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The early detection of infection is significant for the fight against the ongoing COVID-19 pandemic. Chest
X-ray (CXR) imaging is an efficient screening technique via which lung infections can be detected. This
paper aims to distinguish COVID-19 positive cases from the other four classes, including normal, tuber-
culosis (TB), bacterial pneumonia (BP), and viral pneumonia (VP), using CXR images. The existing COVID-
19 classification researches have achieved some successes with deep learning techniques while some-
times lacking interpretability and generalization ability. Hence, we propose a two-stage classification
method MANet to address these issues in computer-aided COVID-19 diagnosis. Particularly, a segmenta-
tion model predicts the masks for all CXR images to extract their lung regions at the first stage. A followed
classification CNN at the second stage then classifies the segmented CXR images into five classes based
only on the preserved lung regions. In this segment-based classification task, we propose the mask atten-
tion mechanism (MA) which uses the predicted masks at the first stage as spatial attention maps to adjust
the features of the CNN at the second stage. The MA spatial attention maps for features calculate the per-
centage of masked pixels in their receptive fields, suppressing the feature values based on the overlap-
ping rates between their receptive fields and the segmented lung regions. In evaluation, we segment
out the lung regions of all CXR images through a UNet with ResNet backbone, and then perform classi-
fication on the segmented CXR images using four classic CNNs with or without MA, including
ResNet34, ResNet50, VGG16, and Inceptionv3. The experimental results illustrate that the classification
models with MA have higher classification accuracy, more stable training process, and better inter-
pretability and generalization ability than those without MA. Among the evaluated classification models,
ResNet50 with MA achieves the highest average test accuracy of 96.32% in three runs, and the highest
one is 97.06%. Meanwhile, the attention heat maps visualized by Grad-CAM indicate that models with
MA make more reliable predictions based on the pathological patterns in lung regions. This further pre-
sents the potential of MANet to provide clinicians with diagnosis assistance.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

CORONAVIRUS disease (COVID-19) has been declared as a pan-
demic by the World Health Organization (WHO) in March 2020
[52]. Till October 2020, the highly contagious COVID-19 has
infected over 36 million people and caused more than one million
deaths, and the numbers are still increasing at a rapid rate [14].
Hence, it is vital to diagnose the virus effectively to avoid its fur-
ther spread.

In COVID-19 detection, three main screening methods are
employed, including reverse transcriptase-polymerase chain
reaction (RT-PCR) [51], computed tomography (CT) and chest X-
ray (CXR). Compared with the other two methods, CXR imaging
technique is more time-efficient, accessible and portable
[51,2,16]. Furthermore, some researches have proved that CXR
imaging can present radiographic abnormalities of COVID-19 pos-
itive cases [50,20]. These advantages make it an efficient imaging
tool in the fight against the pandemic.

Since AlexNet [29] won ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) against other traditional methods by a
large margin in 2012, deep learning (DL) techniques have increased
rapidly. More advanced deep neural networks (DNNs) proposed
later include VGG [41], GoogLeNet [44], ResNet [22], Inception
[45], EfficientNet [46], etc. These state-of-the-art DNNs
continuously improve their recognition ability in a variety of
benchmark datasets by exploring the depth, width, resolution,
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structure of models. Meanwhile, DNNs have achieved impressive
breakthroughs via incorporating some modules proposed in recent
years like attention [54,17,48,15], multi-scale feature fusion [46,8],
pseudo labeling [36], probabilistic generative modelling [56,18],
biology-inspired designs [30,47], etc. These achievements have
made DL techniques promising tools for developing real-world
applications. Besides, the achievements in some domains have
potential to be transferred to the other domains. For example,
the infinite realistic data produced by generative models can be
used for augmentation for improving classification accuracy
[38,33,5], and self-supervised learning can help pre-train DL mod-
els achieve better performance in other tasks [21,10,9,19]. Closing
the domain gaps can make domains beneficial from the develop-
ment of the others, and jointly promote the DL researches. This
motivates us to propose MANet to benefit classification from the
trained segmentation models, based on the fact that classification
depends only on the diagnosis-relevant features existing in the
lung regions covered by segmentation masks.

