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The fatty acid amides are a family of lipids composed of two chemical moieties, a fatty acid
and a biogenic amine linked together in an amide bond. This lipid family is structurally
related to the endocannabinoid anandamide (N-arachidonoylethanolamine) and, thus, is
frequently referred to as a family of endocannabinoid-related lipids. The fatty acid amide
family is divided into different classes based on the conjugate amine; anandamide being a
member of the N-acylethanolamine class (NAE). Another class within the fatty acid amide
family is theN-acyl amino acids (NA-AAs). The focus of this review is a sub-class of the NA-
AAs, the N-acyl aromatic amino acids (NA-ArAAs). The NA-ArAAs are not broadly
recognized, even by those interested in the endocannabinoids and endocannabinoid-
related lipids. Herein, the NA-ArAAs that have been identified from a biological source will
be highlighted and pathways for their biosynthesis, degradation, enzymatic modification,
and transport will be presented. Also, information about the cellular functions of the NA-
ArAAs will be placed in context with the data regarding the identification and metabolism of
these N-acylated amino acids. A review of the current state-of-knowledge about the NA-
ArAAs is to stimulate future research about this underappreciated sub-class of the fatty
acid amide family.
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INTRODUCTION

The fatty acid amides are a biologically important family of lipids resulting from a fatty acid and a
biogenic amine linked together in an amide bond (Ni et al., 2021). Anandamide
(N-arachidonoylethanolamine) is the most studied member of this lipid family. The N-acyl
amino acids are members of the fatty acid amide family with an amino acid as the biogenic
amine. The occurrence of N-acylated amino acids in biological systems has long been known. A few
early examples include urinaryN-isovaleroylglycine from patients suffering from isovaleric acidemia
(Tanaka and Isselbacher, 1967) and N-acetylglutamate as an allosteric activator of carbamoyl
phosphate synthetase I (Grisolia and Cohen, 1953). Knowledge of the N-acylated amino acids was
generally limited to short-chain NA-AAs because the N-acetylated derivatives of all the amino acids
have been identified (Wishart et al., 2018) and specific short-chain NA-AAs are biomarkers for
different metabolic diseases (Goldstein, 1963; Millington et al., 1991; Loots et al., 2005; Scolamiero
et al., 2015). There were a few reports of NA-AAs with acyl chains of six carbon atoms or longer
(often called the lipo-amino acids) from living organisms (Fukui and Axelrod, 1961; Hunter and
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James, 1963; Garg and Murti, 1970; Baretz et al., 1976; Pitt, 1993),
but such molecules were not widely understood or appreciated.

Interest in the lipo-amino acids has increased dramatically
over the last ∼30 years driven by discoveries showing the
biological importance of these molecules and of other
structurally related lipo-amides, including the myristoylation
of the N-terminal glycine of eukaroytic proteins (Wang et al.,
2021), N-acylhomoserine lactones as quorum sensing molecules
in bacteria (Càmara et al., 1998), N-(17-hydroxylinolenoyl)-L-
glutamine (volicitin) as an elicitor of plant volatiles from
caterpillars (Alborn et al., 1997), anandamide as the
endogenous ligand of the CB1 receptor (Devane et al., 1992),
and oleamide as a regulator of the sleep/wake cycle (Cravatt et al.,
1995). Anandamide is a member of the endocannabinoid family
of cell signaling lipids. The long-chain NA-AAs are structurally
related to anandamide and, thus, are often referred to as
endocannabinoid-related lipids.

A sub-class of the NA-AAs, the N-acyl aromatic amino acids
(NA-ArAAs) are not broadly recognized, even by those interested
in the endocannabinoid-related lipids, but several of the NA-
ArAAs have been identified from a biological source. This review
is focused on these topics: identification of the NA-ArAAs from
living systems and pathways for their biosynthesis, metabolism,
and degradation. Included in the review is information about
NA-ArAAs related to the “common” aromatic amino acids, 1-
methylhistidine, 3-methylhistidine, anserine, carnosine,
homocarnosine, L-DOPA (3,4-dihydroxy-L-phenylalanine), and

kynurenine (Figure 1). Little regarding the biological function of
the NA-ArAAs is included herein because knowledge of their
cellular roles is limited and their cellular roles could differ from
organism-to-organism. Other reviews of the lipo-amino acids
have discussed the possible functions of these molecules in the cell
(Bradshaw et al., 2009a; Hanuš et al., 2014; Anderson and
Merkler, 2017; Burstein, 2018; Battista et al., 2019; Prakash
and Kamlekar, 2021). This is the first review solely dedicated
to the N-acylated aromatic amino acids.

BIOLOGICAL OCCURRENCE

One concern in reviewing the NA-ArAA field was nomenclature:
would important publications be missed because members of the
N-acyl amino acid family are identified by a name that does not
correlate well to their structure. For example, most of the
published work on N-arachidonoylethanolamine is found
using “anandamide” as the search term. To circumvent this
problem, we systematically built the structures for each of the
NA-ArAAs in ChemDraw, starting with the N-acetyl derivative,
and then used the search function in ChemDraw to identify
publications related to the exact structure in SciFinder.
Publications identified by SciFinder fostered additional
searches in PubMed, Google Scholar, Century of Science, and
the Human Metabolite database. The NA-ArAAs that have been
identified and characterized from a living system are shown in

FIGURE 1 | Structures of the Aromatic Amino Acids and Aromatic Amino Acid related biomolecules.
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TABLE 1 | N-Acyl Aromatic Amino Acids Identified from Living Systems.

