (10.8) 2 (10.0) 62 (10.9) ‐

Other 33 (5.6) 2 (10.0) 31 (5.4) ‐

Suicidal behaviors—N (%)

Lifetime actual SA 288 (48.7) 14 (70.0) 274 (47.9) 0.088

Lifetime interrupted SA 73 (12.4) 3 (15.0) 70 (12.3) 0.925

Lifetime aborted SA 102 (17.3) 4 (20.0) 98 (17.5) 0.903

Lifetime SI 539 (91.2) 20 (100.0) 519 (90.9) 0.312

Intake SI 400 (67.7) 19 (95.0) 381 (66.7) 0.016*

Abbreviations: SA, suicide attempt; SI, suicide ideation.

p*<0.05; p**<0.01.
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clinical practice, such as the Beck Hopelessness Scale, the Man-

chester Self Harm Rule, and the SAD PERSONS scale were shown to

have low precision scores for detecting future suicide attempts

(Runeson et al., 2017). Commonly used warning signs of imminent

suicide risk, such as suicide ideation or stressful life events, are

similarly associated with a moderate to high risk of false positive

predictions of suicide attempts (Fowler, 2012). Our study yielded

relatively high precision rates which suggests that, despite having no

items assessing self‐reported suicide ideation, our model is able to

more reliably detect true positive cases of SB than widely used sui-

cide risk assessment methods. If administered in a clinical setting, the

SCI may thus provide clinicians with an acute risk assessment tool to

measure suicidality without directly inquiring about suicide, which

could increase the likelihood of patient disclosure (Chu et al., 2015).

The results of our best performing prediction models are especially

promising, given the challenge of separating cases from controls in a

high‐risk population, such as an inpatient population, where there is

likely an overlap in clinical characteristics between both groups

(Walsh, Ribeiro, & Franklin, 2018). However, it is important to note

that because the approaches described here were trained and tested

using one study sample, they are considered internal validation

techniques and thus contribute to model development rather than

model validation (Moons et al., 2015). The models and results in this

study await replication in a different sample.

The chi‐squared test to rank the individual contributions of the

SCI items in predicting the outcome, in general agreement with the

TAB L E 2 Results of 3 Machine Learning Approaches 70/30 train‐test split

AUPRC AUROC Precision Recall Balanced Accuracy Classification Accuracy Brier Score

LR 0.075 0.759 0.000 0.000 0.488 0.944 0.050

RF 0.097 0.590 0.000 0.000 0.500 0.966 0.034

GB 0.117 0.743 0.000 0.000 0.500 0.966 0.032

SMOTE

LR 0.102 0.760 0.125 0.333 0.626 0.899 0.091

RF 0.137 0.523 0.000 0.000 0.500 0.966 0.047

GB 0.170 0.687 0.500 0.167 0.580 0.966 0.030

Enhanced bootstrap

LR 0.063 0.820 0.445 0.185 0.586 0.960 0.037

RF 0.710 0.878 0.980 0.339 0.669 0.977 0.021

GB 0.705 0.894 0.940 0.489 0.744 0.981 0.019

Abbreviations: AUROC, Area Under Receiver Operating Characteristic Curve; AUPRC, Area Under Precision Recall Curve; GB, Gradient boosting; LR,

Logistic regression; RF, Random forest; SMOTE, Synthetic Minority Oversampling Technique.

F I GUR E 1 Decision curve for split‐sample.
Net benefit of treating all patients, treating
none of the patients, and each of the three

algorithms are compared across probability
threshold values ranging from 1% to 25%
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original SCI analysis (Galynker et al., 2017), showed that the 15

highest performing questions of the 49‐item SCI represented all the

five factors included in the SCS (Table 3). Furthermore, the number of

highest performing items per factor corresponded with the order

loading of the five factors, that is, the central element of the SCS

(Entrapment/Frantic hopelessness) was represented by the most

items (5 items), followed by Ruminative flooding (4 items) and Panic‐
dissociation (4 items), Emotional pain (2 items), and Fear of dying (1

item). The finding that the two highest performing SCI items (SCI‐6
“Felt unusual physical sensations that you have never felt before” and

SCI‐32 “Felt blood rushing through your veins”) belonged to the

Panic‐dissociation factor does not correspond with the findings of the

original paper, which observed that this factor has a relatively minor

contribution to the SCS when compared to the Entrapment/Frantic

hopelessness and Ruminative flooding factors (Galynker et al., 2017).

However, this finding aligns with a recent network analysis of the

SCS, which groups Panic‐dissociation symptoms into the same factor

as Entrapment/Frantic hopelessness and Ruminative flooding (Bloch‐
Elcouby et al., 2020).

