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Simple Summary: Radon represents the main risk factor of lung cancer in non-smokers and the
second one in smoking patients. In Europe, there are several radon-prone areas, but regulatory policies
may vary between countries. Radon causes DNA damage and high genomic tumor instability, but its
exact carcinogenesis mechanism in lung cancer remains unknown. Molecular drivers in NSCLC are
more often described in non-smoker patients and a potential association between radon exposure and
oncogenic-driven NSCLC has been postulated. This is an updated review on indoor radon exposure
and its role in lung cancer carcinogenesis, especially focusing on its potential relation with NSCLC
with driver genomic alterations. We want to contribute to rising knowledge and awareness on this
still silent but preventable lung cancer risk factor.

Abstract: Lung cancer is a public health problem and the first cause of cancer death worldwide.
Radon is a radioactive gas that tends to accumulate inside homes, and it is the second lung cancer
risk factor after smoking, and the first one in non-smokers. In Europe, there are several radon-prone
areas, and although the 2013/59 EURATOM directive is aimed to regulate indoor radon exposition,
regulating measures can vary between countries. Radon emits alpha-ionizing radiation that has been
linked to a wide variety of cytotoxic and genotoxic effects; however, the link between lung cancer and
radon from the genomic point of view remains poorly described. Driver molecular alterations have
been recently identified in non-small lung cancer (NSCLC), such as somatic mutations (EGFR, BRAF,
HER2, MET) or chromosomal rearrangements (ALK, ROS1, RET, NTRK), mainly in the non-smoking
population, where no risk factor has been identified yet. An association between radon exposure and
oncogenic NSCLC in non-smokers has been hypothesised. This paper provides a practical, concise
and updated review on the implications of indoor radon in lung cancer carcinogenesis, and especially
of its potential relation with NSCLC with driver genomic alterations.

Keywords: lung cancer; radon; carcinogenesis; driver genomic alterations; non-smokers

1. Introduction

Lung cancer is the second most common type of tumor in the world. According to the
Global Cancer Observatory, a project developed by the International Agency for Research
on Cancer (IARC, part of the World Health Organization–WHO), during 2020 a total of
19,292,789 new cases of cancer were documented, led by breast cancer (11.7%) and followed
by lung cancer (11.4%), which is the most common type of tumor in men (14.3%) [1].

In terms of mortality, lung cancer is the leading cause of death by cancer in the world,
with 1,796,144 deaths registered in 2020 [1]. These data are a reflection of the serious health
problem posed by this disease.

The main risk factor for developing lung cancer is tobacco smoking, which is related
to 80–90% of cases, and responsible of most of the deaths [2–4].
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In non-smokers, lung cancer comprises approximately 15–25% of all lung cancer cases
and its epidemiology is currently less well developed. The IARC lists several environmental
carcinogens, including indoor radon, air pollution, arsenic, chromium, asbestos, nickel,
cadmium, beryllium, silica and diesel, among others [5]. Other described risk factors for
developing lung cancer are chronic local inflammation [6,7] and a low consumption of
fresh fruits and vegetables [8]. Family aggregation studies support the hypothesis of a
multifactorial inheritance, although the mechanism of hereditary transmission has not been
well described. However, recent evidence demonstrated that germline pathogenic variants
in EGFR and cMET may play a role in lung cancer as well as in homologous recombination
repair (HRR) genes such as BRCA1, BRCA2 or PALB2 [8–10].

Indoor radon was declared a human carcinogen in 1987 by the WHO and in 1988 by
the United States Environmental Protection Agency (EPA). According to the WHO, radon
may be responsible for 3–14% of lung cancer cases, which is considered the second leading
cause of lung cancer in tobacco smokers and the leading cause in non-smokers [11]. In
addition, radon accounts for around 21,000 deaths (2%) from cancer in Europe [11,12].

Here, we provide a complete, concise and updated review on radon gas and lung
cancer focused on the biological and molecular perspective. The final objective of this
review is to provide knowledge regarding lung cancer carcinogenesis, especially focusing
on the potential relationship between radon and non-small cell lung cancer (NSCLC)
harbouring driver oncogenic genomic alterations; and more importantly, to raise awareness
of radon, as a preventable, but still silent risk factor of lung cancer.

2. What Is Radon?

Radon-222 (222Rn) is a radioactive gas that arises naturally as a decay product of
uranium-238. Its indoor concentration is closely related with the uranium content of rocks
on the earth’s crust beneath dwellings [13]. It has a half-life of 3.8 days, allowing it to
diffuse through soil and into the air before decaying by emission of alfa-particles into a
series of short-lived radioactive products, such as polonium-218 (218Po) and polonium-214
(214Po), and it also decays by emitting alfa-particles [13].

The main source of radon in air is soil, where radon concentrations are very high
and reach 10,000 becquerels (Bq)/m3, especially in uranium ores, phosphate rock and
metamorphic rocks such as granite, gneiss and schist [14]. On a global scale, it is estimated
that 2.4 billion curies (90 EBq) of radon are released from the soil annually [15]. Radon
releasing from the soil into the atmosphere depends on the Uranium-238 content of the
geological substrate on which these buildings are settled, soil parameters (porosity, density
and humidity) and weather conditions (wind, rain and humidity, etc.) [15].