L-Amino Acidsa

N-Acyl Group Phe Tyr Trp His References

Acetyl [CH3-CO D D,Q D D,Q O’Dowd et al. (1988)
O’Dowd et al. (1992)
Togashi et al. (1998)
Tanaka et al. (2015)
Yu et al. (2014)
Wishart et al. (2018)

Propionyl [CH3-CH2-CO-] NF NF NF NF
Lactoyl [CH3-CH(OH)-CO-] D D NF NF Pietrowska et al. (2018)

Bonte et al. (2019)
Qian et al. (2021)

Malonyl [HOOC-CH2-CO-] D D D NF Feldberg et al. (2018)
Obianyo et al. (2015)
Farag and Shakour, (2019)

Butyryl [CH3-CH2-CH2-CO-] NF D,Q NF NF Hammerl et al. (2017)
Succinoyl [HOOC-CH2-CH2-CO-] NF NF D,Q NF Yu et al. (2014)
α-Malyl [HOOC-CH(OH)-CH2-CO-] NF D D,Q NF Yu et al. (2014)

Feldberg et al. (2018)
β-Malyl [HOOC-CH2-CH-(OH)-CO-] NF NF D,Q NF Yu et al. (2014)
Crotonyl [CH3-CH � CH-CO-, trans] NF NF NF NF
Isocrotonyl [CH3-CH � CH-CO-, cis] NF NF NF NF
Isobutyryl [(CH3)2-CH-CO-] NF NF NF NF
Pentanoyl (Valeroyl) [CH3-(CH2)3-CO-] NF NF NF NF
Isovaleroyl [(CH3)2-CH-CH2-CO-] D D D D Loots et al. (2005)
Pivaloyl [(CH3)3-C-CO-] NF NF NF NF
Hexanoyl (Caproyl) [CH3-(CH2)4-CO-] NF D,Q NF D Hammerl et al. (2017)

Tørring et al. (2017)
Heptanoyl [CH3-(CH2)5-CO-] NF NF NF NF
Octanoyl (Capryloyl) [CH3-(CH2)6-CO-] NF D,Q D D Brady and Clardy (2000)

Brady et al. (2004)
Hammerl et al. (2017)
Tørring et al. (2017)

Nonanoyl (Pelargonoyl) [CH3-(CH2)7-CO-] NF D NF NF Brady and Clardy (2000)
Brady et al. (2004)

Decanoyl [CH3-(CH2)8-CO-] NF D NF D Brady and Clardy (2000)
Brady et al. (2004)
Tørring et al. (2017)

Decenoyl [CH3-(CH2)6-CH � CH-CO-, 2-cis] NF NF NF D Brady et al. (2004)
[CH3-(CH2)6-CH � CH-CO-, 2-trans] NF NF NF D Tørring et al. (2017)
[CH3-(CH2)5-CH � CH-CH2-CO-, 3-cis] NF NF NF D
(2-Hexylcyclopropyl)acetyl [cis-cascarilloyl) [CH3-(CH2)5-cyclopropyl-CH2-CO-] NF NF NF D Tørring et al. (2017)
Undecanoyl [CH3-(CH2)9-CO-] NF D NF NF Brady and Clardy (2000)

Brady et al. (2004)
Lee et al. (2019)

Lauroyl [CH3-(CH2)10-CO-] D D NF NF Brady and Clardy (2000)
Brady et al. (2004)
Yeo et al. (2007)
Craig and Brady (2011)
Lee et al. (2019)

Tridecanoyl [CH3-(CH2)11-CO-] D D NF NF Brady and Clardy (2000)
Brady et al. (2004)
Lee et al. (2019)

11-Methyldodecanoyl [(CH3)2-CH-(CH2)9-CO-] D NF NF NF Craig and Brady (2011)
Myristoyl [CH3-(CH2)12-CO-] D,Q D D NF Brady et al. (2004)

Clardy and Brady (2007)
Long et al. (2016)
Thies et al. (2016)
Lee et al. (2019)

Myristoleoyl [CH3-(CH2)3-CH � CH-(CH2)7-CO-, cis] NF NF NF NF
7-Tetradecenoyl [CH3-(CH2)5-CH � CH-(CH2)5-CO-, cis] NF D NF NF Brady and Clardy (2000)
Pentadecanoyl [CH3-(CH2)13-CO-] D D NF NF Brady and Clardy (2000)

Brady et al. (2004)
Clardy and Brady (2007)
Lee et al. (2019)

(Continued on following page)
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Table 1. There is nothing in Table 1 about 1-methylhistidine, 3-
methylhistidine, anserine, carnosine, homocarnosine, L-DOPA,
and kynurenine because the only known acylated derivative of
these amino acids is the N-acetyl version. All have been identified
in human (Wishart et al., 2018) and other mammals (Sasaoka
et al., 1982; O’Dowd et al., 1988; O’Dowd et al., 1992) except for
N-acetyl-L-DOPA, which has only been identified in Streptomyces
(Solecka et al., 2012). We have omitted some information about
the NA-ArAAs from Table 1 to keep this table manageable. The
omitted data concerned the biological source of the NA-ArAAs
and their cellular concentrations. Many of the NA-ArAAs have

been identified from more than one organism. One example is
N-palmitoyl-phenylalanine, which has been identified from
bamboo (Ren et al., 2019), Drosophila melanogaster
(Tortoriello et al., 2013), soil microorganisms (Clardy and
Brady, 2007), rat brain (Tan et al., 2010), and mouse (plasma
and eight different regions of the brain) (Leishman et al., 2016).
Concentration data for many of the NA-ArAAs listed in Table 1
is not available. For such NA-ArAAs, the lipo-amino acid was
detected and characterized, but not quantified. For other NA-
ArAAs, only a concentration ratio is reported because a
significant concentration change for that NA-ArAA could

TABLE 1 | (Continued) N-Acyl Aromatic Amino Acids Identified from Living Systems.