The recently proposed DSM criteria for the SCS (Calati et al.,

2020; Schuck et al., 2019), derived from previous analyses of the SCI

and its earlier versions (named the Suicide Trigger Scale; Galynker

F I GUR E 2 Decision curve for Synthetic
minority oversampling technique (SMOTE)

sampling. Net benefit of treating all patients,
treating none of the patients, and each of the
three algorithms are compared across

probability threshold values ranging from 1%‐
to 5%

F I GUR E 3 Decision curve for enhanced

bootstrap sampling. Net benefit of treating all
patients, treating none of the patients, and each
of the three algorithms are compared across
probability threshold values ranging from 1% to

25%
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et al., 2017; Yaseen, Gilmer, Modi, Cohen, & Galynker, 2012; Yaseen

et al., 2014), also neatly corresponded with the 15 item ranking

(Table 3): Criterion A Entrapment/Frantic hopelessness (5 items),

Criterion B Affective discontrol (6 items), and Criterion B2 Loss of

cognitive control (4 items). Criterion B3 Hyperarousal was not

directly measured, however, it was indirectly reflected in items SCI‐8
and SCI‐48. Criteria B4 Social withdrawal was the single excluded

criteria, as it was only included in the later versions of the SCI, along

with dedicated Hyperarousal items.

4.1 | Limitations

The results of this study need to be considered within its limitations.

First, 3.4% of the patients in our dataset attempted suicide, which is

4.69 times higher than the annualized suicide attempt rate among

discharged psychiatric inpatients as reported by Forte, Buscajoni,

Fiorillo, Pompili, and Baldessarini (2019). Thus, results may vary

when our approach is applied to patient data from other sources.

Second, the present study only included 1‐month follow‐ups.
Including longer term follow‐up periods may capture more informa-

tion from patients who attempt suicide beyond the initial month post

hospital discharge. The same study from Forte et al. (2019) found

that while 26.4% of suicide events (attempted and completed sui-

cides) took place within the initial month after discharge, 73.2% took

place within 12 months of discharge.

Third, the current study had a low events‐per‐variable (EPV)

ratio of 0.41. While some studies propose that an EPV of at least 10

is ideal (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996), there

is no consensus on the importance of a high EPV. A replication study

using a different dataset with a higher EPV would reduce the po-

tential confound of data overfitting. Lastly, this current analysis was

unable to attain a recall score higher than 49%, in other words, our

models could at best distinguish cases out of the overall sample less

than half the time. Adjustments such as hyperparameter tuning or

adjusting the decision threshold may yield a higher recall.

5 | CONCLUSION

Machine learning shows promise in predicting SB when using data

from psychometric scales, such as the SCI, with the right combination

of sampling approach and algorithm. An overarching challenge of this

analysis, and one that is common in risk assessment research, was the

TAB L E 3 Chi square ranking of SCI items

Ranking Items SCI Factorsa SCS Diagnostic Criteriab

1 SCI 6—Felt unusual physical sensations that you have never felt

before

Panic‐dissociation Affective discontrol

2 SCI 32—Felt the blood rushing through your veins Panic‐dissociation Affective discontrol

3 SCI 8—Felt your head could explode from too many thoughts Ruminative flooding Loss of cognitive control

4 SCI 48—Felt urge to escape the pain was very hard to control Entrapment/Frantic hopelessness;

emotional pain

Entrapment/Frantic

hopelessness

5 SCI 5—Became afraid that you would die Fear of dying Affective discontrol

6 SCI 26—Felt bothered by thoughts that did not make sense Ruminative flooding Loss of cognitive control

7 SCI 22—Felt strange sensations in your body or on your skin Panic‐dissociation Affective discontrol

8 SCI 49—Felt there were no good solutions to your problems Entrapment/Frantic hopelessness Entrapment/Frantic

hopelessness

9 SCI 17—Felt the world was closing in on you Entrapment/Frantic hopelessness Entrapment/Frantic

hopelessness

10 SCI 45—Felt pressure in your head from thinking too much Ruminative flooding Loss of cognitive control

11 SCI 44—Felt there is no escape Entrapment/Frantic hopelessness Entrapment/Frantic

hopelessness

12 SCI 9—Felt ordinary things looked strange or distorted Panic‐dissociation Affective discontrol

13 SCI 7—Had a sense of inner pain that was too much to bear Emotional pain Affective discontrol

14 SCI 47—Felt like you were getting a headache from too many

thoughts in your head

Ruminative flooding Loss of cognitive control

15 SCI 13—Felt there was no way out Entrapment/Frantic hopelessness Entrapment/Frantic

hopelessness

Abbreviation: SCI, Suicide Crisis Inventory.
aGalynker et al., 2017.
bSchuck et al., 2019.
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vast imbalance between the number of cases and controls present in

the cohort. Nevertheless, using the enhanced bootstrap sampling

approach in combination with ensemble tree based algorithms yiel-

ded respectable results that are comparable with prior research

findings. When conducting ML analyses of imbalanced data, it is

important to select meaningful evaluation metrics.
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