Radon has also been identified in surface waters, where radon concentrations are less
than 4000 Bq/m3. However, water from ground water systems can have relatively high
levels of dissolved radon, however, and concentrations of 10,000,000 Bq/m3 have been
reported in public water supplies [16].

Outdoor radon concentrations are relatively low and change daily, even in the same
area, but can build up indoors. The highest concentrations to which workers have been
routinely exposed occur underground, particularly in uranium mines [14]. Radon gas enters
buildings through cracks, crevices and leaks that occur in foundations and connections
between different materials in the building. The pressure inside buildings is usually lower
than the pressure in the subsoil, making radon attracted inside by diffusion from the
subsoil [11].

Indoor radon is the most important source of natural radiation (about 50%), to which
humans are exposed [17].

As mentioned before, there is a huge variability in radon concentrations in the same
geographic areas, and the available radon maps are based on exposure risk estimations.
Indoor radon concentration also varies depending on the construction of buildings, ven-
tilation habits, seasonal changes and daily weather variations. Since radon is about nine
times denser than air, its concentration tends to accumulate in lower building stories,
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basements and ground floors. The most important radon transport mechanism is pressure
driven airflow (i.e., advection) from the soil to the occupied space [11]. Because of radon
fluctuations, estimating the annual average concentration of indoor radon requires reliable
measurements of mean radon concentrations [11]. Different measuring methods exist, but
the most recommended one by the WHO is the track-etched alpha detectors during at least
a period of three months [14]. Addressing radon is important both in construction of new
buildings (prevention) and in existing buildings (mitigation or remediation). Regarding
mitigation, radon concentrations in existing buildings can usually be reduced at moderate
cost, for example, by increasing underfloor ventilation, radon wells or soil pressurisation
systems [11,14].

3. Radon Recommendations, Regulations and Policies

Assessment and reduction of indoor radon concentration is one of the 12 recommen-
dations of the European Code Against Cancer. Concretely in the ninth point of this list, it
figures “Find out if you are exposed to radiation from naturally high radon levels in your home,
take action to reduce high radon levels”. In this context, the WHO recommends indoor radon
concentrations under 100 Bq/m3 [11,18].

In Europe, there are wide differences between countries in terms of exposure to radon
in dwellings. Countries with large amounts of granite or uranium-rich soils generally have
very high levels of radon. There are several radon-prone areas, such as the Bohemian
Massif, the north-west of Spain, the Massif Central, the Fennoscandian shield, the Vosges
Mountains, the Central Alps, the North of Estonia and certain volcanic structures in central
Italy [19]. Although the International Commission on Radiological Protection (ICRP) and
The Council of the European Union have recommended reference radon levels for dwellings
and workplaces, just a few countries have enforced cut-off levels, each of them setting
different concrete radon limits. For example, Germany has a recommended reference level
of 250 Bq/m3, while Switzerland and Sweden of 400 Bq/m3 and Spain 300 Bq/m3 [20].

In 2006, the Joint Research Centre of the European Commission launched a project
to map radon at the European level, as part of a planned European Atlas of Natural
Radiation. Currently, this map includes data from 29 countries, covering a fair part of
Europe [21]. Interestingly, more than 30% of the surface area of the countries participating
in the European Indoor Radon Map present a median concentration above 100 Bq/m3, and
4.2% is above 300 Bq/m3 (Figure 1) [21].

The revised European Directive from 2013 regarding basic safety standards, obliged the
European Union member states to establish a national action plan regarding the exposure to
radon and the European Commission for Atomic Energy (2013/59/EURATOM) established
a directive of not exceeding 300 Bq/m3 in European homes [11,21].

In the United States of America (USA), the EPA recommends radon concentrations
below 150 Bq/m3, in Australia the recommended limit is 200 Bq/m3 and in Canada 800
Bq/m3. In Asia, South Korea has fixed the limit to 148 Bq/m3, while in China it is 300
Bq/m3 in existing buildings and 100 Bq/m3 for new buildings. The Radon Council in
Japan has still not established an indoor radon exposure reference level [21,22].

In order to reduce the disease burden associated with radon, it is important that
national authorities use methods and tools to prevent radon exposure and to identify
populations exposed to high indoor radon concentrations (both at home or at work),
who are at risk for developing lung cancer and could benefit from lung cancer screening
programmes. For example, the NCCN American guidelines allow smoking citizens to enter
screening programmes if they prove to be exposed to indoor radon concentrations above
200 Bq/m3 [23]. On the other hand, prevention of radon exposure in new buildings can
be implemented through appropriate provisions in the construction phase or installing a
radon proof barrier at ground level [24].
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4. Radon Epidemiological Evidence in Lung Cancer
4.1. Miners Population

In 1913, it was hypothesised that radon and radon progeny induced a high incidence
of lung cancer among the silver and uranium miners of Germany [25,26]. This relationship
was further established by many investigators in subsequent years in underground-miner
studies, and were also confirmed in non-smoking miners [27–29]. The Wismut cohort is
the worldwide largest uranium miner cohort with almost 58,700 cases, which found a
direct linear association between radon exposure and lung cancer [30] Lubin et al. pooled
data from 11 cohort studies of radon-exposed underground miners (two studies with
non-smokers) and found a linear relationship for cumulative radon exposure, suggesting
that expositions at lower levels, such as in homes, would carry a greater risk of lung
cancer [29]. Provided all these data, in 1987 indoor radon was declared a human carcinogen
by the WHO.