L-Amino Acidsa

N-Acyl Group Phe Tyr Trp His References

8-Pentadecenoyl [CH3-(CH2)5-CH � CH-(CH2)6-CO-, cis] NF D NF NF Brady and Clardy (2000)
Palmitoyl [CH3-(CH2)14-CO-] D,Q D,Q D,Q D Brady and Clardy (2000)

Brady et al. (2004)
Brady and Clardy (2005)
Clardy and Brady (2007)
Tan et al. (2010)
Tortoriello et al. (2013)
Leishman et al. (2016)
Long et al. (2016)
Ren et al. (2019)
Berman et al. (2020)

Palmitoleoyl [CH3-(CH2)5-CH � CH-(CH2)7-CO-, cis] NF D D NF Brady and Clardy (2000)
Brady and Clardy (2005)

Heptadecanoyl (Margaroyl) [CH3-(CH2)15-CO-] NF D NF NF Brady et al. (2004)
Stearoyl [CH3-(CH2)16-CO-] D,Q D,Q D,Q NF Tan et al. (2010)

Tortoriello et al. (2013)
Leishman et al. (2016)
Qi et al. (2017)

Petroselinoyl [CH3-(CH2)10-CH � CH-(CH2)4-CO-, cis] NF NF NF NF
Oleoyl [CH3-(CH2)7-CH � CH-(CH2)7-CO-, cis] D,Q D,Q D,Q D Tan et al. (2010)

Tortoriello et al. (2013)
Leishman et al. (2016)
Kim et al. (2020)
Zhou et al. (2020)

Elaidoyl [CH3-(CH2)7-CH � CH-(CH2)7-CO-, trans] NF NF NF NF
cis-Vaccenoyl [CH3-(CH2)5-CH � CH-(CH2)9-CO-, cis] NF D NF NF Brady and Clardy (2000)
Vaccenoyl [CH3-(CH2)5-CH � CH-(CH2)9-CO-, trans] NF NF NF NF
Linoleoyl [CH3-(CH2)4-CH � CH-CH2-CH � CH-(CH2)7-CO-, all cis] D,Q D,Q D,Q NF Tortoriello et al. (2013)

Leishman et al. (2016)
Long et al. (2016)

α-Linolenoyl [CH3-CH2-(CH � CH-CH2)3-(CH2)6-CO-, all cis] NF D,Q NF NF Liu et al. (2017)
Berman et al. (2020)

Arachidoyl [CH3-(CH2)18-CO-] D,Q NF NF NF Long et al. (2016)
Arachidonoyl [CH3-(CH2)4-(CH � CH-CH2)4-(CH2)2-CO-, all cis] D,Q D,Q D,Q D Tan et al. (2010)

Leishman et al. (2016)
Long et al. (2016)
Borras et al. (2017)
Berman et al. (2020)

Eicosapentaenoyl [CH3-CH2-(CH � CH-CH2)5-(CH2)2-CO-, all cis] D,Q NF NF NF Long et al. (2016)
Behenoyl [CH3-(CH2)20-CO-] NF NF NF NF
Erucoyl [CH3-(CH2)7-CH � CH-(CH2)11-CO-, cis] NF NF NF NF
Docosahexaenoyl [CH3-CH2-(CH � CH-CH2)6-CH2-CO-, all cis] D,Q D,Q D D Tan et al. (2010)

Leishman et al. (2016)
Long et al. (2016)

Lignoceroyl [CH3-(CH2)22-CO-] NF NF NF NF
Nervonoyl [CH3-(CH2)7-CH � CH-(CH2)13-CO-, cis] NF NF NF NF

aD, detected, Q � quantified, and NF, nothing found.
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serve as a disease biomarker (Obianyo et al., 2015; Qi et al., 2017;
Bonte et al., 2019; Shoaib et al., 2020). For the NA-ArAAs that
have been quantified, concentrations are reported in a diversity of
units, including molarity, mass/volume, mass per gram of tissue,
mass per gram of wet weight of tissue, or mass per mass of
creatine. Another complicating factor is how the concentration
data was generated and/or reported. For example, the
concentration of N-acetyl-3-methylhistidine in rat was
reported as a production rate, 2.04 ± 0.13 µmole/24 h/rat
(Sasaoka et al., 1982), while those for N-acetylated derivatives
of histidine, 1-methylhistidine, carnosine, and homocarnosine
were from rabbit heart perfusates (O’Dowd et al., 1992). Lastly,
the concentration data for a few of the NA-ArAAs have been
measured from different organisms or from different tissues of
the same organism. For example, the concentrations of
N-arachidonoyl, N-docosahexaenoyl-, N-linoleoyl-, N-oleoyl-,
N-palmitoyl-, and N-stearoyl-derivatives of Trp, Tyr, and Phe
from eight different mouse brain regions were published
(Leishman et al., 2016). Readers interested in either the
biological source and/or the concentrations for a NA-ArAA
listed in Table 1 can obtain this information from the cited
references or from a search in one of the databases
mentioned above.

Clardy, Brady, and co-workers have found that soil
microorganisms may produce many different NA-ArAAs
(Brady and Clardy, 2000; Brady et al., 2004; Brady and Clardy,
2005; Clardy and Brady, 2007). The NA-ArAAs included in
Table 1 from their work are only those that have been fully
identified and characterized. However, these researchers have
reported that other NA-ArAAs are produced by soil
microorganism, which were not included in Table 1. These
were NA-ArAAs that possess a long-chain, monounsaturated
acyl group, but the position and stereochemistry of the double
bond was not delineated. N-Acyl-L-tyrosines with acyl groups of
C8:1, C9:1, and C17:1 were generated by environmental N-acyl
amino acid synthases expressed in E. coli (Brady et al., 2004).

An examination of the data in Table 1 reveals apparent gaps in
our knowledge of the NA-ArAAs from living systems. One key
issue is the stereochemistry of the aromatic amino acid. It is not
always clear in the work cited in Table 1 that the aromatic amino
acid was definitively identified as the L-isomer. A few N-acyl-D-

