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Abstract

Motivation: RNA molecules can undergo complex structural dynamics, especially during transcrip-

tion, which influence their biological functions. Recently developed high-throughput chemical

probing experiments that study RNA cotranscriptional folding generate nucleotide-resolution

‘reactivities’ for each length of a growing nascent RNA that reflect structural dynamics. However,

the manual annotation and qualitative interpretation of reactivity across these large datasets can

be nuanced, laborious, and difficult for new practitioners. We developed a quantitative and system-

atic approach to automatically detect RNA folding events from these datasets to reduce human

bias/error, standardize event discovery and generate hypotheses about RNA folding trajectories for

further analysis and experimental validation.

Results: Detection of Unknown Events with Tunable Thresholds (DUETT) identifies RNA structural

transitions in cotranscriptional RNA chemical probing datasets. DUETT employs a feedback

control-inspired method and a linear regression approach and relies on interpretable and inde-

pendently tunable parameter thresholds to match qualitative user expectations with quantitatively

identified folding events. We validate the approach by identifying known RNA structural transitions

within the cotranscriptional folding pathways of the Escherichia coli signal recognition particle

RNA and the Bacillus cereus crcB fluoride riboswitch. We identify previously overlooked features

of these datasets such as heightened reactivity patterns in the signal recognition particle RNA

about 12 nt lengths before base-pair rearrangement. We then apply a sensitivity analysis to identify

tradeoffs when choosing parameter thresholds. Finally, we show that DUETT is tunable across a

wide range of contexts, enabling flexible application to study broad classes of RNA folding

mechanisms.

Availability and implementation: https://github.com/BagheriLab/DUETT.
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1 Introduction

RNA molecules play diverse functional roles ranging from catalysis

of splicing and peptide bond formation, regulation of mRNA proc-

essing and gene expression, and molecular scaffolding and localiza-

tion (Cech and Steitz, 2014; Sharp, 2009). These functions are in

turn mediated by RNA structures that form in complex cellular

environments. RNA structures are diverse and can prohibit or

promote interactions with other RNAs, proteins and metabolites to

enable a broad range of RNA function. For example, bacterial RNA

structures inhibit transcription elongation (Ray-Soni et al., 2016),

translation initiation (Afonin et al., 2016) and RNA degradation

(Hui et al., 2015). In eukaryotes, there is growing evidence that

RNA structure impacts gene expression processes (Ding et al., 2014;

Rouskin et al., 2014; Spitale et al., 2015; Talkish et al., 2014).

However, we know little about how newly synthesized, or nascent

RNAs fold during transcription (Pan and Sosnick, 2006; Woodson,

2010). Due to the relative timescales of RNA folding and transcrip-

tion, RNA molecules begin to fold as they emerge from RNA

polymerase (RNAP) (Dethoff et al., 2012) (Fig. 1A). RNAs can

transition between states in this cotranscriptional folding pathway

that dictate RNA folding and function. For example, riboswitches

dynamically alter their structure during transcription in response to

ligand binding, leading to ligand-dependent structural, and regula-

tory switching (Smith et al., 2009). In addition, there is emerging

evidence that cotranscriptionally-formed RNA structures can influ-

ence various processes in eukaryotes, such as splicing (Shukla and

Oberdoerffer, 2012) and 3’ end processing of histone mRNAs (Saldi

et al., 2016). There has been great interest in developing both com-

putational and experimental approaches to uncover RNA cotran-

scriptional folding pathways and their implications for cellular RNA

function.

Recently developed experimental techniques can characterize

cotranscriptional RNA folding at nucleotide resolution (Strobel

et al., 2017; Watters et al., 2016b) by utilizing high-throughput

chemical probing of RNA structure (Strobel et al., 2018). SHAPE

reagents (selective 2’-hydroxyl acylation analyzed with primer

extension) are chemical probes that form adducts at the 2’-OH of

each nucleotide (Merino et al., 2005). When coupled with high-

throughput sequencing, SHAPE experiments reveal detailed reactiv-

ity patterns that uncover RNA structural properties—highly-reactive

positions indicate lack of structure and lowly reactive positions indi-

cate constraint due to structure or interaction with other binding

partners (Bindewald et al., 2011; Steen et al., 2010; Watters et al.,

2016a). An experimental variant called cotranscriptional SHAPE-

Seq probes the structure of each intermediate length RNA during

transcription (Fig. 1) (Strobel et al., 2017; Watters et al., 2016b).

This experiment results in a matrix of reactivities, where rows

correspond to reactivity at each length of a growing nascent RNA

chain, and columns represent reactivity changes at specific nucleoti-

des across different RNA lengths (Fig. 1B). Both dimensions of the

reactivity matrix reflect possible changes in RNA structural state

that can occur during transcription. For example, a decrease (or

increase) in reactivity down a column highlights a possible folding

(or unfolding) event during transcription.