In computer-aided diagnosis domain, an increasing number of
DL applications have been proposed to assist the clinicians for a
faster and more accurate diagnosis. This is because DL techniques
like DNNs can learn the decision-making rules of given datasets
efficiently, especially when sufficient data are available. Some
researches have proved that DL has the power in assisting
COVID-19 diagnosis. For example, [3] employed transfer learning
on multiple convolutional neural networks (CNNs), including
VGG19 [41], MobileNet [23], Inceptionv3 [45], Xception [11] and
Inception-ResNetv2 [43], to distinguish COVID-19 positive cases
from normal and bacterial pneumonia (BP), and achieved an accu-
racy of over 92% for all models. Another research in [1] modified
the classic ResNet18 and claimed an accuracy of 95.12% in 3-
class CXR classification (COVID-19, SARS and normal). Besides,
some researches also presented promising results by combinations
of DNNs and traditional machine learning techniques, e.g., decision
tree [55] and SVM [40]. Furthermore, visual explanation tools like
Grad-CAM++ [7] and layer-wise relevance propagation [4] (LRP)
are applied in [27] to help localize the pathology of CXR images
and making designed neural networks more convincing.

Although DL has achieved some success in computer-aided
COVID-19 diagnosis, it still faces challenges, e.g., shortage of public
CXR images, lack of interpretability and generalization ability
[27,50,34]. Particularly, the performance of DL models depends
heavily on the amount of training data. The data shortage caused
by limited publicly available CXR data makes DL models likely to
suffer from overfitting. Meanwhile, CXR images are often collected
by different institutions with various radiographic devices and
environments, and the public CXR datasets are specific for some
certain diseases. Consequently, CXR images of different types differ
in terms of data amount, radiographic features (e.g. illumination,
contrast, resolution) and patient features (e.g. position, skeleton,
age, etc.). The models trained on such an imbalanced dataset are
likely to underfit the minor classes, especially for COVID-19 posi-
tive cases. Moreover, decisions made by the trained models may
be based on the irrelevant radiographic and patient features as
aforementioned, meaning that the attentions of models are not in
pathological regions, or even not in lung regions. This makes the
models lack of interpretability, and hard to be generalized to
new or unusual samples. These mentioned problems inspire us to
use CNN-based segmentation methods to extract main lung
regions to minimize the differences between CXR images from dif-
ferent repositories. A following classification model can then
enhance their generalization ability by focusing their attention
only on the extracted lung regions with less diagnosis-irrelevant
features.

To develop solutions for the pandemic and address the men-
tioned issues, this paper introduces MANet, a two-stage DL
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method, to provide clinicians with efficient lung disease classifica-
tion and basis of computer-aided determination. The basis indicat-
ing the potential pathological regions can assist clinicians in
localization and detection of pathological changes, and can be visu-
alized by tools like Grad-CAM [39]. MANet works for five-class
classification, including normal, COVID-19, tuberculosis (TB), bac-
terial pneumonia (BP), and viral pneumonia (VP), respectively.
Specifically, at the first stage in MANet, the segmentation model
takes the original CXR images as inputs and predicts the corre-
sponding lung masks. A followed CNN with mask attention mech-
anism (MA) classifies the segmented CXR images into five classes
based only on the preserved lung regions. MA proposed in this
paper is a kind of undifferentiable soft spatial attention [53,32]
mechanism in CNNs that uses the predicted masks from the first
stage as spatial attention maps to adjust the features in CNNs at
the second stage. The spatial attention map in MA for a segmented
CXR image is initialized as the corresponding predicted lung mask
and extends via iterative average pooling with specific parameters.
We use MA to adjust the spatial attention of classification models
and stabilize their training process. The two stages of MANet are
necessary as they play different roles in this segment-based classi-
fication task. The segmentation model predicts the masks of CXR
images via which only the lung regions are preserved and the
diagnosis-irrelevant features mentioned in the previous paragraph
outside the lung regions are filtered out. The classification model at
the second stage employs MA to concentrate its attention on the
preserved informative lung regions.