aromatic amino acids have been identified (Table 2) and the
D-aromatic amino acids are found in man (Table 3). The most is
known about the biologically generated N-acyl-tyrosines relative
to the other NA-ArAAs; there are 27 different N-acyl groups
attached to Tyr with 13–16 different N-acyl groups for His, Trp,
and Phe. The identification of a relatively large cohort of N-acyl-
tyrosines is not simply a consequence of the relatively high
cellular concentration of L-Tyr because, at least in human
blood, all the aromatic amino acids are approximately the
same concentration (20–150 μM, see Wishart et al., 2018).
There is a wealth of data on the N-acetyl aromatic amino
acids, limited to no data for acyl chains of 3–15 carbon atoms
in length, and then considerable data for longer-chain acyl groups
of 16–22 carbon atoms in length. We did not include acyl-chains
longer than 24 carbon atoms in our search because very-long
chain fatty acids represent a low percentage of the total fatty acids
found in living systems (generally less than 2%), are of limited
aqueous solubility, are not well studied (Rezanka and Votruba,
2002; Řezanka and Sigler, 2009). Much of the data for
identification of the NA-ArAAs with acyl-chains containing
6–15 carbon atoms comes from the work on the expression of
environmental DNA in E. coli (Brady and Clardy, 2000; Brady
et al., 2004; Brady and Clardy, 2005; Clardy and Brady, 2007),
suggesting that medium-chain N-acyl aromatic amino acids have
important cellular and extracellular functions for soil
microorganisms. Straight-chain acyl groups predominate the
NA-ArAAs listed in Table 1. For branched-chain acyl groups,
we found information for only N-isovaleroyl- Phe, Tyr, Trp, and
His and N-(11-methyldodecanoyl)-Phe. Branched chain fatty
acids typically represent a small percentage of total cellular
fatty acids, <4% (Nicolaides, 1974); thus, the limited data for
branched-chain NA-ArAAs may reflect the overall abundance of
this class of acyl chains in a living system. The apparent gaps in
our knowledge about the NA-ArAAs discussed here may reflect
differences in the respective abundance of the fatty acids and the
aromatic amino acids in the cell or may be a consequence of
search bias or simply that these have not yet been observed.
Perhaps, a targeted search for N-propionylated or
N-myristoleoylated aromatic amino acids will demonstrate that
these NA-ArAAs are produced by living systems.

BIOSYNTHESIS

Living systems produce a diversity of NA-ArAAs (Table 1).
One set of questions regarding the NA-ArAAs is: 1) how are

TABLE 2 | N-Acyl-D-Aromatic Amino Acids Identified from Living Systems

D-Amino Acidsa

N-Acyl Group Phe Tyr Trp His References

Acetyl [CH3-CO-] D NF D NF Kaur et al. (2013)
Gauthier et al. (2018)
Chahel et al. (2019)
Mengdi et al. (2020)
Pinto et al. (2020)
Rahaman et al. (2021)

Malonyl [HOOC-CH2-CO-] D NF D NF Sakagami et al. (1995)
Farag et al. (2016)

Gymnastatin Nb NF D NF NF Phoon et al. (2004)

aD, Detected and NF, nothing found.
bGymnastatin N � N-(2E,4E,6R)-4,6-dimethyl-2, 4-dodecadienoyl-D-tyrosine.

TABLE 3 | Concentrations of the D-Aromatic Amino Acids in human bodily fluidsa.

Amino Acid CSF Plasma Urine

D-Phenylalanine 340–2,500 nM 100–300 nM (50–70 nM)b 40–250 nM
D-Tyrosine 0–10 nM 0–120 nM (190–470 nM)b 30–120 nM
D-Tryptophan 2–5 nM 0–30 nM (80–110 nM)b 20–50 nM
D-Histidine BLDc BLDc (270–630 nM)b 50–520 nM

aData from Visser et al. (2011).
bThe values in the parentheses are the rat plasma concentrations (Xing et al., 2016).
cBLD, below the level of detection.
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they made, 2) how are they degraded, 3) how are they
metabolized to other metabolites, and 4) how are they
transported? There are reports describing an enzyme-
catalyzed condensation between an amino acid and a fatty
acid to generate a lipo-amino acid, which does not require the
addition of ATP or coenzyme A (CoA) (Bachur and
Udenfriend, 1966; Katayama et al., 1999; Lait et al., 2003;
Koreishi et al., 2006; Long et al., 2016). Catalysis of the direct
condensation reaction is often attributed to hydrolases like
fatty acid amide hydrolase (FAAH) (Sugiura et al., 2002; Ueda,
2002; Hu et al., 2009). There is no question that hydrolases will
catalyze lipo-amino acid formation in vitro. However, the
significance of this chemistry in vivo is unclear because this
reverse hydrolase reaction generally requires high
concentrations of the substrates and pH values >8.
Comparison of the kinetic constants for synthesis vs.
hydrolysis reveals that the hydrolase reaction is generally
favored by a factor of 102–103 (Katayama et al., 1999; Long
et al., 2016). FAAH knock out mice exhibit higher levels of
anandamide and other fatty acid amides than wild type mice
(Cravatt et al., 2001; Saghatelian et al., 2004; Hu et al., 2009;
Han et al., 2013) providing strong evidence that, in vivo, the
major role of FAAH is in fatty acid amide hydrolysis and not
synthesis.

Recent work on the mammalian enzyme, peptidase M20
domain 1 (PM201D1), suggests that this enzyme may catalyze
direct condensation of fatty acids and L-Phe to form the long-
chain N-acylphenylalanines in the serum under physiologically
relevant conditions of pH and substrate concentrations (Long
et al., 2016; Kim et al., 2020). The binding of PM201D1 to serum
lipoprotein particles stimulates its synthesis activity. In addition,
the lipo-amino acids bind to serum albumin, which serves to
protect the lipo-amino acids from degradation and provides a
thermodynamic driving force for synthesis by decreasing the
serum concentration of the “free” lipo-amino acid.

One conventional route for the synthesis of NA-ArAAs and
the other lipo-amino acids is the nucleophilic attack of the
α-amino group of the amino acid at the activated carboxyl
group of the fatty acid. Biologically, the carboxyl group is
activated by formation of an acyl phosphate, an adenylate, or
a thioester (like an acyl-CoA). There is evidence that acyl
phosphates are substrates for the formation of N-acyl amino
acids in bacteria (Katz et al., 1953). ATP-grasp enzymes catalyze
the ATP-dependent formation of an acyl phosphate, which is
then employed for the generation of an amide bond (Iyer et al.,
2009; Fawaz et al., 2011). A number of ATP-grasp enzymes that
utilize an amino acid as a substrate has been identified, but, to
date, there has not been an ATP-grasp enzyme identified for the
biosynthesis of an NA-ArAA. Of particular note is the ATP-grasp
enzyme, carnosine synthase, which catalyzes the formation of
β-alanyl-phosphate and ADP from ATP and β-alanine.
Subsequent attack on the β-alanyl-phosphate by histidine
yields carnosine and, presumably, inorganic phosphate
(Drozak et al., 2010).