However, analysis of the cotranscriptional reactivity matrices

has been mostly qualitative, relying on manual identification of re-

activity trends to identify key regions that have biological signifi-

cance. As the number and complexity of these datasets grow,

quantitative and automated techniques are needed to robustly iden-

tify patterns. This automated quantitative approach is challenging,

as cotranscriptional SHAPE-Seq datasets with complete annotations

and validated structures are not bountiful. This scarcity of ‘ground

truth’ examples presents difficulties when defining statistical models

(Hogenboom et al., 2011) and prohibits application of machine

learning models (Margineantu et al., 2010), which have been imple-

mented in other applications such as emulating visual detection of

meaningful reactivities as labeled by experimental experts (Woods

and Laederach, 2017). Similarly, interpretation of labeled datasets

are prone to human error and subjectivity; depending upon expertise

or prior expectations of RNA folding events, different viewers may

disagree on interpretations of subtle reactivity changes. In addition,

SHAPE-Seq reactivities differ with RNA structure and experimental

context, requiring a tunable computational approach. For example,

a significant reactivity change in a low-reactivity dataset can appear

as noise in a high-reactivity dataset. These limitations suggest that

we require a systematic method to identify signatures of RNA struc-

tural dynamics from cotranscriptional reactivity datasets that use

interpretable, user-guided rules.

To overcome this challenge, we sought to develop a quantitative

and automated approach to identify trends in cotranscriptional

SHAPE-Seq datasets. We designed a systematic detection method

Fig. 1. DUETT provides an automated and systematic method to detect

cotranscriptional RNA folding events from SHAPE-Seq data. (A) RNA can dy-

namically alter structure during transcription that affects downstream bio-

logical functions. (B) Cotranscriptional SHAPE-Seq probes RNA structural

properties during transcription by measuring reactivity patterns for each

intermediate length of an RNA. High and low reactivity correspond to un-

structured and constrained regions of RNA, respectively. (C) DUETT is a flex-

ible method to identify large and gradual reactivity changes that are

indicative of RNA structural transitions that can happen between intermediate

RNA lengths. (D) Here DUETT is applied to a mock dataset to identify changes

in reactivities in several consecutive nucleotides corresponding to the forma-

tion of an RNA loop, which is consistent with the typical ‘low-high-low’ pat-

tern observed for RNA hairpin structures
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that remains user-tunable with an interpretable set of parameters to

easily match qualitative user expectations with quantitatively identi-

fied folding events. Other computational approaches have success-

fully emulated subjective human-driven analyses, such as extracting

RNA design rules from a crowd-sourced game (Lee et al., 2015).

Due to the complexity of RNA structures and the flexibility of

SHAPE-Seq applications/implementations, we opted to detect gener-

ic events. This philosophy is common in domains with poorly

defined events, such as identifying unknown genomic deletions and

insertions (Jiang et al., 2015; Ye et al., 2009).

We present a framework for detecting events in cotranscriptional

SHAPE-Seq datasets termed Detection of Unknown Events with

Tunable Thresholds (DUETT). DUETT detects swing events using a

strategy inspired by proportional-integral feedback control (Florian

and Parker, 2007) and detects ramp events using linear regression.

Swing events represent rapid reactivity changes that occur over a

small number of transcript lengths. In contrast, ramp events repre-

sent slower changes that span many transcript lengths. DUETT

provides automated threshold parameter optimization, but DUETT

also allows user-defined parameter tuning to match a wide range of

experimental contexts. We first define these methods and identify

parameters that robustly identify known folding events within the

cotranscriptional folding pathway of the Escherichia coli signal rec-

ognition particle (SRP) RNA. We extend the methodology to ana-

lyze the folding pathways of the Bacillus cereus crcB fluoride

riboswitch and corroborate previous manually identified transitions.

In both datasets, our analysis reveals unexpected behavior, such as

subtle reactivity increases that consistently occur roughly 12 nt

lengths before a reactivity decrease, suggesting a highly-reactive

transient state. Finally, we conduct parameter sensitivity analysis to

explore the relationship between DUETT’s parameter values and

detected events. The flexibility and interpretability of our approach

enables the broad application of DUETT to many high-throughput

experimental systems that require event detection.

2 Materials and methods

2.1 Event detection
Structural events are characterized by significant reactivity changes

at specific nucleotide positions, across sequential transcript lengths.

We consider two common, yet distinct, phenomena in cotranscrip-

tional SHAPE-Seq datasets: swing and ramp events (Fig. 1). These

two qualitatively different classes of events motivate separate detec-

tion methods for each event type: PIR-control and linear regression,

respectively (Supplementary Fig. S1). Full DUETT methods and

motivations are located in Supplementary Materials. Assumptions

are explicitly listed alongside their design consequences in

Supplementary Table S1. Briefly, DUETT uses proportional-integral

feedback control to detect swing events and uses linear regression to

detect ramp events.