4.2. General Population

Different meta-analysis and pooling studies have demonstrated a dose-response rela-
tionship between radon exposure and lung cancer. These studies are very heterogeneous
due to different sample size, number and type of detectors used, gender inclusion and
smoking status.

The European pooling study by Darby et al. is the most representative pooled anal-
ysis from 13 European case-controlled studies and demonstrated a linear and statistical
increase of 16% (range, 5–31%) of lung cancer risk per 100 Bq/m3 of indoor radon [12].
In an American pooling study carried out by Krewsky et al., the odds ratio (OR) for
lung cancer-increased risk with residential radon concentration was 1.11 (95% confidence
interval [CI], 1.00–1.28) [31]. In the north-west of Spain, Torres-Duran et al. reported
an OR of 2.42 (95% CI, 1.45–4.06) for lung cancer in subjects exposed to concentrations
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above 200 Bq/m3 [32]; and Lorenzo-Gonzalez found an increased OR for lung cancer
in 523 individuals with radon exposure ≥ 200 Bq/m3 compared with those exposed to
≤100 Bq/m3 [33]. In Sweden, Pershagen et al. observed risks of 1.3 (95% CI, 1.1–1.6) and
1.8 (95%CI, 1.1–2.9) for individuals exposed to 140–400 and more than 400 Bq/m3 [34].
In Germany, in a cohort of almost 4000 cases and controls, the lung cancer risk was
1.57 (95% CI, 1.08–2.27), 1.93 (95% CI, 1.19–3.13) and 1.93 (95%CI, 0.99–3.77) for concentra-
tions of 50–80, 81–140 and more than 140 Bq/m3, respectively [35].

Gathering this data together, in 2003 Pavia et al. published the first meta-analysis
on the association of indoor radon and lung cancer, comprising 17 case-control studies,
demonstrating a 24% increased risk of lung cancer in patients exposed to more than
150 Bq/m3, with an OR of 1.24 (95% CI, 1.11–1.38) [36]. More recently, a metanalysis
including English and Chinese studies demonstrated a non-linear dose-response association
between environmental radon exposure and the risk of lung cancer, with an exponential
association for high occupational cumulative radon doses. The dose-risk model estimated
a risk ratio of 1.26 (95% CI, 1.21–1.30) for 100 working level months and 1.51 (95% CI,
1.38–1.65) for 200 working level months, respectively [37]. The results provided by these
previous studies suggest that radon increases the risk of lung cancer without a threshold
and can be carcinogenic at any level (even below international guideline recommendations)
depending on the individual susceptibility, years of radon-exposure, childhood exposure
and exposure to other carcinogens such as tobacco smoking, pollution or asbestos.

Most of these papers associated radon with two histological subtypes of lung cancer,
the small cell lung cancer and the squamous cell lung cancer, because most of the population
included in the miner pooled studies were smokers. Later on, when the mentioned studies
demonstrated an increased lung cancer risk in non-smokers, adenocarcinoma histology
was also associated to radon. Thus, available data concerning the specific histological
features of radon-induced tumours are scarce. Mezquita et al. first report that well and
moderated differentiated histological grades were more frequent in patients exposed to
radon higher concentrations (>148 Bq/m3), papillary histological pattern being the most
commonly found, particularly in cases exposed to >200 Bq/m3 [38]. Nonetheless, there is
still little information about the clinical characteristics of the subjects that will develop lung
cancer associated with radon.

4.3. Radon in Non-Smokers with Lung Cancer

While most studies on radon and lung cancer have included current and former
smokers, some studies were conducted exclusively in non-smokers, describing an increased
risk of lung cancer in this subset of patients exposed to high radon levels in their dwellings.
A Swedish pooling study, including 745 non-smoking cases (436 cases and 1649 controls)
found an excess risk of lung cancer attributable to radon exposure in the cohort of non-
smokers, and an excess relative risk of 10% per 100 Bq/m3 average radon concentration
was estimated [39]. In the north-west of Spain, Torres-Duran et al. studied a cohort of
521 non-smoking participants (192 cases and 329 controls), with an OR of 2.42 (95% CI,
1.45–4.06) for lung cancer in subjects exposed to concentrations above 200 Bq/m3 [32]. In
this review, Lorenzo-Gonzalez gathered all the studies that studied radon-induced lung
cancer and included non-smokers, and found a relative risk from 1.1 to 1.73, with no
negative association in any of the included studies [33].

It is worth remarking that some more ancient studies have suggested an inverse
relationship between radon exposure and lung cancer risk. These studies were against
the linear-non-threshold (LNT) hypothesis-based, risk-assessment paradigm, and in favor
with the hormetic relative risk (HRR) model, based on which low-level radon radioactive
progeny is credited for the activated natural protection (ANP) against lung cancer, including
smoking-related lung cancer.