The ATP-dependent formation of an activated acyl adenylate
is another approach utilized biologically for carboxylate
activation (Hara et al., 2018). Fatty acyl adenylates are critical

in the formation of acyl-CoA thioesters (Dieckmann et al., 1995).
Interception of a fatty acyl adenylate by an aromatic amino acid
could yield a NA-ArAA. However, there is no known enzyme-
catalyzed transformation that directly involves a fatty acyl
adenylate in the formation of an NA-ArAA. NBAD
(β-alanyldopamine) synthase catalyzes a related reaction in the
biosynthesis of β-alanylhistamine (carcinine) and NBAD with
β-alanyl-adenylate as an intermediate (Richardt et al., 2003).

While acyl phosphates and acyl adenylates could have a role
in NA-ArAA biosynthesis, acyl thioesters do have a role in
NA-ArAA biosynthesis. The N-acetylated versions of all the
aromatic amino acids are known (Table 1) and transferases
that catalyze the acetyl-CoA-dependent formation of N-acetyl-
Gly (Schachter and Taggart, 1954), Glu (Sonoda and Tatibana,
1983), Asp (Madhavarao et al., 2003), His (Yamada et al.,
1995), and Phe (Krishna et al., 1971) are known. There are
glycine N-acyltransferases that utilize long-chain acyl-CoA
thioesters and glycine as substrates yielding the long-chain
N-acylglycines (Waluk et al., 2010; Jeffries et al., 2016). A
variation of this chemistry is the H2O2-dependent formation
of N-arachidonoylglycine from arachidonoyl-CoA and glycine
in a reaction catalyzed by cytochrome c (McCue et al., 2008).
However, acyltransferases responsible for the biosynthesis of
N-acetyl-Tyr, N-acetyl-Trp or the longer-chain NA-ArAAs
have not been described. The family GCN5-related
N-acyltransferases (GNAT) consists of over 10,000 members
from all forms of life and most these GNATs have not been
characterized. Amongst this group of uncharacterized GNATs,
there may be a transferase that will catalyze the acyl-CoA-
dependent production of the NA-ArAAs. A GNAT-related
enzyme that catalyzes the formation of N-acetyl-D- and
N-succinoyl-D-Phe, D-Tyr, or D-Trp from the aromatic
D-amino acid and acetyl-CoA or succinoyl-CoA has been
described (Sakai et al., 2006). The proposed final step in the
biosynthesis of the gymnastatin N, a fungal cytotoxic
metabolite, is the reaction between D-tyrosine and
(2E,4E,6R)-4,6-dimethyl-2,4-dodecadienoyl-CoA, as
catalyzed by an acyltransferase (Tong et al., 2021). We have
identified N-arylalkylamine N-acyltransferases (AANATs)
that accept long-chain acyl-CoA thioesters and
arylalkylamines that are related to the aromatic amino
acids, like histamine, phenethylamine, tyramine, and
tryptamine, but these enzymes will not utilize the aromatic
amino acids as substrates (Dempsey et al., 2014; Dempsey
et al., 2015; Battistini et al., 2019).

Another acyl thioester involved in NA-ArAA biosynthesis are
acyl groups attached to the thiol group of the
4′phosphopantetheine prosthetic group of an acyl carrier
protein (ACP); chemistry related to non-ribosomal peptide
bond synthesis. The novel N-acyl amino acid synthases
described by Brady, Clardy, and co-workers utilize long-chain
S-acyl-ACPs as substrates for the formation of NA-ArAAs (Brady
et al., 2002; Brady et al., 2004; Craig and Brady, 2011). The acyl
group donors for the formation of the S-acyl-ACPs are either the
aminoacyl adenylates, the acyl-CoA thioesters, or an acyl-lipoate
(Van Wagoner and Clardy, 2006; Craig and Brady, 2011; Paiva
et al., 2018).
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Acyl thioesters as intermediates in the cellular production
of NA-ArAAs could also occur via an acylated active site Cys.
Acylated Cys residues have been identified as catalytically
important intermediates for a number of enzymes, but, in
each case, the acyl group is transferred from an acyl-CoA to
the active site Cys (Palmer et al., 1991; Born and Blanchard,
1999; Wang et al., 2005). Perhaps, there is a CoA- or ATP-
independent method to form an active site S-acyl-Cys, which
would account for the reports of the energy independent
direct conjugation of fatty acids to amines. The possible
reactions for the biosynthesis of NA-ArAAs are
summarized in Figure 2.

Because of their importance in chemical and biochemical
processes, amide synthesis is at the heart of many synthetic
endeavors. The most obvious method of their synthesis, the
direct condensation of a carboxylic acid and amine is
energetically unfavorable. The chemical amide synthesis
often requires a two-step sequence involving activated
carboxylic acid ester, which then undergo aminolysis
(Valeur and Bradley, 2009). We have not found an example

for the use an activated fatty acid ester in the biosynthesis of an
NA-ArAA in vivo.