2.2 Simulation of cotranscriptional SHAPE-Seq data
We simulated an expected cotranscriptional folding pathway of an

in silico RNA by first using NUPACK (Zadeh et al., 2011) to design

RNA sequences that fold into a desired intermediate and final struc-

ture. Expected structures of each intermediate transcript length of

this sequence were predicted from RNAstructure-Fold (Reuter and

Mathews, 2010). SHAPE reactivities for each structure were simu-

lated using a previously published ternary model (Sükösd et al.,

2013) with 14 additional paired nucleotides 3’ appended to the end

of the structure in order to emulate the protection from SHAPE

modification due to the RNAP footprint. Simulation of SHAPE reac-

tivities were performed 1000 times and averaged. Finally, simulated

SHAPE reactivities for each length were renormalized to a mean

of 1, mimicking the q reactivity measure.

2.3 Application to cotranscriptional SHAPE-Seq

datasets
We applied DUETT to simulated data and two RNA sequences

characterized by previous cotranscriptional SHAPE-Seq experiments

(Watters et al., 2016b): the E.coli SRP RNA and the B.cereus crcB

fluoride riboswitch. These published datasets were obtained from

the Small Read Archive (http://www.ncbi.nlm.nih.gov/sra) with the

BioProject accession code PRJNA342175. The data were processed

with Spats v1.01 (https://github.com/LucksLab/spats/releases/) and

the reactivity calculation scripts are located at https://github.com/

LucksLab/Cotrans_SHAPE-Seq_Tools/releases/.

3 Results

We validated DUETT by identifying known cotranscriptional struc-

tural events that occur in the folding pathways of three RNA mole-

cules: a simulated dataset on a synthetic RNA sequence, the E.coli

SRP RNA and the B.cereus fluoride riboswitch (Batey et al., 2000;

Watters et al., 2016b; Wong et al., 2007). We used the automated

approach to select PIR threshold parameters and manually selected

the same linear ramp thresholds across all datasets. During the

automated search, the increasing PIR thresholds cause the number

of detected events to rapidly decrease until reaching an elbow

(Supplementary Fig. S2). The point closest to the origin lies near the

elbow and corresponds to the optimized threshold values, similar

to how numbers of clusters are chosen in clustering algorithms

(Gao et al., 2018). We applied DUETT on each of three experimen-

tal replicates for each system and retained events conserved

across all replicates to decrease the chance of spurious events. This

approach creates similar results as applying DUETT to the average

of all replicates (Supplementary Fig. S3) but avoids scenarios where

a single replicate has anomalous values. DUETT identified both

known and novel structural events, and we propose novel hypothe-

ses for further study. We discover patterns and events that are diffi-

cult for a human to identify. We conclude with parametric

sensitivity analysis to explore the relationship between user-defined

threshold parameters and observed events, and a discussion of limi-

tations of experimental datasets.

3.1 Validation on simulated cotranscriptional

SHAPE-Seq data
Benchmarking on simulated cotranscriptional SHAPE-Seq data was

performed to establish how accurately DUETT detects expected

structural changes (Supplementary Fig. S4). Qualitatively, the simu-

lated data resulted in sharper reactivity changes between structured

and unstructured nucleotides than in previously published cotran-

scriptional SHAPE-Seq data (Supplementary Figs S5, S7 and S9).

However, this simulated data provides expected structures through-

out the folding pathway and was thus ideal for testing DUETT’s

ability to detect expected structural changes.

When applied to the simulated dataset, DUETT picks up events

corresponding to major structural changes (Supplementary Fig. S4).

We analyzed three categories of expected upswing/downswing

events in aggregate: upswings due to nucleotides exiting the RNAP

footprint and becoming unpaired, downswings when nucleotides

transition from unpaired to paired, and upswings when nucleotides
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transition from paired to unpaired. By visual inspection, there are

42 nts with a RNAP footprint to unpaired transition that should

result in upswings. DUETT detected 27 of these transitions with the

missing events resulting from too few preceding transcript lengths

such as with nucleotides 1–12. Other missed events include short-

low-high-low transitions such as in nucleotide 51 which pairs

shortly after emerging from the RNAP footprint. Similarly, there are

�45 unpaired to paired event transitions that should result in down-

swings. DUETT detected 28 downswings but missed events due to

proximity to detected upswings, e.g. nucleotide 50 at length 67, as

well as transitions that are too short to qualify as an event, e.g. nu-

cleotide 3 at length 82. Finally, there are 17 paired to unpaired tran-

sitions, and DUETT only missed two events that were helix-end

nucleotides with a smaller reactivity change.

Overall, DUETT identified the major structural changes despite

sporadically missing events at individual nucleotides as can easily be

observed from looking at these events annotated on the simulated

data matrix (Supplementary Fig. S4). We reason that most structural

changes involve multiple nucleotides and DUETT has a high likeli-

hood to detect some but not all relevant nucleotides. For example,

DUETT detected the pairing of nucleotides 1–5 at transcript length

46 but missed the adjacent helix end of nucleotide 6. This result

demonstrates that transitions to and from helix-ends are not easily

captured due to the decreased magnitude of reactivity change com-

pared to stacked bases. Similarly, DUETT performs well when

events are not close in transcript length to previously found events

or the RNAP footprint, especially since the RNAP footprint was

simulated as paired nucleotides so reactivities and would be indistin-

guishable from truly paired nucleotides.