An example is a case-control study of the lung cancer risk from residential radon
exposure in Massachusetts performed by Thompson et al. in 2008, involving 200 cases
and 397 controls, in which the results indicated that for radon levels up to and somewhat
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exceeding the EPA’s action level of 4 picocuries/L of air (approximately 150 Bq/m3), the
lung cancer odds ratio was < 1, implicating negative values for excess relative risk (not
permitted under the LNT model), which translated into a reduction in lung cancer risk [40].
Some other earlier studies by Cohen et al. reported similar findings [41,42].

Particularly, early mining studies of lung cancer risk from radon are subject to limita-
tions arising mainly from uncertainties in estimates of radon exposure and are confounded
by other exposures, such as smoking. A limitation in calculating the risk of lung cancer
attributed to radon is that in articles reporting on epidemiological studies (residential and
occupational) of lung cancer risk from radon exposure, the excess relative risk estimates
for lung cancer varied from −0.13 to 0.73 per 100 Bq/m3 for exposure to radon gas, with a
mean excess relative risk of 0.13 per 100 Bq/m3. Limitations in the evaluation of differences
in risk across subgroups of the population include low precision due to small numbers of
lung cancer cases among non-smokers, women and younger age groups. They are likely to
underestimate excess relative risk estimates in studies of residential radon by 50 to 100 per
cent. Moreover, since thoron and its decay products can be a significant component of the
total exposure in some specific situations (workplaces or dwellings), it can be an additional
source of error in radon studies that do not distinguish radon and thoron contributions to
the total exposure [43].

Nevertheless, although controversy derives from these studies with no impact of
radon in lung cancer, preclinical and clinical evidence is robust enough to consider radon
as a carcinogen of the first group for lung cancer, being considered nowadays as the second
risk factor of lung cancer, after tobacco smoke.

5. Radon and Lung Cancer Carcinogenesis

Indoor radon plays an important role in the genesis of lung cancer. Although a
complete description of the nature of radon role in the development of lung cancer is
limited, it is related to the emission of alpha particles with a high capacity to damage the
epithelium of the respiratory tract (Figure 2) [44].
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Because of its half-life, 222Rn itself engenders little radiation risk. However, 218Po and
214Po are solid, and tend to be deposited on the bronchial epithelium, thus exposing cells
to alfa-irradiation [44].

The first comprehensive study of the toxic effects of radon exposure on human health
was reported in a book “Health Risks of Radon and Other Internally Deposited Alpha-
Emitters: BEIR IV” [17].

5.1. Genomic Effects of Alpha Radiation

Alpha radiation releases a large amount of energy in a very short linear track alpha
(high-energy transfer capacity, HET), which is more biologically significant than either beta
or gamma radiations and reacts much more readily with deoxyribonucleic acid (DNA),
generating oxidative stress (reactive oxygen species, ROS) and hydroxyl radical attack
through radiolysis, despite their reduced penetrating capability [44–47].

When alpha particles are inhaled, they can impact the respiratory epithelium, which is
especially sensitive to radiation, and produce multiple cytotoxic and genotoxic effects that
favor carcinogenesis [44]. This results in large-scale molecular changes that include: DNA
double-strand breaks, single point mutations, deletions, substitutions and chromosomal
rearrangements [44,48]. The consequences of this genomic instability is the modification
of the cell cycle, dysregulation of cytokines and the increased production of proteins
associated with cell-cycle regulation, apoptosis and carcinogenesis [44].

These effects can vary depending upon a number of different factors including dose,
frequency of dose, cell type, cellular conditions (such as cell-cycle stage at exposure time)
as well as intra and inter signaling between neighbour cells [44].

5.1.1. Preclinical Evidence

In vitro data coming from bronchial epithelial cells exposed to high dose of alpha
radiation (238Pu), found significant increased mutations in the TP53 tumor suppression
gene, as well as in the locus of the hypoxanthine-guanine phosphoribosyl transferase
(HPRT), responsible for the transcription of an enzyme that plays a central role in the
generation of purine nucleotides through the purine salvage pathway [44,49].

Radon-induced mutations have also been studied in lung tissue from rats exposed to
high radon concentrations that developed lung tumours. Dano et al. developed a model
of radon-induced rat lung tumours using comparative genomic hybridisation, and found
frequent losses in chromosomes 4q12–21, 5q11–33, 15q and 19q, which are homologous to
human chromosomes. These regions contain tumor suppressor genes and proto-oncogenes
such as MET, CDKN2A, MTS2, FHIT, RB1 and MYC [50]. The genetic similarities between
rat and human lung cancer may suggest common underlying carcinogenic mechanisms in
both species. Bastide et al. also studied radon-induced lung tumour molecular characteris-
tics in the rat and found the dysregulation of the INK4a/CDK4/RB1 pathway, which is
associated with cell cycle control [51].

5.1.2. Clinical Evidence

In recent years, several studies have analyzed the correlation between genomic al-
terations and the risk of developing lung cancer in patients with high residential radon
exposure. Some authors have suggested that the carcinogenic effect of radon may be po-
tentiated by the accumulation of hereditary polymorphisms in GSTM1/GSTT1, mutations
in tumours suppressor genes such as TP53 and germline pathogenic alterations in HRR
genes [52–55]. Lim et al. observed that radon-high exposed tumours presented a greater
proportion of genes involved in DNA damage and repair, such as ATR, ATRX, BARD1,
RAD50 and SMARCA4, as well as in TP53 [55].