DEGRADATION

In this review, we have separated degradation from metabolism.
Degradation is the hydrolysis of the NA-ArAAs to the
corresponding fatty acid and aromatic amino acid. Metabolism
(discussed below) is the modification of the fatty acyl and/or the
amino acid moiety of the NA-ArAAs to form other metabolites. A
balance between biosynthesis and degradation is important in
maintaining the cellular concentration of the NA-ArAAs (Di
Marzo, 2006; Biringer, 2021) and hydrolase may contribute to the
“feed-back” of acyl groups into the biosynthesis of the fatty acid
amides (Bradshaw et al., 2009b). Hydrolytic enzymes like fatty
acid amide hydrolase (FAAH), N-acylethanolamine hydrolyzing
acid amidase (NAAA), carnosinase, aminoacylase
(amidohydrolase), acylase, and/or deacetylases could catalyze
the hydrolytic degradation of the NA-ArAAs. There is

FIGURE 2 | Putative Biosynthetic Routes for the NA-ArAAs. Details for the biosynthesis of the activated fatty acids were omitted because some of the reactions
have not been conclusively identified. However, all the activation reactions would likely be ATP-dependent, either directly or indirectly. The R-group represents the side-
groups for the aromatic amino acids shown in Figure 1 and R′-CO- represents the acyl groups from Table 1.
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evidence that specific NA-ArAAs are substrates for acylases
(Nagai, 1961; Endo, 1978; Koreishi et al., 2006) and
amidohydrolases (Goldstein, 1976; Denton, 2006; Sakai et al.,
2006; Koreishi et al., 2009). However, there is little to no evidence
that most of the NA-ArAAs are substrates for any well
characterized hydrolase. The amidohydrolase superfamily,
>36,000 members, and deacetylase superfamily, >10,000
members, are large and most of these enzymes are
uncharacterized (Akiva et al., 2014). Saghatelian et al. (2004)
demonstrated that long-chain N-acyltaurines are FAAH
substrates in vivo despite in vitro data obtained using purified
enzyme showing that the long-chain N-acyltaurines are poor
FAAH substrates exhibiting relatively low kcat/KM values.
Saghatelian et al. (2004) found that long-chain N-acyltaurines
accumulated in the brain and spinal cord of FAAH−/− mice
despite low kcat/KM values for the long-chain N-acyltaurines
obtained using purified, recombinant rat FAAH. While species
differences between the FAAH sources might account for the
inconsistencies between the in vivo and in vitro data (comparing

FAAH −/− mice to purified rat FAAH), Saghatelian et al. (2004)
suggest that these discrepancies result from differences between
competing biosynthetic and degradative pathways in vivo. Note
that the pathways for the biosynthesis and degradation of the
N-acyltaurines, like those for the NA-ArAAs, are not completely
understood. None-the-less, the work of Saghatelian et al. (2004)
indicates that in vitro activity data may not always accurately
predict in vivo activity. Despite the lack of explicit data, the NA-
ArAAs are likely subjected to enzymatic hydrolysis in vivo.

OTHER METABOLIC PATHWAYS

Reactions to modify the NA-ArAAs are likely to occur at the acyl
group and/or the amino acid group. Enzyme catalyzed oxidation/
hydroxylation of the acyl moiety of N-palmitoylglycine (Haines
et al., 2001), N-linolenoyl-L-glutamine (Yoshinaga et al., 2005),
N-arachidonoyltaurine (Turman et al., 2008),
N-arachidonoylglycine (Prusakiewicz et al., 2002; Prusakiewicz
et al., 2007), and anandamide (Rouzer and Marnett, 2011;
Biringer, 2021) have been reported. This chemistry has been
well described for anandamide with the characterization of the
metabolites generated by treatment with cyclooxygenase-2
(COX-2), different lipooxygenases (LOXs), different
cytochrome P450s, and FAAH. The anandamide-derived
products resulting from COX-2 and LOX catalysis are
substrates for additional enzymatic modification leading to
>12 anandamide derived metabolites in mammals (Rouzer and
Marnett, 2011; Biringer, 2021). To date, there are no studies
showing the acyl group of NA-ArAAs has been modified as
detailed in this paragraph for other members of the fatty acid
amide family. The modifications of arachidonoyl moiety of
anandamide, N-arachidonoyltaurine, and
N-arachidonoylglycine serve as a basis for putative
modifications of the N-arachidonoyl aromatic amino acids
(Figure 3).

The conversion of the aromatic amino acids to other
metabolites is known, examples include hydroxylation of
L-Phe to L-Tyr, conversion of L-Tyr to L-DOPA, epinephrine,
and other neurotransmitters, and conversion of L-Trp to
serotonin, melatonin, niacin, and kynurenine (Parthasarathy
et al., 2018; Liu et al., 2020a).

N-Acetyl-tyrosine is a substrate for tyrosinase leading to
N-acetyl-L-DOPA and/or N-acetyl-dopaquinone (Kahn and
Ben-Shalom, 1998). Decarboxylation of N-arachidonoyl-L-
tyrosine to N-arachidonoyl-L-tyramine was reported using rat
tissue homogenates in vitro (Akimov et al., 2007). N-Acyl-
dehydrotyrosines result from the oxidation of N-acyl-L-
tyrosines, which are biosynthetic intermediates in the
formation of 1) the thalassotalates and thalassotalamides in
the marine bacterium Thalassotalea (Deering et al., 2016) and
2) stieleriancine D in marine plantomycete, Stieleria neptunia
(Sandargo et al., 2020). Oxidative decarboxylation of the N-acyl-
L-tyrosines yields the N-acyl-4-[(E-)-2-aminovinyl] phenols, a
reaction catalyzed by the enzyme FeeG from soil bacteria (Brady
et al., 2002; Rachid et al., 2010). Amino acid racemases that accept
both N-acyl-L- and D-NA-ArAAs have been reported (Sakai