3.2 Validation on E.coli SRP RNA cotranscriptional

SHAPE-Seq datasets and identification of previously

unidentified reactivity patterns
Previous studies have shown that during transcription, the E.coli

SRP RNA forms a transient 5’ hairpin (H1) that rearranges into a

long helical structure with a hairpin loop and multiple inner loops

(Batey et al., 2000; Watters et al., 2016b; Wong et al., 2007), which

we label L1–L4 (Fig. 2). Several of these transitions have been vali-

dated by prior bulk studies (Watters et al., 2016b; Wong et al.,

2007), and by single molecule optical trapping experiments (Fukuda

et al., 2018). A previous analysis of cotranscriptional SHAPE-Seq

datasets (Watters et al., 2016b) focused on the manual annotation

of patterns within the reactivity matrix to derive a model of the

cotranscriptional folding pathway. We thus sought to apply DUETT

to these datasets to automatically identify reactivity changes that are

reflective of these structural transitions.

3.2.1 DUETT identifies expected H1 formation and rearrangement

The major cotranscriptional rearrangement event for the E.coli SRP

RNA occurs when H1 refolds into the final extended structure

(Fukuda et al., 2018; Yu et al., 2018). Corresponding to the forma-

tion of H1, DUETT identified upswings in bases 14–15 and 18–19

around nascent RNA length 45 nt, and upramps that conclude

around length 50 nt (Fig. 2). These positions remain unpaired in the

intermediate H1 hairpin, validating the correspondence between

upswings/upramps and the formation of unpaired, reactive regions.

This hairpin rearranges into the long helical structure, which

DUETT identifies as downswing events between lengths 116 and

127 nt in bases 11, 14–15 and 17–19. These identifications are con-

sistent with recent computational modeling (Yu et al., 2018) and

single molecule optical tweezer experiments (Fukuda et al., 2018)

that propose the rearrangement of H1 to occur in the window that

DUETT detects.

3.2.2 Multiple expected reactivity changes further validate DUETT

Another key feature of the E.coli SRP RNA cotranscriptional fold-

ing pathway is the formation of native base pairs and loops after the

formation of H1, but before the rearrangement of H1 into the final

native structure (Fukuda et al., 2018; Watters et al., 2016b;

Yu et al., 2018). DUETT identifies expected reactivity signatures of

bases 26–29 and 31 through length 100 nt. Upon initial transcrip-

tion, bases 26–28 and 31 have upswings corresponding to their un-

paired state, and bases 28–29 and 31 have downswings at 100 nt

that agree with the previously proposed 100 nt structure in which

these nucleotides are paired (Watters et al., 2016b). Identification of

other unpaired positions provides additional validation of DUETT

event detection. A cluster of upramps/upswings in bases 40–42

between lengths 55 and 90 nts corresponds to the unpaired, interior

loop region in L2. Finally, bases 57–58, 86 and 97 have upramps/

upswings immediately after transcription that corroborates their

unpaired status as the apex nucleotides in the hairpin loop of the

final rearranged structure, or within internal loops and bulges,

respectively.

3.2.3 Unexpected events highlight overlooked structural dynamics

While DUETT identified previously validated and observed reactiv-

ity changes within the SRP RNA cotranscriptional folding pathway,

it also identified novel and unexpected events such as a downswing

in base 14 and upswings in bases 36–38 at lengths 87 and 84 nts, re-

spectively. These events are discordant with the previously proposed

folding model of the SRP RNA which proposes that base 14 remains

unpaired in H1 and bases 36–38 pair with bases 74–76 between

lengths 75–100 nts. However, these detected events do not

appear spurious. The downswing in base 14 is concurrent with

other undetected downswings in neighboring bases 11 and 15

(Supplementary File 1 and Fig. S6), and the upswings in bases 36–38

are concurrent and qualitatively similar with one another. These un-

expected events occur in the transition that forms the L1 and L2

loops and suggests a transient state that causes decreased reactivity

in base 14 and increased reactivity in bases 36–38.

In addition, base 40 was reported to be paired by length 100 nt

(Watters et al., 2016b) that corresponds to an undetected down-

swing at 94 nt (Supplementary File 1). Though base 40 has lower re-

activity than bases 41–42 (Supplementary File 1), its reactivity is

higher than expected for a base pair. Our DUETT results suggest

that U40 is more labile than previously reported (Watters et al.,

2016b). We attribute this accessibility to U40’s position at a helix

end as well as part of a GU pair with G72 in the native structure and

these features are known to be generally less stable (Jaeger et al.,

1989; Papanicolaou et al., 1984).