In the experiments, we select UNet [37] with ResNet backbone
(ResUNet) as the segmentation model to segment out the lung
regions of all CXR images, and perform classification over the seg-
mented CXR images using four classic CNNs with or without pro-
posed MA, including ResNet34, ResNet50, VGG, and Inceptionv3.
Besides, we also evaluate the results of classification models with
CBAM [54], a commonly used soft attention module, to emphasize
the advantage of MA in this segment-based classification task. To
fairly compare all the models, we train and evaluate them over
the same test settings in three trails, with unique random seeds.
Eventually, ResNet50 with MA as the classification model
achieves the highest average test accuracy of 96.32% and the
highest test accuracy in three trails is 97.06%. In addition, the
experimental results demonstrate that the classification models
with MA surpass both models without MA and models with
CBAM in most cases in terms of test accuracy. Furthermore, we
employ Grad-CAM [39] to visualize the attention of all involved
classification models. The attention heat maps illustrate that the
attentions of classification models with MA are in pathological
regions while those of others are more disordered, indicating
MANet has better interpretability.

The contributions of this work are listed as follows:

a) MANet proposes a way to benefit classification from appro-
priate segmentation, as multiple experiments demonstrate
that the usage of MA improves classification accuracy.

b) MANet shows improved interpretability and generalization
ability as its predictions are based on the segmented lung
regions of CXR images, while the diagnosis-irrelevant
regions are filtered out after the first stage.

c) MA can stabilize the training of CNNs in this segment-based
classification task. It reduces the fluctuations of both loss
and accuracy, and trains models more stably.

d) MA is a light attention module that can be easily incorpo-
rated into most CNNs, both adjusting the extracted features
and localizing attention of CNNs in desired regions. The four
CNNs, including ResNet34, ResNet50, VGG16, and Inception-
v3, improve their test classification accuracy by applying MA
with 5:78% to 21:55% running time increase.
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The rest of the paper is organized as follows: Section 2 presents
the collection of CXR datasets, pre-processing, and post-processing.
Section 3 introduces the entire workflow of MANet and the pro-
posed spatial attention module MA. The corresponding experimen-
tal results and analysis are illustrated in Section 4, as well as the
visualization of attention heat maps. Section 5 summarizes the
work and discusses the future directions.
2. Dataset collection and processing

2.1. Public data repositories

To improve the classification accuracy and generalization abil-
ity of DL models for COVID-19 diagnosis, we collect CXR images
as much as possible and apply data augmentation to increase the
data diversity. In this research, the employed dataset is a combina-
tion of three public CXR data repositories, including a combined
CXR dataset contributed by both Montgomery County and Shen-
zhen No. 3 People’s Hospital [26], a CXR dataset released by Ker-
many et al. [28], and a public open dataset on GitHub specific for
COVID-19 [13,12]. The combined dataset contains CXR images in
five classes, normal, COVID-19, TB, BP and VP with 1840, 433,
394, 2780 and 1345 images, respectively.

As can be seen in Fig. 2, the two models in MANet require dif-
ferent data processing techniques. Specially, the segmentation
model is trained over pairs of CXR images and the corresponding
lung masks. And the pairs of segmented CXR images and the corre-
sponding post-processed masks are the inputs for the classification
model. The inputs for both two stages require pre-processing, and
the outputs at the first stage require to be post-processed to
remove some prediction defects before going to the next stage. In
the next two subSections 2.2 and 2.3, we demonstrate the details
of the dataset composition and image processing at both two
stages. It is worth noting that we explain the dataset-relevant con-
tents thoroughly in this section so that Section 3 can be focused on
technical details.
2.2. Dataset for segmentation and data processing

To the best of the authors’ knowledge, no public datasets
include all five classes of CXR images. Hence, images in different
classes are often from different datasets and have different charac-
teristics. As presented in Fig. 1, images from multiple datasets dif-
fer in terms of some features, e.g. patient position, skeletons, image
resolution, radiographic illumination, etc. DL models trained on
Fig. 1. Example CXR images in five classes (Each column contains three examples in
one class). (a): Normal, (b): COVID-19, (c): TB, (d): BP, (e): VP.
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such a dataset may classify images according to these diagnosis-
irrelevant features, rather than the informative pathological
patterns.