FIGURE 3 | Putative Acyl Group Oxidation and Hydrolytic Degradation
of the N-Arachidonoyl Aromatic Amino Acids (ArAAs). The possible
metabolites are 5,6-EET-ArAA, N-5,6-epoxyeicosatrienoyl-ArAA; 8,9-EET-
ArAA, N-8,9-epoxyeicosatrienoyl-ArAA; 11,12-EET-ArAA, N-11,12-
epoxyeicosatrienoyl-ArAA; 14,15-EET-ArAA, N-14,15-epoxyeicosatrienoyl-
ArAA; 20-HETE-ArAA, N-20-hydroxyeicosatetraenoyl-ArAA; 5S-HPETE-
ArAA, N-(5S-hydroperoxy)-eicosatetraenoyl-ArAA; 12S-HPETE-ArAA, N-
(12S-hydroperoxy)-eicosatetraenoyl-ArAA; 15S-HPETE-ArAA, N-
(15S-hydroperoxy)-eicosatetraenoyl-ArAA; and PGH2-EA, prostaglandin E2-
ArAA. The enzymes would be COX-2, cyclooxygenase-2; FAAH, fatty acid
amide hydrolase; 5-LOX, 5-lipoxygenase; 12-LOX, 12-lipoxygenase, 15-LOX,
15-lipoxygenase, NAAA, N-acylethanolamine hydrolyzing acid amidase; and
P450, cytochrome P450. The R-group represents the side-groups for the
aromatic amino acids shown in Figure 1. This figure is adapted from the
modifications of anandamide described in Rouzer and Marnett (2011) and
Biringer (2021).
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et al., 2006; De Cesare and Campopiano, 2021). The reactions for
the modification of the tyrosyl moiety of the N-acyl-L-tyrosine
are shown in Figure 4. To the best of our knowledge, no other
work has been carried out to determine if the NA-ArAAs are
converted to the corresponding N-acyl metabolites via the known
reactions of aromatic amino acid metabolism. In fact, one
function of the NA-ArAAs could be as biosynthetic
intermediates in the production of other cellular metabolites.

TRANSPORT

Transport is an issue of considerable debate with the fatty acid
amide fields. The fatty acid amides and, in particular, the NA-
ArAAs, are of limited aqueous solubility. For example, the critical
micelle concentrations for the sodium salts of N-stearoyl-L-Phe,
Tyr, Trp, and His range from 2.0–2.3 mM (Sivasamy et al., 2001)
and that for the sodium salt ofN-lauroyl-L-Phe is 0.8 mM (Ghosh
and Dey, 2015). Within the fatty acid amide family, the most

work concerning transport has been carried out for anandamide.
There were suggestions that an anadamide transporter did not
exist and that anandamide moves across membranes by passive
diffusion (Ortega-Gutiérrez et al., 2004; Glaser et al., 2005).
However, transport proteins for anandamide have been
reported, including members of the fatty acid binding protein
(FABP) family (Kaczocha et al., 2009) and a catalytically-deficient
FAAH-like protein (Fu et al., 2011). The possibility of
anandamide-specific inhibitor remains unclear.

Formation of the N-acetyl and N-isovaleroyl conjugates of the
aromatic amino acids are reactions of the phase II component of
the mammalian xenobiotic detoxification system (Grant, 1991).
Phase III excretion of these short-chain NA-ArAAs is either by
passive diffusion or is transporter-mediated (Döring and
Petzinger, 2014). Transport of the longer-chain NA-ArAAs
shown in Table 1 has not been explicitly investigated. Passive
diffusion out of the cell or between organelles is one possible
mode of transport for such hydrophobic molecules. Alternatively,
the NA-ArAAs could be substrates for either unknown or known

FIGURE 4 |Modifications of the Tyrosyl Moiety of the N-Acyl-L-Tyrosines. An enzyme catalyzing the conversion of N-acyl-L-tyrosine to the corresponding N-acyl-
dehydrotyrosine is unknown, suggested to be an N-acyl amino acid dehydratase by Sandargo et al. (2020).
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transporters. Perhaps, a member of solute carrier (SLC)
superfamily, specially a monocarboxylate transporter (MCT)
or an L-type amino acid transporter (LAT), or a member of
the organic anion transporter (OAT) family (Pizzagalli et al.,
2021) will mediate the movement of the NA-ArAAs across the
cell membrane. Long et al. (2016) provide evidence that NA-
ArAAs bind to members of the SLC25 family of mitochondrial
solute carriers. MCT10 is responsible for aromatic amino acid
transport in mammals (Halestrap, 2013) and, thus, might
transport the NA-ArAAs. NA-ArAA transport is a topic that
requires additional research.

BIOACTIVITY

As mentioned above, the NA-ArAAs could serve as biosynthetic
intermediates in both mammalian and non-mammalian
orgranisms. In mammals, the short-chain NA-ArAAs are
likely involved in the detoxification of high cellular levels of
short-chain organic acids and/or aromatic amino acids because of
a metabolic defect. One example is the presence of N-acetyl-L-
phenylalanine in the blood and urine of people suffering from
phenylketonuria (Goldstein, 1963; Bonte et al., 2019).

The cellular functions for most of longer-chain NA-ArAAs,
the lipo-amino acids, and the other members of the fatty acid
amide family are largely unknown. Data for the two best studied
fatty acid amides, anandamide and oleamide, indicate that these
are cell signaling molecules in mammals. Anandamide binds to
the two cannabinoid receptors, CB1 and CB2, and may exert its
cellular effects by binding to other receptors (Devane et al., 1992;
Maccarrone et al., 2015; Pacher et al., 2020). Oleamide regulates
the sleep/wake cycle, blocks gap junction communication (Guan
et al., 1997), and exhibits other neuromodulatory activities
(Fedorova et al., 2001). The cellular functions of oleamide
result from its binding to CB1, (Leggett et al., 2004), specific
members of serotonin receptor family, 5-HT1A, 5-HT2A, 5-HT2C,
and 5-HT7 (Huidobro-Toro and Harris, 1996; Boger et al., 1998;
Thomas et al., 1999), and, possibly other receptors, as well
(Karwad et al., 2019).