Another unexpected set of events include the downswings of

bases 26–27 at length 108nt, which is earlier than the stable re-

arrangement of H1 into the final helical structure. These down-

swings in bases 26–27 are concurrent with two upswing events at

bases 44 and 86 and an upramp in base 86. Base 44’s upswing is

more pronounced in one replicate but is present in all three repli-

cates (Supplementary File 1), and base 86 is a bulged nucleotide in

the native structure that forms opposite of base pairs involving posi-

tions 27–28. This concurrency suggests that the bulge formation in

base 86 occurs simultaneously with bases 26–27 pairing and agrees

with the previously proposed model (Watters et al., 2016b).
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We also observed unforeseen upswings about 12 nt lengths be-

fore downswings, suggesting a highly-reactive transient state. Bases

17–18, 27, 29 and 31 exhibit upswings roughly 12 nt lengths before

their downswing events (Fig. 2). The order in which these down-

swings occur is consistent with the order of transcription, suggesting

an order of folding events based on initial exposure and transcrip-

tion. Coincidentally, when bases 26–27 or bases 29–31 undergo

pairing interactions, the preceding upswing pattern occurs in the

3’ base(s) of that group. This is similar to the preceding upswing

followed by downswing behavior in bases 17–18 and suggests that

increased flexibility in the 3’ side transiently occurs before becoming

stabilized. We note the difficulty in manually detecting these pat-

terns of events, justifying our automated and systematic approach.

These observations lead us to believe that the detected events are not

spurious, lack an explanation by previously published studies, and

highlight the discoveries enabled by our systematic method.

3.3 DUETT identifies known and novel structural

transitions in the cotranscriptional folding pathway

of a fluoride riboswitch
We next sought to determine if DUETT could identify events in the

B.cereus fluoride riboswitch cotranscriptional SHAPE-Seq data

(Watters et al., 2016b). The B.cereus fluoride riboswitch is an RNA

sequence that lies in the 5’ untranslated region of the crcB gene

and cotranscriptionally folds into mutually exclusive structures

that regulate downstream transcription depending upon whether the

fluoride anion is bound (Baker et al., 2012). Previous cotranscrip-

tional SHAPE-Seq experiments were done with either 10 or 0 mM

NaF conditions. Manual analysis revealed distinct reactivity patterns

that are reflective of ligand binding, and the bifurcation of the fold-

ing pathway in a fluoride-dependent manner. We thus applied

DUETT to both conditions to identify both known and potentially

novel RNA folding events.

Fig. 2. DUETT identifies known RNA folding events in the E.coli SRP RNA cotranscriptional SHAPE-Seq reactivity matrices. Four previously proposed intermedi-

ate structural conformations of SRP RNA are shown with arrows linking specific color-coded bases to identified reactivity changes. RNA structures are redrawn

from Figure 2 of Watters et al. (2016b) with intermediate hairpin H1 and loops L1–L4 labeled, and the RNAP exit channel footprint annotated in gray. DUETT

identifies multiple instances of hairpin formation/rearrangement and previously unidentified events. DUETT displays detected swing and ramp events as a

colored box and line, respectively, with red and blue denoting reactivity increase and decrease events, respectively. A green line connects concurrent events

between different nucleotides. SHAPE reactivity is normalized to lie in between the range 0–1 and shown in grayscale and box area

DUETT quantitatively identifies RNA structural dynamics 5107



3.3.1 Similarity of events before length 69 nt between conditions

Before the structural divergence at the nascent RNA length of 69 nt,

DUETT-detected events agree with the proposed model that RNA

structures are similar in both fluoride conditions (Watters et al.,

2016b). Upswings in both conditions occur between 40 and 55 nt in

bases 15–16, 24, 27 and 30 (Figs 3 and 4 and Supplementary Figs

S7–S10), which confirm their unpaired state. Additionally, in the

10 mM fluoride condition, bases 12–13 and 16 have downswings

around length 60 that suggest they form a critical pseudoknot, in

which two helices are interleaved. Only base 13 has a downswing

around length 60 in the 0 mM fluoride condition, which could indi-

cate a less stable pseudoknot and thus a less stable aptamer. Base 30

has a consistent upswing in both conditions between lengths 49 and

53 nt, and the previously proposed model (Watters et al., 2016b)

suggests that bases 28–30 are paired within a hairpin stem spanning

nucleotides 28–37 before length 58 nt. This base 30 upswing occurs

when the hairpin stem theoretically forms (lengths 51–54) and may

indicate delayed hairpin stability due to its short 3 bps length. The

detected events before length 69 nt reflect similar RNA structures

that form independent of the presence of fluoride (Watters et al.,

2016b).