To alleviate the irrelevant biases among these data repositories,
we segment out the lung regions of all CXR images at the first
stage. At this stage, we trained a classic segmentation model UNet
with residual connections [22] (ResUNet) to segment out the lung
regions of all images automatically. Since the pixel-wise labelling
for image masks takes much time and efforts from specialists, only
359, 345 and 202 pairs of images and masks for classes normal, TB
and COVID-19 are collected from the datasets [26,13,12] while
image-mask pairs for the other two classes are unavailable. Among
these data, 323, 307 and 185 image-mask pairs for classes normal,
TB, and COVID-19 are included for training the ResUNet. And the
rest 10% are used as the test set. Besides, the training process also
involves data pre-processing including resizing, normalization, and
augmentation. Specifically, all CXR images are resized to 512� 512
resolution and normalized to a range [0;1] according to min–max
feature scaling [25]. And the on-the-fly augmentation imple-
mented by Albumentations library [6] are listed as follows:

1. Shifting: shift the images horizontally and vertically randomly
with the ratio range [�6:25%;6:25%].

2. Scaling: scale the images randomly with the ratio range
[�20%;20%].

3. Rotation: rotate the images by angles selected randomly from
the uniform distribution in [�10;10].

All these on-the-fly augmentations with specific parameters are
determined by numerous experiments and have a probability of
50% of being applied or not for training samples. The evaluation
step does not involve augmentation.

Post-processing for masks at the end of the first stage is
required as the ResUNet segmentation is not always perfect. In
some cases, the predicted masks for the left and right lungs are
concatenated and there might be small defects outside the lung
regions. Hence, we applied two post-processing operations imple-
mented by Scikit-image [49], filling holes and removing small
objects, to fine-tune the predicted masks. As demonstrated in
Fig. 3, the post-processed masks for all classes contain less detects.
These posterior operations provide better training inputs for the
classification models at the second stage.

2.3. Dataset for classification and data processing

Once the segmentation and following post-processing at the
first stage are done, we can then perform classification over the
pairs of post-processed segmented images and masks as demon-
strated in the last row in Fig. 3. It should be noted that we split
them into three sets, training, validation and test, according to
the ratio 8 : 1 : 1. The numbers of samples in all classes for classi-
fication are summarized in Table 1.

To train the classification models with or without MA, the pairs
of post-processed segmented images and masks require pre-
processing as well for normalization and diversity enhancement,
similar to that for segmentation. Specifically, we implement the
data augmentation operations via Albumentations library [6]. The
operations and corresponding ratio ranges determined by numer-
ous experiments are listed as follows:

1. Shifting: shift the pairs of images and masks horizontally and
vertically randomly with the ratio range [�6:25%;6:25%].

2. Scaling: scale the pairs of images and masks randomly with the
ratio range [�20%;20%].

3. Rotation: rotate the pairs of images and masks by angles
selected randomly from the uniform distribution in [�30;30].



Fig. 3. Example processed images in class: (a) Normal, (b): COVID-19, (c): TB, (d):
BP, (e): VP. The images in four rows represent original images, predicted masks,
post-processed masks, and final segmentation.

Fig. 2. Schematic representation of the training workflow of MANet.
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4. Adjustion of brightness and contrast: adjust the brightness and
contrast of images with the ratio range [�20%;20%].

These on-the-fly augmentations have a probability of 50% of
being applied to the training pairs of images and masks, both for
diversity enhancement and avoiding over-augmentation. Besides,
the augmented images are normalized to a common scale [�1;1]
according to min–max feature scaling [25].
Table 1
Distribution of samples for classification in all infection types.