Radon-Induced Mutations

As mentioned before, radon can induce a wide range of mutations, including point
mutations, deletions, insertions and chromosomal arrangements that lead to cell cycle
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disruption, up or down regulation of cytokines and proteins associated with cell-cycle
regulation and carcinogenesis. Much of the evidence obtained related to radon’s carcino-
genicity comes from studies performed on cohorts of uranium miners, which either analyze
peripheral lymphocytes or lung tumor tissue. Most of them have identified certain TP53
mutations and polymorphisms that were also associated with tobacco smoke [56,57]. Dele-
tions in HPRT have also been linked to lung cancer in miners, non-miners and in vitro
models [58].

Additionally, Chen et al. reported mutant KRAS overexpression in bronchial epithelial
cells chronically exposed to radon, which is related to let-7 downregulation and oxidative
damage [59].

Impaired Chromosomal Arrangements

Disruptions to normal chromosomal arrangement represent a major contribution to
cellular mutagenicity and have been considered markers of exposure to environmental
stressors with increased cancer risk. Significant increases in chromosomal arrangements,
as well as sister chromatid exchanges and micronuclei formation have been observed in
miners exposed to high radon concentrations when compared to the control group [44].

Epigenetic Effects and Transcriptomic Changes

Besides genetic alterations, epigenetic factors also play an important role in radon
carcinogenesis, including DNA methylation, modification of histones and microRNA
dysregulation [60]. Different authors have described a dysregulation of concrete miRNA
(with the upregulation of miR-16, miR-15, miR-23, mirR-19 as well as the downregulation
of let-7, miR-194, miR-373, miR-124, mirR-146, miR-369 and miR-652) that alter DNA
methylation, cell cycle, oxidative stress, inflammation, oncogene suppression and malignant
transformation in patients with lung cancer exposed to radon [60–64].

Recently, studies in lung cancer patients exposed to high radon levels have tried to
identify genome alterations by next generating sequencing (NGS). Iwamoto et al. pointed
that the EPAS1 mutation may be a biomarker for the development of lung adenocarcinoma
and Ran Choi et al. explored lung tumours of non-smoker patients using NGS, and
identified that CHD4, TSC2 and AR mutations were more frequent in individuals exposed
to high radon concentration (>100Bq/m3) [65,66].

Loiselle et al. analyzed the transcriptome of human lung epithelial cells exposed to
radon in vitro and found that AKR1CR underwent the greatest expression changes [67].

Despite the recent evidence of molecular alterations, just a little part of the study
analyses the exome/transcriptome of lung tumours of patients with high radon exposition,
and, to date, no clear radon-induced mutation hotspot has been identified and, in some
cases, the lack of knowledge with regards to exposures at low doses and the fact that many
of the biomarker studies have limited sample sizes, may potentially explain why some of
the results between laboratory investigations are inconsistent [44].

Identification of a specific genetic radon-related marker would provide significant
assistance to the elucidation of radon-induced carcinogenesis and could act as both a useful
biodosimeter and an identifier of risk at typical exposures. Further investigations into a
consistent genetic radon-molecular signature are required [44].

5.2. Effects of Alpha Radiation on the Immune System

Ionizing radiation and the effects on the immune system were first observed in the
atomic-bomb survivors and Chernobyl accident [68]. In this population exposed to high
doses of radiation, bone marrow stem cells were severely damaged, which caused the
depletion of innate immune cells, acquired immunodeficiencies, medullar aplasia and
thymus dysfunction [68]. Nonetheless, in a population chronically exposed to natural
radiation, low doses of radiation may also affect and reshape the immune system and its
interaction with tumor cells [69].
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Besides DNA and changes in the lung epithelium, ionizing radiation induced by radon
could also affect the immune system in the tumor microenvironment. The overproduction
of ROS in the lungs caused by persistent radon exposure may cause oxidative stress, leading
to pulmonary inflammation [55].

Furthermore, radon could enhance tumor immunogenicity, by increasing genomic
instability and cluster mutations in the tumor cells. In line with this, a recent work has
revealed that tumor mutational burden (TMB) was higher in patients exposed to more
than 48 Bq/m3 versus ≤48 Bq/m3, in a cohort of 41 non-smoker patients with lung ade-
nocarcinoma [55]. Tumors with high TMB (TMB-H) tend to present more immunogenic
neoantigens. Thus, the TMB was validated as a predictive biomarker of immunotherapy
response [70].

Concerning immune cells, an accumulating amount of evidence based on epidemio-
logical and pre-clinical studies indicate that low dose exposures of radiation might directly
impact immune functions and reshape the immune system either in a pro-inflammatory
or anti-inflammatory pathway, depending on various parameters such as dose, perfor-
mance status, genetic background, environmental stressors, etc. This abandons the classical
paradigm that radiation is purely immune-suppressive [55,71–73].

Chronic low dose rate irradiation of mice induced the stimulation of innate immunity
by enhancing the cytotoxicity of pre-stimulated NK cells, myeloid cell differentiation and
activation, suppression of pro-inflammatory responses and a shift towards a Th2-type T
cell phenotype due in part to radiation-induced gene expression alterations in CD4+ T
cells [72,73]. By these mechanisms, low dose radiation can stimulate T-cell activity in the
tumor microenvironment, and this may also increase tumor immunogenicity.