3.3.2 Identification of delayed terminator nucleation agrees with the

previous riboswitch folding model

A key feature of the B.cereus crcB fluoride riboswitch folding path-

way uncovered in previous work is a delay in the folding of the ter-

minator RNA structure when fluoride is present (Watters et al.,

2016b). Correspondingly, DUETT identified events that agree with

this delayed terminator nucleation. Exclusively in the 0 mM fluoride

condition, bases 12–16 were previously proposed to unpair by

length 77 nt, as well as bases 52–55 pairing with bases 60–63 at

length 77 nt (Watters et al., 2016b). In both fluoride conditions,

bases 52, 54 and 55 exhibit upswings around lengths 70–75 nt.

However, the 0 mM fluoride bases immediately decrease in reactiv-

ity (upon pairing) while the 10 mM fluoride bases retain high

reactivity (Supplementary Files 2 and 3). This delayed terminator

nucleation in the 10 mM fluoride-positive condition manifests as a

series of downswings around length 90 nt exclusively in the

fluoride-positive condition, which corresponds to forming the hair-

pin stem, but only after a delay of about 10 nts transcribed (Watters

et al., 2016b). In addition, bases 56 and 59 exhibit upswings/

upramps in both conditions, corroborating their unpaired nature

within the loop of the terminator hairpin.

Fig. 3. DUETT identifies changes in the B.cereus fluoride riboswitch with 0 mM fluoride cotranscriptional SHAPE-Seq reactivity matrices. When comparing to

events identified with the fluoride added condition (Fig. 4), DUETT identifies multiple known and novel reactivity events, indicated by arrows to nucleotides

participating in these events. The figure is annotated as in Figure 2. RNA structures and pseudoknot (highlighted in yellow) are redrawn from Figure 6 of

Watters et al. (2016b)
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DUETT identified expected events that occur after terminator for-

mation, when transcription is expected to halt exclusively in the 0 mM

fluoride condition (Ren et al., 2012; Watters et al., 2016b). As expected

by their reactive nature in the 10 mM fluoride condition (Fig. 4), bases

69–71 and 75, that compete for binding with nucleotides within the

pseudoknot, remain unpaired and contain upswings shortly after tran-

scription. These upswings are expectedly missing in the 0 mM fluoride

condition except for bases 69, 70 and 75 (Fig. 3), which exhibit unex-

pected upswing at length 95, 99 and 95 nt, respectively. These events

may have occurred because the RNAP transcribed past the expected

termination site in the bulk cotranscriptional SHAPE-Seq experiment.

It was previously shown that the double mutant G69A, A70U

prevents formation of the terminator stem, meaning that their pair-

ing with bases 46–45 within the pseudoknot is a requisite of termin-

ation (Baker et al., 2012; Watters et al., 2016b). A separate study,

using a similar riboswitch sequence, found that a single long-range

reverse Hoogsteen base pair in the region shared by the aptamer and

terminator stem area is pivotal in functional switching between ter-

mination and antitermination (Zhao et al., 2017). These findings,

coupled with the base 69 and 70 upswing in the 0 mM fluoride con-

dition, suggest that a subpopulation of fluoride riboswitch RNAs do

not form the base pairs, leading to imperfect termination and there-

fore increased reactivity in this region. However, the mechanism is

unclear and requires further study. This previously overlooked ob-

servation demonstrates DUETT’s ability to identify interesting

events for follow-up analysis.

3.3.3 Detected events in bases 10 and 48 confirm long-range

interactions

DUETT corroborates two previously reported long-range interac-

tions in the 10 mM fluoride condition: A10-U38 and A40-U48

(Watters et al., 2016b). These interactions were hypothesized to in-

crease stability of the aptamer and persist only when fluoride binds

(Watters et al., 2016b). In the 0 mM fluoride condition, we observe

an upswing in both bases 10 and 11 at length 60 nt, which corre-

sponds to the opening of the initial hairpin to enable pseudoknot

formation (Fig. 3). Conversely these upswings are absent in the

10 mM fluoride condition because the A10-U38 interaction prohib-

its increased SHAPE reactivity when ligand is present (Fig. 4). The

other long-range interaction, A40-U48, was proposed to unpair be-

tween the lengths 77 and 88 nt upon terminator hairpin nucleation

(Watters et al., 2016b), which we also observe with an upswing in

U48 at length 85 nt in the 10 mM fluoride data (Fig. 4).
Additionally, A39 is situated between these two long-range inter-

actions and exhibits an unexpected downswing and upswing in the

0 mM fluoride condition at 69 and 87 nt, respectively. After 77 nt,

A39 exhibits structural divergence with an unexpected upswing at

87 nt. Previous NMR characterization of this system showed that

A39 (A35 in their numbering) undergoes local structural dynamics

when no fluoride is bound and is stabilized when fluoride is bound

(Zhao et al., 2017). These swing events may reflect those local struc-

tural changes. Conversely, the 10 mM fluoride condition lacks this

upswing most likely due to the neighboring A10-U38 long-range

Fig. 4. DUETT identifies changes in the B.cereus fluoride riboswitch with 10 mM fluoride cotranscriptional SHAPE-Seq reactivity matrices. These results are com-

pared to Figure 3 to identify structural divergences between the fluoride conditions. The figure is annotated as in Figure 3
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interaction and the structural context of the fluoride-bound

aptamer. Altogether, DUETT detects swing events in bases 10–11,

A39 and U48 that are consistent with the proposed aptamer stabil-

ization via long-range interactions.