Set Normal COVID-19 TB BP VP

Training 1484 331 306 2239 1073
Validation 185 51 50 258 135

Test 171 51 38 283 137

Total 1840 433 394 2780 1345
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3. Two-stage segment-based classification

3.1. Workflow of MANet

In this work, we introduce a segment-based classification
method named MANet. Its integrated workflow is illustrated in
Fig. 2. Unlike the end-to-end classification CNNs, MANet contains
two stages that are segmentation and classification. Generally,
the segmentation at the first stage is to segment out the
diagnosis-relevant lung regions that the classification models at
the second stage need to concentrate on for predicting the classes
of inputs.

Attention mechanisms, especially soft attention, are being used
more and more frequently since many works [54,24,17] have
revealed that attention can expand capabilities of networks and
allow approximating more complicated functions. However, the
conventional differentiable soft attention is computationally
expensive and often over-parameterized. MA proposed in this
work reduces the computational cost by defining the attention
maps for all features prior to feature extraction in CNNs via a seg-
mentation model trained at the first stage, and also distributes the
attentions of CNNs in the segmented lung regions. The architec-
tures for the involved CNNs with MA and corresponding hyper-
parameters are demonstrated in the following two subsections.

3.2. Stage 1: Segmentation

At the first stage, we employ the classic segmentation model
UNet [37] with ResNet backbone (ResUNet) to segment out the
lung regions of all CXR images. Its architecture and the residual
connection in all convolutional blocks are demonstrated in
Figs. 4a and 4b, respectively. The symmetric architecture of ResU-
Net can extract features in different levels from low to high, from
which the corresponding lung masks can be predicted more pre-
cisely. Meanwhile, the residual connection avoids ResUNet from
going too deep and also alleviates the gradient diminishing
problem.

3.3. Stage 2: Classification with MA

In nearly all CNN-based image classification tasks, the predic-
tions are based on the features extracted from the entire images.
Such a decision-making process is likely to be affected by the
diagnosis-irrelevant features of the given inputs. These features,



Fig. 4. Architecture of (a): ResUNet, (b): a residual convolution block in ResUNet.
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e.g., areas of dark regions, edges of lungs, etc., may mislead the
CNNs and cause unstable training. Specifically, in medical disease
classification, CNNs only need to concentrate on local pathological
regions (lung regions in CXR classification). Hence, the masks pre-
dicted by the segmentation model in Section 3.2 can be employed
as the pre-defined regions for CNNs to focus on. We propose MA to
guide the CNNs at the second stage to concentrate on the lung
regions covered by the predicted masks.

Most CNNs are implemented by stacking convolutional blocks
composed of convolution, normalization and activation layers. In
these models, the proposed MA can be conveniently applied by
adjusting the feature values in each block according to calculated
attention maps. Fig. 6 demonstrates a classic convolutional block
with MA. Essentially, MA is to adjust the feature values in CNNs
based on a spatial attention map indicating the amount of valid
information covered in their receptive fields. It forces the spatial
attention of CNNs located in the desired regions unchanged while
suppressing that in other regions.

The overall transformation of features in a convolutional block
with MA can be written as Eq. (1). Mathematically, in a CNN with
MA, an input is a pair of segmented CXR image I0 and correspond-
ing mask M0 predicted by the segmentation model. Likewise, in its

ith convolutional block, the input is a pair of 3-D input feature
matrix Ii, and its corresponding 2-D spatial attention map Mi. Mi

can be seen as the spatial attention map for Ii, and an element
Miðx; yÞ 2 ½0;1� in the map indicates the amount of available infor-
mation in Iiðx; yÞ. An unbiased convolutional layer, with kernel
size = k, stride = s and padding = p, then transforms Ii to
f ðIi; k; s; pÞ. The following BN layer normalizes the convolutional

value to f̂ ðIi; k; s; pÞ. When the receptive fields of extracted features
changes in some operations (e.g. pooling, convolution with kernel
size > 1, etc.), the spatial attention map evolves jointly via a con-
sistent average pooling, Miþ1 ¼ PðMi; k; s; pÞ. MA in a convolutional
block adjusts the normalized features based on the corresponding
spatial attention map through an element-wise multiplication
denoted by �, after which a non-linear activation function A

arises.