Cellular functions in mammals have been suggested for a few
of the lipo-amino acids (Hanuš et al., 2014; Burstein, 2018;
Battista et al., 2019; Prakash and Kamlekar, 2021). Long-chain
N-acylated L-phenylalanines, N-palmitoyl, N-oleoyl, and
N-linoleoyl, are uncouplers of the uncoupling protein 1
(UPC1)-independent respiration in mitochondria and may
contribute to the regulation of glucose homoeostasis (Long
et al., 2016). Other cellular functions attributed to NA-ArAAs
in mammals include the antiproliferative effects of N-palmitoyl-
L-tyrosine against cultured human breast cancer cells (Burstein
and Salmonsen, 2008) and the neuroprotective effects of
N-stearoyl-L-tyrosine and N-linoleoyl-L-tyrosine (Zhang et al.,
2009; Liu et al., 2020b). The cellular activities of the NA-ArAAs
and other lipo-amino acids may involve their binding to one of
the following receptors: GPR18, GPR55, GPR92, and/or GPR132
(Bradshaw et al., 2009a; Burstein, 2018). The cellular presence of
the NA-ArAAs may contribute to the “entourage effect.” The
“entourage effect” refers to endocannabinoids or cannabinoid-

relatedmolecules that exhibit no direct interaction with a protein/
enzyme involved in fatty acid amide metabolism, but enhance the
cellular activity of related molecules (Pacher et al., 2020). By
serving as alternative substrates for the degradative hydrolases,
the NA-ArAAs could foster a higher and sustained concentration
of anandamide—the “entourage effect”.

In non-mammalian organisms, the cellular function of the
NA-ArAAs, lipo-amino acids, and the other fatty acid amides are
not well understood. The NA-ArAAs may function as
biosurfactants (Mhaskar et al., 1990; Joondan et al., 2017),
which are important in microorganisms for defense, motion,
and metabolism (Banat et al., 2014); or as antibacterials (Brady
and Clardy, 2000; Brady et al., 2004; Brady and Clardy, 2005;
Clardy and Brady, 2007; Lee et al., 2019), in the battle between soil
bacteria for limited resources.

The cannabinoid receptors are absent in insects (McPartland
et al., 2001), yet the NA-ArAAs and other lipo-amino acids are
produced by insects (Tortoriello et al., 2013; Jeffries et al., 2014;
Anderson et al., 2018). Thus, the NA-ArAAs may not be cell
signaling molecules in insects or the insect signaling pathways are
different from those found in mammals. Truitt et al., 2004 report
that volicitin, a lipo-amino acid produced in insects, binds tightly
(Kd � 1.3 nM) to a protein found in a plant, Zea mays. A specific
NA-ArAAmight be produced in one organism to elicit a response
in a different organism, an issue that could dramatically
complicate defining function for that NA-ArAA. Cellular
function(s) for the NA-ArAAs is a largely unanswered and
challenging question. MALDI mass spectrometry imaging
(Genangeli et al., 2019) and the use of a NA-ArAA-based
photoaffinity probe are two approaches that might help solve
the question of cellular function (Long et al., 2016; Merkler and
Leahy, 2018).

N-ACYL AROMATIC AMINO ACIDS AS
ARTIFACTS?

One nagging question for anyone working on the fatty acid
amides or the lipo-amino acids is the following: “Aren’t these
molecules simply artifacts of breaking open the cells to look for
them?” This question or one similar is posed during seminars and
in reviews of manuscripts and grant applications. This question is
not new. Wren (1960) posed this question over 60 years ago. This
question is not unfair. The process of destroying cellular integrity
will expose free amines to activated carboxylates leading to amide
formation. The relatively low levels of the lipo-amino acids found
and the variability in the levels fosters a concern about artifacts.
All enzymes must catalyze the conversion of products to
substrates. Thus, hydrolases must catalyze “reverse hydrolysis,”
the direct conjugation of an amine to a free carboxylate. In their
analysis of PM201D1, Long et al. (2016) determined that the
amount of N-oleoyl-L-phenylalanine generated was consistent
with the Keq value and the cellular concentrations of L-Phe and
oleate.

The data shows that the identification and characterization of
NA-ArAAs, lipo-amino acids, and free fatty acids from living
organisms cannot be dismissed as artifacts, exactly as concluded
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by Wren (1960). Enzymes that catalyze the synthesis of these
molecules in vitro have been discovered and knock-out
experiments lead to the accumulation of expected precursors
(Cravatt et al., 2001; Hu et al., 2009; Han et al., 2013). In fact, the
N-acyltaurines were first discovered in FAAH−/− mice
(Saghatelian et al., 2004). The cellular levels of anandamide
are regulated by a balance between biosynthesis and
degradation (Di Marzo, 2006; Biringer, 2021). Similar data on
the cellular levels of the NA-ArAAs do not exist, but provide
evidence that a related molecule is not an artifact of the isolation
methodology. Also, the identification of a relatively large cohort
of N-acyl-tyrosines (Table 1) despite approximately the same
concentration of all the aromatic amino acids, at least in human
blood, is not coincidental but suggests to a more specific catalytic
origin. The possibility of artifacts regarding the identification of
the NA-ArAAs from living system is a concern, but a concern that
can be eliminated with careful and proper controls.

DISCUSSION

Provided here is a thorough review of our knowledge of the NA-
ArAAs, covering those that have been identified from a living
system, how these lipoamino acids could be made, degraded, and
metabolized within a cell, and how these molecules could be
transported out between organelles and out of the cell. Lastly, we
discuss the data which shows that NA-ArAAs are not merely an
artifact of disrupting cells.

Our review points towards a number of areas concerning the NA-
ArAAs that require further research.We have highlighted the gaps in
our knowledge of about the biologically-occuring NA-ArAAs
included in Table 1 and have proposed that these gaps may have
resulted from a search bias. Future searches may show that many of
the NA-ArAAs “missing” from Table 1, including those possessing a
D-aromatic amino acid, may exist in a living system.

Clearly, significant questions remain about the biosynthesis,
degradation, metabolic conversion, transport, and bioactivity of

the NA-ArAAs. Given the importance of anandamide and
oleamide in mammals, the structurally related NA-ArAAs are
likely of significance in living systems. A more complete
understanding of the NA-ArAAs will likely lead to a better
understanding of human health, identify new targets to treat
human disease and control the pests that spread disease and
damage our crops, and enhance their uses as food additives, drug
delivery agents, and in the cosmetic and pharmaceutical
industries (Chhikara et al., 2011; Kong et al., 2011; Taresco
et al., 2016; Bernal et al., 2018; Tripathy et al., 2018).
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