3.3.4 DUETT more precisely identifies A22 dynamics

DUETT identified SHAPE hyperreactivity in A22 via an upswing at

length 60 nt in the fluoride-positive condition, which was associated

with aptamer stabilization due to ligand binding (Watters et al.,

2016b). This upswing is followed by a sharp downswing at length

78 nt, while another upswing shortly afterwards was undetected. The

second upswing went undetected due to the short duration of the pre-

vious downswing, which causes high and low-reactivity positions to

lump together during the sliding window averaging. Afterwards, the

reactivity plateaus at a high value comparable to length 69 nt. The

fluoride-negative condition has similar dynamics but are less extreme

and were detected as ramps (Supplementary Files 2 and 3) demonstrat-

ing that swing and ramp events differentiate small from large changes

as intended. We conclude that base 22 has similar dynamics (except in

magnitude) across both conditions until about length 90 nt where only

the 10 mM fluoride condition exhibits the rebound upswing. The dif-

ference in magnitude of A22 reactivity between the conditions was

previously concluded to be indicative of ligand-mediated aptamer sta-

bilization and destabilization, respectively (Watters et al., 2016b). The

0 mM fluoride downswing was thought to be due to aptamer destabil-

ization caused by the invading terminator hairpin formation. The

analogous 10 mM fluoride-positive downswing could be a result of

the imperfect nature of the switch causing some complexes to termin-

ate even with fluoride, or due to the experimental setup that stalls

RNAP complexes near the termination site that can allow the termin-

ator to form. This complex behavior of A22 cannot be visualized in re-

activity matrix figures due to the visual upper limit (set as a reactivity

value of 4) (Watters et al., 2016b). While the upper limit simplifies

data visualization, DUETT accounts for all magnitudes and is partially

insulated from disadvantages in human visualizations. Altogether,

DUETT identified several expected structural differences between the

fluoride conditions, and we generate multiple hypotheses to explain

unknown or unexpected events.

3.4 Threshold parameters confer a tradeoff between

true positive and false positive/negative events
DUETT balances the detection of true positive events with detection

of erroneous false positive/negative events. Determining this balance

highlights user preferences; if identifying small magnitude events is pri-

oritized, then thresholds can be relaxed to increase finding true posi-

tive events at the cost of also increasing the number of false positives.

Parametric sensitivity analysis explores the true positive-false posi-

tive tradeoff. We demonstrate that large events are retained despite

drastic threshold parameter adjustments. We highlight two scenarios

in the E.coli SRP RNA dataset using a stringent and a lenient set of

PIR thresholds. The stringent PIR scenario (100% increase in each

threshold) yielded fewer overall events (Supplementary Fig. S11,

right) relative to the original baseline (center). False positive events,

such as the event in base 44 that arose from a single anomalous repli-

cate, are removed. Similarly, qualitatively small true positives are also

removed: the downswing at length 88 nt in base 14 and the down-

swings around 100 nt in bases 28–29. We previously observed that

base 14’s downswing is likely non-spurious and marks a new discov-

ery. Similarly, the downswings in bases 28–29 are attributed to their

pairing off before the final structure. These removals underscore the

tradeoff that while higher thresholds lower false positives, they also

turn true positives into false negatives. This is also true for perturba-

tions to single parameter values such as I length (Supplementary Fig.

S13). We chose a large increase but retained many of the originally

detected events, suggesting that large events have a wide acceptable

range of threshold values.

Conversely, the lenient scenario (Supplementary Fig. S11, left; 50%

decrease in each threshold) leads to more true and false positives. The

upswings in bases 26 and 33 around length 90 nt become detected. By

inspection, these events seem non-spurious and occur concurrently with

other similar events (Supplementary File 1) leading to the conclusion

that these are previously undetected true positive events. Conversely,

the lenient scenario creates potential false positive events. For example,

the upswings in base 40 at 118 nt and all upswings in base 44 do not re-

semble upswings. The upswings in base 44 are especially misleading;

one replicate has increased reactivity while the others remain flat

(Supplementary Fig. S11). We conclude that the lenient scenario reveals

spurious events. Similar results were seen when analyzing sensitivity of

window length choice (Supplementary Fig. S12) and DWS cutoff

(Supplementary Fig. S14).

We chose drastic perturbations to threshold parameter values to

interrogate their effect on detection rates. Many originally detected

events remained in the stringent scenario and relatively few spurious

events arose in the lenient scenario, suggesting that our methodology

yields concordant results across a wide acceptable range of thresh-

olds. We provide additional sensitivity analysis on window length

and linear ramp thresholds in Supplementary Materials.