Iiþ1 ¼ Aðf̂ ðIi; k; s;pÞ � PðMi; k; s;pÞÞ
Miþ1 ¼ PðMi; k; s;pÞ

ð1Þ

The proposed MA can be easily applied in most CNNs as illustrated
in Fig. 5. Specifically, for a common convolutional block like in VGG,
MA is implemented by multiplying the normalized features with
100
calculated attention maps. While in the ResNet family, MA might
be affected by the skip-connection operations. This negative impact
is slight as the difference between the two attention maps in two
connected blocks is trivial. The deep and residual features in ResNet
basic blocks are added up, producing fused features from two differ-
ent receptive fields. The fused features cause uncertainty when
choosing receptive field for calculating attention maps for MA. We
choose to generate spatial mask attention maps according to the
larger receptive field from deep features and the classification
results in Section 4 can prove that MA works for ResNet in this
way. The bottleneck structure in deep ResNet only performs MA
once because 1� 1 convolution does not change the receptive field
of extracted features. The inception module is different from the
preceding ones as features in different channels have different
receptive fields. In this case, the spatial attention map in MA is sim-
ply calculated based on the largest receptive field of features in all
channels.

Essentially, MA is a kind of spatial attention mechanism but dif-
ferent from others in terms of its nondifferentiability and indepen-
dence of target features. In other soft attention mechanisms, like
CBAM [54] illustrated in Fig. 7, the attention is inferred from the
feature values and require trainable parameters, while that in con-
volutional blocks with MA is independent on the feature values.
MA decouples the spatial attention generation from feature extrac-
tion and avoids training attention modules repeatedly. Spatial
attention in MA is to suppress only the outlier-features whose
receptive fields are outside the lung regions. Since the lung regions
are already predicted at the first stage, the attention maps in MA
do not need to be re-calculated according to extracted features at
the second stage. The attention maps evolve progressively based
on the receptive fields of features rather than their values.
4. Results and analysis

In this section, we demonstrate the experimental settings, the
results of both two stages in MANet, and compare the performance
of models with or without MA. Besides, Grad-CAM [39] is
employed to help visualize the attentions of involved CNNs.

4.1. Results for segmentation

At the first stage, we trained the ResUNet on the dataset (in Sec-
tion 2.2) using the Adam optimizer for 50 epochs to minimize the
dice loss [42]. The hyper-parameters are as follows: batch size = 64,



Fig. 5. Structures of (a): convolutional block in VGG, (b): basic convolutional block in ResNet, (c): bottleneck in ResNet, (d): Inception module in Inceptionv3. (Top: original
convolutional blocks without MA. Bottom: convolutional blocks with MA.).
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constant learning rate = 2� 10�4, weight decay = 1� 10�5. Besides,
the trainable weights of the involved convolution layers are initial-
Fig. 6. Schematic representation of a classic convolutional block with MA.
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ized according to Kaiming Normal [22] while the weights of batch
normalization (BN) layers are initialized to one with zero bias.

As illustrated in Section 2.2, only 359, 345 and 202 CXR image-
mask pairs for classes normal, TB and COVID-19 are available.
Hence, at the first stage of MANet, we train and evaluate the
ResUNet segmentation model over the dataset containing these
Fig. 7. Schematic representation of a convolutional block with CBAM.



Fig. 8. Visualization results of ResUNet. The images from left to right represent the
original CXR images, masks predicted by trained ResUNet, ground-truth masks, and
segmentation, for a (top) normal and a (bottom) TB cases in the test set.

Table 2
Test accuracy of original models, models with MA, and models with CBAM.