Studies carried out with people exposed to different scenarios of low dose radiation
(>100 mSv) described low prevalence of T-helper 1 (Th1) and a switch to Th2 response,
changes in telomere length, cycle cell regulation and alterations in the expression of genes
involved in the immune system related pathways [74].

Although radon may act as a source of low dose ionizing radiation, the specific
changes in immune cells or immune signatures in the tumor microenvironment have not
been studied and remain unknown.

6. Radon, Tobacco and Other Carcinogens

The association between radon exposure and lung cancer has been widely reported,
and the combined effect of radon and tobacco smoke is thought to be synergic and higher
than additive, rising 20 to 25 times higher than the risk of death by lung cancer in smokers
exposed to radon beyond 200 Bq/m3 [11,75–77].

In 2001, Lagarde et al. suggested the existence of a synergistic effect between indoor
radon exposure and tobacco smoke with a relative excess risk of 0.29 (95% CI, 0.03–1.24).
Moreover, a recent study has described that smokers exposed to radon below 37 Bq/m3

had a risk of developing lung cancer of 20.16 (95%CI, 3.4–118.6) [39,76,78].
This may be explained by the changes in airway geometry caused by the increased

production of mucus due to smoking, as well as the disruption of normal function of the
lungs caused by physiological changes (disappearance of cilia, decrease in radon progeny
redistribution rate, increase in breathing frequency, etc.) which led to the accumulation of
radon progeny in the lung tissue and to a several-fold increase in the absorbed dose when
compared with the healthy lung [79].

In addition, tobacco smoke and radon act as co-carcinogens in the early phases of the
carcinogenic process. Both of them generate ROS that interact with DNA thought hydroxyl
radical attack and radiolysis leading to bulky DNA adducts, with DNA repair pathway
saturation and increased apoptosis [76,79]. They are both associated to mutations in KRAS
and TP53. McDonald et al. found a 31% of TP53 mutations and a 39% of KRAS mutations
in 52 lung cancer cases from uranium miners inducing bulky DNA adducts, with a DNA
repair pathway saturation and increased apoptosis [76,79–81].
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Very little is known about other carcinogens that could also potentiate radon carcino-
genesis, such as pollution, asbestos or arsenic. Asbestos and arsenic, two prominent non-
tobacco carcinogens, also generate ROS and reactive nitrogen species (RNS), as radon does
in the early carcinogenic process. This results in genetic alterations and epigenetic effects,
such as changes in DNA methylation, changes in miRNA and histone modifications [82].
Pollution particles in the air facilitate radon progeny, since the micro-aerodynamic particu-
late matter of the atmosphere is used as a transmission vector for radon. Indeed, there are
studies reporting a positive association between ambient fine particles, daily mortality and
high radon concentrations [83].

7. Radon and Driver Genomic Alterations in Lung Tumours

As has been said, approximately 15–25% of lung cancer cases occur in non-smokers.
Recent research suggests that lung cancer in this subgroup could be a different disease, since
these patients present a higher survival and a different age of onset with a greater proportion
of adenocarcinoma histology. Furthermore, evidence advocates that the molecular profile
of lung cancer differs by carcinogen exposure history, and thus that lung cancer in non-
smokers arises via a different biological pathway than lung cancer in smokers [23,84,85].

Especially in NSCLC with non-squamous histology, there exists different genomic
alterations, the majority of mutations (such as in EGFR, BRAF, HER2, MET genes) or
chromosomal rearrangements (ALK, ROS1, RET, NTRK) that constitute activating oncogenic
mechanisms for cell proliferation and cancer development. These molecular aberrations are
drivers for targeted therapies, such as tyrosine-kinase inhibitors or monoclonal antibodies,
which have indisputably improved both the prognosis and the quality of life of lung cancer
patients, and is now a standard of care in oncogene-driven NSCLC [23,84,85]. Molecular
drivers in NSCLC are more often observed in non-smoker patients; however, no risk factor
has been identified as being linked to oncogenic-addicted lung cancer.

The idea that cellular damage induced by indoor radon exposure could lead to lung
cancer with molecular genomic alterations has been hypothesised. To date, five works
have assessed this hypothesis, and demonstrates high median radon concentrations in
NSCLC patients harbouring ALK rearrangements, as EGFR or BRAF mutations among
others, although with a poor statistical power given the limited study sample sizes. These
studies are summarised in Table 1.