3.5 Global sensitivity test demonstrates DUETT’s ability

to resolve reactivity changes
A pair-wise sensitivity test of the automated threshold selection for

swing events demonstrates DUETT’s ability to resolve reactivity

changes. All possible pairs of the seven PIR thresholds were tested

on the SRP RNA dataset for four variants of 100% increase and

50% decrease ("", "#, #", ##) for a total of 84 combinations.

Supplementary Figure S15 shows the upswing/downswing agree-

ment between the automated DUETT run and the cohort of 84 sen-

sitivity tests. From visual inspection, events originally detected by

the automated method agree with the sensitivity tests; most auto-

matically detected events are also detected in at least 50% of the

sensitivity tests (Supplementary Fig. S16). In contrast, the events

detected in the sensitivity tests but not the automated method cluster

around the originals in terms of transcript length, suggesting that

DUETT correctly identifies structurally relevant nucleotides but not

necessarily at the exact transcript length depending on parameter

settings. This difference in transcript length assignments of events

likely stems from the window averaging that is needed to attenuate

noise as well as the tendency for structural events to occur over mul-

tiple transcript lengths. Other disagreements occur on nucleotides or

nucleotide regions with especially high-reactivity changes, suggest-

ing that DUETT is appropriately sensitive to structurally relevant

RNA regions and not to nucleotides constrained in a stable struc-

tural element. For example, nucleotides 57–59 are located in the

open region of a hairpin and contain detected events exclusive to the

sensitivity tests, but the paired adjacent nucleotides do not contain

detected events at all (Supplementary Fig. S15).

3.6 Experimental data considerations
Within the cotranscriptional SHAPE-Seq datasets, many upramps

(positive-slope ramps) begin near the 3’ end of the nascent RNA

shortly after the nucleotide’s transcription by RNAP (Figs 2–4;

Supplementary Figs S3, S11, S12 and S14). This close association
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suggests SHAPE adduct formation occurs almost immediately after

exiting RNAP. Due to experimental limitations (Strobel et al.,

2018), these short RNA fragments are difficult to detect, leading to

reduced reactivity signal. However, as the RNA elongates, SHAPE

adducts at these same positions become increasingly detectable,

which could lead to the presence of gradually increasing reactivity

upward ramps in these regions. As a result, we infer that upramps

close to the nucleotide’s exit from RNAP are likely experimental

artifacts due to their position near the 3’ end of the RNA. Similarly,

DUETT also identifies changes where q reactivities increase at un-

paired positions as RNAs elongate due to the normalization used in

their calculation (Supplementary Fig. S4). In some cases, DUETT is

likely to miss true reactivity changes at short transcript lengths be-

cause there is insufficient data before the reactivity change, or when

events in the same nucleotide occur closely in terms of transcript

length.

4 Conclusion

DUETT emulates human visual inspection of cotranscriptional

SHAPE-Seq data in an automated, efficient and systematic manner

to reduce potential user bias in discovering novel events that are

difficult to manually detect. Cotranscriptional SHAPE-Seq comple-

ments information about aptamer structure and aptamer-ligand

interactions by adding dynamical information about RNA structural

rearrangements during nascent RNA folding. Because DUETT

focuses on event detection from reactivity changes, our method in its

current state is meant to aid in hypothesis testing and data visualiza-

tion by the user. However, DUETT can be considered as a first step

toward computationally automated model generation of low reso-

lution cotranscriptional folding pathways by identifying important

regions of the RNA that undergo large transitions. We believe future

tools can further integrate DUETT’s output with other RNA folding

algorithms and experimental datasets to create computationally

automated higher-resolution model generation of cotranscriptional

RNA folding at the nucleotide level. When interpreting cotranscrip-

tional SHAPE-Seq data, it is also important to keep in mind that

halted nascent RNA structures are probed and fleeting structural

changes are difficult to detect. As we demonstrate, DUETT detects

many of the previously identified signatures of nascent structures

within three model systems and identifies several new events absent

from manual visual analysis. Experimentalists can now quickly

establish transcription lengths and nucleotides of interest from reac-

tivities to be further interpreted and developed into a structural

model. Additionally, the automated analysis allows experimentalists

to use their reactivity measure of choice. In this study, we chose q
reactivities for the ability to compare reactivities between different

length transcripts and across different experiments. We note that

correlations within a q reactivity vector make interpretation of

detected events harder, especially when concurrent up and down

events occur, as it could be reflective of either structural changes or

reactivity calculation. We hope this method is readily adopted when

studying new RNA systems, or interrogating publicly available

datasets in the RNA Mapping DataBase (Cordero et al., 2012)

where reactivity changes over a continuously changing variable such

as increasing transcript length in cotranscriptional SHAPE-Seq data,

ligand concentration or temperature is an important aspect of

the RNA system studied. DUETT is a powerful method to rapidly

identify structural events that evade manual identification in cotran-

scriptional SHAPE-Seq data.
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