Model Trail 1 Trail 2 Trail 3 Average

ResNet34 96.76% 95.44% 95.15% 95.78%
ResNet34(MA) 96.18% 96.32% 95.59% 96.03%
ResNet34(CBAM) 95.29% 93.82% 96.18% 94.92%

ResNet50 95.59% 96.47% 96.18% 96.08%
ResNet50(MA) 96.47% 95.44% 97.06% 96.32%
ResNet50(CBAM) 96.18% 95.74% 94.85% 95.59%

VGG16 94.56% 93.37% 93.68% 93.87%
VGG16(MA) 95.00% 94.56% 95.74% 95.10%

Inceptionv3 94.41% 95.44% 96.32% 95.39%
Inceptionv3(MA) 96.62% 96.03% 95.44% 96.03%

The text in bold indicates that the corresponding model achieves the highest test
accuracy among all models with one backbone (ResNet34, ResNet50, VGG16 or
Inceptionv3) in one trail.

Table 3
Comparison of the involved models in terms of computational space and time.

Model Params FLOPs Running time Time increase
(M) (M) (%)

ResNet34 21.28 18766.76 1h56m –
ResNet34(MA) 21.28 18766.99 2h21m 21.55
ResNet34(CBAM) 21.44 18781.39 2h43m 40.52

ResNet50 23.51 21058.83 2h37m –
ResNet50(MA) 23.51 21058.98 2h47m 6.37
ResNet50(CBAM) 26.03 21099.81 3h55m 49.68

VGG16 134.29 80208.35 7h30m –
VGG16(MA) 134.29 80209.15 7h56m 5.78

Inceptionv3 21.80 17537.14 2h41m –
Inceptionv3(MA) 21.80 17537.40 2h56m 9.32

Table 4
Classification results for MANet using ResNet50 with MA as the classification model.

Class Precision Recall F1-score Support

Normal 0.94 0.96 0.95 171
COVID-19 0.94 0.96 0.95 51
TB 0.91 0.79 0.85 38
BP 1.00 0.99 0.99 283
VP 0.98 0.99 0.99 137

Weighted Average 0.97 0.97 0.97 680

Table 5
Confusion matrix for ResNet50 with MA.

Predicted

Normal COVID TB BP VP

Actual Normal 165 0 3 0 3
COVID 1 49 0 1 0
TB 8 0 30 0 0
BP 0 3 0 280 0
VP 1 0 0 0 136
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image-mask pairs. From the segmentation results presented in
Fig. 8, the predicted masks are similar with their ground truth,
indicating the trained ResUNet can correctly segment out the lung
regions.

Regarding objective evaluation for ResUNet segmentation, the
intersections over union (IoUs) for test samples in three classes
(36 normal, 38 TB and 17 COVID-19) are measured. We exclude
the other two classes, BP and VP, at the first stage, because their
corresponding image-mask pairs are unavailable in the collected
data repositories. The conditional average test IoUs for classes nor-
mal, TB and COVID-19 are 93:49%;93:14% and 89:07%, respec-
tively. And the overall average test IoU is 92:50%. Before the next
stage, we predicted the masks for all obtained CXR images followed
by the post-processing illustrated in Section 3.2. The examples of
the post-processed images are demonstrated in the last row in
Fig. 3.
4.2. Results for classification

In our experiments, we trained the involved models, including
the original models, models with MA, and models with CBAM, with
the same setting of hyper-parameters and training policy. The
employed optimizer is SGD with an initial learning rate of 0:01
decayed to 0 according to a cosine annealing scheduler [31], and
a momentum¼ 0:9. It aims to minimize the cross entropy loss over
200 epochs. Besides, we implemented the distributed data paral-
lelism of all involved models on four NVIDIA Tesla P100 GPUs via
Pytorch [35] framework to accelerate and improve training. With
the parallel models, the batch size is enlarged to 64 to improve
the classification results.

At the second stage, we trained the four types of models with or
without MA as the classification model, including VGG16,
ResNet34, ResNet50 and Inceptionv3, over the dataset after ResU-
Net segmentation and post-processing. The composition and rep-
resentative samples of the pairs of post-processed segmented
images and masks at this stage are shown in Section 2.3. To evalu-
ate the performance of models, we trained and tested all models on
the same dataset in three trails.