First, Taga et al., assessed this relationship in a cohort of 70 patients with NSCLC
living in Missouri (United States of America), with only 24 of them exposed to radon and
carrying EGFR mutations. In this work, researchers observed a lack of association; however,
it was performed in an area without elevated radon concentrations, with a median of radon
exposure of 46.5 Bq/m3 (range, 37–57) [86]. Mezquita el al. studied this association in
48 patients from Spain (Madrid) with NSCLC harbouring EGFR/BRAFV600E mutations,
or ALK rearrangements. Out of 15 smokers, active smoking at diagnosis (n = 5, 62.5%)
was associated with a lower radon concentration (p = 0.026); however, any correlation was
observed between indoor radon concentration and molecular alterations, with an overall
median radon concentration of 104 Bq/m3 (range, 69–160) [38]. Nevertheless, the EGFR
subgroup median concentration was 96 Bq/m3 (range, 42–915), which is 20 Bq/m3 below
the median of the two other subgroups [38]. In addition, indoor radon concentrations
above the WHO recommendation were most common in the ALK and BRAF groups,
compared to the EGFR group [38]. Ruano-Raviña et al. published a retrospective study
comparing EGFR-mutant or ALK-positive vs. negative NSCLC cases in smoking patients
living in a radon-prone area (Galicia, Spain), with a median radon exposition of 182 Bq/m3

(range, 11–2350) [87]. Although there were no differences in residential radon level by
subtype of mutations, they were two-fold higher in patients with EGFR exon 19 deletions
compared with patients with EGFR exon 21 (L858R) single-point substitution mutations
(216 vs. 118 Bq/m3; p = 0.057), and ALK-positive patients presented two-fold residential
radon levels compared with ALK-negative cases (290 vs. 164 Bq/m3, respectively) [87].
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Table 1. Studies reported on the indoor radon concentration and molecular alterations in NSCLC patients.

Study n Total of
Patients

Type of
Study Molecular Alterations Place of Radon

Measurement
Studied

Area
Radon Median Bq/m3

Exposition Statistical Significance

Taga et al. [86]
Prospective

2012
n = 70 Case control

study EGFRm ex19/21 (n = 24) Current
home

Non
radon-prone area
(Moussuri, USA)

EGFRm: 46.5 Bq/m3 Non sig. p = 0.16

Ruano-Raviña et al. [87]
Retrospective

2016
n = 323

Case control
study

(subanalysis of
previous study)

EGFRm * (n = 90)
ALKr (n = 12)

Current
home

Radon prone area
(Galicia, Spain)

EGFRm ex19: 216 Bq/m3

EGFRm ex21: 118 Bq/m3

ALKr: 290 Bq/m3

Non sig.
(p value non-available)

Mezquita et al. [88]
Retrospective

2018
n = 116,424 Ecologic

study **

EGFRm (n = 13,125)
ALKr (n = 2928)

BRAFm (n = 2419)
HER2m (n = 816)
ROS1r (n = 373)

KRASm (n = 27,314)

Current
home

Non-radon prone,
Intermediate and
radon-prone area

(France)

- p < 0.0001

Mezquita et al. [38]
Prospective

2019
n = 48 Cross-sectional study

EGFR m ˆ (n = 36)
ALKr (n = 10)

BRAFm (n = 2)

Current
home

Intermediate and
radon-prone area
(Madrid, Spain)

EGFRm: 96 Bq/m3

ALKr: 116 Bq/m3

BRAFm: 125 Bq/m3

Non sig.
p = 0.238

Mezquita et al. [89]
Retrospective

2021
n = 3994 Ecologic

study **

EGFRm (n = 468)
ALKr (n = 129)

BRAFm (n = 89)
HER2m (n = 32)

KRASm (n = 985)

Childhood home

Non-radon prone,
intermediate and
radon-prone area

(France)

EGFRm: 72.49 Bq/m3

ALKr: 80.24 Bq/m3

BRAFm: 73.22 Bq/m3

HER2m: 72.74 Bq/m3

KRASm: 71.79 Bq/m3

p = 0.0472

Abbreviations: EGFRm, EGFR-mutant; BRAFm, BRAF-mutant; HER2m HER2-mutant; KRASm, KRAS-mutant; ALKr, ALK-rearranged; ROS1r, ROS1-rearranged; ex, exon; Non sig.,
non-significant; USA, United States of America.* Majority with EGFR exon 19 or 21 mutations; 5 cases were EGFR exon 20 mutations. ˆ Including EGFR exon 18, 19 and 21 mutations. **
No radon measurement, estimation of radon exposure according to the National Map (IRSN).
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In the Radon France study, an ecologic study, the prevalence of molecular alter-
ations has been positively correlated with the indoor radon risk area based on the official
French map (Institut de Radioprotection et de Sûreté Nucléaire, IRSN, France) in a cohort of
116,424 patients with NSCLC tested for EGFR, BRAF, HER2, KRAS, ALK, ROS1 on the
28 French Platform led by INCa (French National Cancer Institute). Moreover, the preva-
lence of driver alterations, linked to a low tobacco consumption (EGFR, BRAF, HER2 and
ROS1), was higher in the French regions with high radon exposure [88].

Another more recent study, the BioRadon France study, found a higher prevalence
of oncogenic alterations (EGFR/ALK/BRAF/HER2/KRAS) in 3994 patients born in high
radon-exposed areas according to the IRSN map. Although no significant difference was
observed after adjustment by age, gender or smoking status, probably due to a limited
number of cases harbouring molecular alterations, patients with lung cancer and molecular
alterations lived in areas with radon concentrations above the median exposure levels
in France, and in high-risk areas there was a significantly higher rate of lung cancer in
non-smokers. Therefore, cumulative exposure to residential radon should be taken into
account in future radon studies [89].