Table 2 presents the test accuracy for all tested models in three
training trails. All models are trained with the post-processed CXR
images as inputs. From this summary table, all models with MA
surpass the original ones in terms of the average test accuracy,
and MA improves the test accuracy of the original models in 9
out of 12 experiments. Among these models, ResNet50 with MA
as the classification model achieves the best average test accuracy
96:32%. Meanwhile, the best test accuracy obtained by ResNet50
with MA is 97:06% in the third trail. Besides, CBAM is also
employed in ResNet34 and ResNet50 for comparison with MA.
The results show that models with CBAM cannot even outperform
the original models without MA in terms of the average test
accuracy.

MA is a light attention module that costs no extra parameters
and can be easily applied in most mainstream CNNs. We present
the numbers of trainable parameters, floating point operations



Fig. 9. Segmented CXR images and the corresponding attention heat maps visualized by Grad-CAM. The images in the first row are in five classes: COVID-19, normal, TB, BP
and VP, respectively. The later three rows of attention heat maps are for original ResNet50, ResNet50 with MA and ResNet50 with CBAM, respectively. (Only the attentions for
the ground truth classes are highlighted.) The color bar on the right hand indicates the attention values.
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(FLOPs), and running time of all involved models in Table 3. It is
worth noting that MA models achieve the best average test accu-
racy with trivial extra FLOPs and with 5:78% to 21:55% extra run-
ning time.

Table 4 presents the classification report for the best model,
ResNet50 with MA in the third trail, with the corresponding confu-
sion matrix shown in Table 5. It can be drawn from the statistics
that the classification performance is proportional to the amount
of data since that for dominated classes (BP and VP), outperforms
others.

Besides, we also plot the training process of all models in one
trail as shown in Fig. 10. It can be noted that MA can stabilize
Fig. 10. Validation accuracy of all models over 200 epochs.
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the training as the sharp ups and downs of validation accuracy
are significantly reduced with the usage of MA, especially in
the later phases. Furthermore, the validation accuracy of models
with MA improves more quickly than that of models with CBAM,
indicating that the decoupling of spatial attention generation and
feature extraction by MA can accelerate the convergence of
CNNs.

4.3. Attention visualization

MA is a light module to concentrate the attentions of CNNs on
the regions pre-defined by the segmentation model. To show its
availability, we plot the attention heat maps visualized by Grad-
CAM [39] in Fig. 9, presenting the attentions in the last bottleneck
blocks of all trained models extended from ResNet50. It can be
noted from the second row in Fig. 9 that the attentions of the orig-
inal model are mainly distributed around the segmentation edges.
After applying CBAM, the distribution of attentions becomes more
scattered and irregular. Comparing with others, the models with
MA present relatively more practical attentions located in the seg-
mented lung regions. It indicates that MANet has a better general-
ization ability and interpretability as MANet classifies the CXR
samples based on the diagnosis-relevant features. The attention
heat maps improved by the application of MA show that MANet
has the potential to assist COVID-19 diagnosis.
5. Conclusion

This paper proposes the MANet, a new two-stage classification
method for the classification of COVID-19 positive cases from CXR
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images. The dataset used in this study is collected from three data
repositories, containing 6792 CXR images in five classes including
normal, COVID-19 positive, TB, BP and VP (expect for COVID-19).
MANet involves two stages that are segmentation and classifica-
tion, introducing a new spatial attention module MA to concen-
trate the attention of classification model on the regions
predicted by the segmentation model. We implement the segmen-
tation through a UNet model with ResNet backbone, and apply MA
into four classic CNNs for classification, including ResNet34,
ResNet50, VGG16 and Inceptionv3. The statistical results and train-
ing demonstrate that the spatial attention mechanism MA in
MANet can improve both the classification performance and train-
ing stability of the original models. Moreover, when comparing the
attention heat maps of models with or without MA, the heat maps
of models with MA indicate the potential pathological regions of
CXR images which enhances the interpretability of MANet. Further
directions include developing end-to-end MANet to improve its
efficiency, enhancing the robustness by collecting more COVID-
19 CXR images, and extending this work to other segment-based
classification tasks.
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