8. New Molecular Epidemiology Studies for Radon and Lung Cancer

According to all previous studies and data suggested by the Radon France study, a
preclinical and clinical investigation line has been developed in order to define the genomic
profile of lung cancer associated to radon exposure.

The RadoNORM consortium (“Towards effective radiation protection based on im-
proved scientific evidence and social considerations–focus on radon and NORM”), a
consortium of 57 centres from 22 countries is aimed to manage the risk derived from radon
and NORM exposition in order to assure effective radiation protection based on improved
scientific evidence and social considerations, so as to implement the European radiation
protection Basic Safety Standards.

Among the different RadoNORM projects, a section will be focused on the study
of indoor radon exposition and lung cancer development in three different cohorts: rats,
miners exposed to occupational indoor radon and patients exposed to indoor radon, with
the objective to describe the clinical and biological lung cancer profiles in order to eventually
develop for the first time a radon-associated lung cancer molecular signature.

In all three cohorts, an extensive and deep molecular characterisation will be per-
formed to identify common molecular patterns associated to alpha radioactivity. First,
in collaboration with the Commissariat à l’énergie atomique et aux énergies alternatives (CEA,
France), the RADON-Rats is an observational retrospective study including samples from
52 rats with radon induced-lung cancer. At a clinical level and with the participation of
the Federal Office for Radiation Protection (BfS) in Germany, the RADON-Miners will
retrospectively correlate the genomic profile of 30 German uranium miners (Wismut) with
lung adenocarcinoma and occupation radon exposition.

Finally, the BioRADON is a European observational prospective study aimed to
analyse the molecular changes in cancer pathways of 993 patients with NSCLC exposed
to residential radon. The primary endpoint will be the correlation between the molecular
profile and indoor radon. Comprehensive genomic analyses will be performed to define a
radon-associated signature in humans that can be compared to the signatures determined
in the miners and previous cohorts. This will be the largest study characterising a radon-
associated NSCLC molecular signature in humans. BioRADON is a downstream project of
EORTC-1553 SPECTA, the European Organization for Research and Treatment of Cancer
(EORTC) translational research platform, that has been active in Europe from April 2020.

9. Future Perspectives

Radon effects can vary widely between patients according to their different individual
predisposition. In this vein, it has been recently described that patients with NSCLC and
EGFR mutations could harbour other germinal pathogenic molecular alterations, such
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as TP53 in the Li Fraumeni Syndrome or other genes involved in the DNA repairing
machinery, such as BRCA germline mutations [9,90]. More studies will be needed to assess
the individual susceptibility to radon exposition.

Worldwide, air pollution has been postulated to be the second cause of lung cancer
after tobacco smoking, explaining approximately 14% of lung cancer cases, similarly to
the 3–14% of radon-related cases depending on the area and country [91]. The evaluation
of radon in combination with other carcinogens remains to be evaluated; thiswill be a
RadoNORM task that will soon take place with the participation of other ISRN teams, in
which we will be able to contribute with the wealth of data coming from the clinical and
translational aforementioned studies.

The BEIR IV report, in its description of health effects of radon exposition, has included
other potentially radon-associated malignancies; however, evidence is weak. RadoNORM
will also study the possible correlation between radon, cerebral tumours and leukaemia in
the paediatric population [77].

BioRADON will open an innovative area of translational research on radioactivity and
cancer genomics. The development of novel and accessible molecular diagnostic platforms,
such as NGS techniques that analyse simultaneously multiple molecular alterations, will
help to better characterise a radon-associated molecular signature.

Importantly, BioRADON will raise consciousness of this preventable risk factor and it
will serve as an instrument to promote radon policies and strategies on cancer prevention.
If a radon related-phenotype can be defined, we will be able to identify the susceptible
population that could enter early detection programs or follow-up/surveillance in public
health services. Moreover, the profile associated to radon-exposed patients would help
in assessing whether radon, such as other carcinogens, has an impact on the evolution of
cancer, on the response to treatment with certain drugs or even on the prognosis of the
disease, improving the management of cancer patients.

10. Conclusions

Lung cancer is a public health problem and the first cause of cancer death worldwide.
In recent years, moreover, an increased number of lung cancer cases in non-smokers has
been documented.

The ionising environmental radiation represents a major epidemiological concern
world-wide, with radon representing the main risk factor of lung cancer in non-smokers
and the second factor in smoking patients, with synergistic effects in the latter. Radon
causes DNA damage and high genomic tumour instability, but its exact carcinogenesis
mechanism and relationship with lung cancer remains unknown.

It is time to expand knowledge about radon: to study its mechanisms of cellular
damage, its potential long-term health consequences and its undeniable relationship with
lung cancer. We hope that the ongoing studies, such as BioRADON, will provide new data
on the role of indoor radon exposure in the molecular signature of lung cancer, especially
in non-smokers, as well as in the clinical and biological characteristics of lung cancer. These
studies will strengthen scientific knowledge on lung cancer carcinogenesis, providing
relevant information on how radon affects the evolution of lung cancer and if there is
any impact on its prognosis. They will also contribute to promoting radon policies and
strategies on cancer prevention.
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ology, conceptualisation, data curation, supervision, writing—original draft, writing—review and
editing, project administration and validation. All authors have read and agreed to the published
version of the manuscript.
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