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Abstract: Until recently, genome-scale phasing was limited due to the short read sizes of sequence data.
Though the use of long-read sequencing can overcome this limitation, they require extensive error
correction. The emergence of technologies such as 10X genomics linked read sequencing and Hi-C
which uses short-read sequencers along with library preparation protocols that facilitates long-read
assemblies have greatly reduced the complexities of genome scale phasing. Moreover, it is possible to
accurately assemble phased genome of individual samples using these methods. Therefore, in this
study, we compared three phasing strategies which included two sample preparation methods along
with the Long Ranger pipeline of 10X genomics and HapCut2 software, namely 10X-LG, 10X-HapCut2,
and HiC-HapCut2 and assessed their performance and accuracy. We found that the 10X-LG had the
best phasing performance amongst the method analyzed. They had the highest phasing rate (89.6%),
longest adjusted N50 (1.24 Mb), and lowest switch error rate (0.07%). Moreover, the phasing accuracy
and yield of the 10X-LG stayed over 90% for distances up to 4 Mb and 550 Kb respectively, which were
considerably higher than 10X-HapCut2 and Hi-C Hapcut2. The results of this study will serve as a
good reference for future benchmarking studies and also for reference-based imputation in Hanwoo.
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1. Introduction

Advances in DNA sequencing technologies have made whole genome sequencing of individual
cattle genomes possible [1]. Large-scale cattle genome sequencing (1000 bull genome project [2]) are
helping us understand trait variant relationships. Haplotype phasing is the process of determining
the sequences of genetic variants that cooccur along an intact maternal or paternal homologous
chromosome [3,4]. Haplotype information is crucial for performing linkage analysis, association studies,
population, and clinical genetic studies and also for allele specific impacts on gene expression [3,5].
Haplotype information are also critical for identifying heterozygous structural variants (SVs) [6].
A large number of strategies have been developed to generate phase information, including extensive
laboratory-based protocols, de novo genome assembly strategies, and methods based on population
haplotype frequency [7]. Most genome sequencing projects have used short-read sequencing. However
studies in the human genome has shown that, although the data from small read sequencing has
resulted in informative insights about small variants such as single nucleotide polymorphisms (SNPs),
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it has not captured the full spectrum of structural variations that exists [8]. Moreover, the loss of linkage
information and mutations that are separated by distances longer than the read length generated from
short-read sequencing severely limit their utility for phasing haplotypes [9].

These limitations can be overcome by long continuous reads technologies. “True” long-read
sequencing technologies such as Pacific Biosciences Single Molecule Real-Time (SMRT) sequencing and
nanopore technologies [10,11] have been immensely useful for applications such as genome assembly,
but they require extensive computational error corrections [12,13]. As an alternative, technologies have
emerged that leverage short-read sequencers which have low error rate along with sample preparation
and processing for assembling long reads; these include Illumina TruSeq Synthetic Long-Reads [14], 10X
genomics linked read sequencing [15], and chromosomal conformation and capture (proximity ligation
and shotgun sequencing)-based Hi-C [16]. In linked read sequencing, barcoded libraries are generated,
which are then sequenced using a short-read sequencer; the resulting reads are then assembled using
the barcode information into long molecules called “Linked-Reads”. The same barcode information
is then leveraged for phasing haplotypes, while Hi-C includes a set of experimental protocols that
yields a sparse map of spatially proximally located read counts between pairs of loci [4]. Tools
such as “HapCut” can leverage this distance information to recover long, high coverage accurate
haplotypes [17,18]. The linked read sequencing and Hi-C technologies have been used for generating
long phased haplotypes [19,20].

Hanwoo is the indigenous premium beef cattle of South Korea and has been extensively selected for
higher meat and carcass quality traits. Efforts are underway for large-scale array-based genotyping for
genomic selection and for predicting Genomic Estimated Breeding Values (GEBV). Haplotype-resolved
whole genome sequence data will aid in imputing the array-generated SNP data to sequence level,
which might help in capturing causal SNPs associated with traits of interest. Therefore, in this study,
we performed haplotype phasing of a Hanwoo bull with data generated from the 10X genomics
platform and Hi-C methods in three ways: (1) phasing of 10X genomics data using Long Ranger
Pipeline, (2) phasing of 10X genomics data using HapCut2, and (3) phasing of Hi-C data using HapCut2.
We then compared the phasing performance and accuracy of phasing using these approaches using
a variety of metrics including switch error rates, pairwise single nucleotide variant (SNV) phasing
accuracy and yield, and haplotype block length. The data generated in this study will be useful as a
reference dataset for benchmarking future phased haplotypes from Hanwoo and in reference-based
phasing and imputation with tools such as SHAPEIT [21].

2. Materials and Methods

An overview of the methods followed in this study is given in Figure 1.

2.1. DNA Sample

Blood sample was collected from a Proven Bull (KPN) (ID: TN1505D2184 (27214)). This bull was
chosen as it had sired the largest number of offspring in the hanwoo breeding program. DNA was
isolated from whole blood using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) following
the manufacturer’s guidelines. The size and quality of the isolated DNA was checked according to the
manufacture’s recommendations [22].

2.2. 10X Genomics Sequencing and Analysis

First, the linked read library was prepared using the Chromium Genome Reagent Kit following
the manufacturer’s protocol [23]. Briefly, 1.25 ng of the high molecular weight genomic DNA along
with 10x Chromium reagents and gel breads were loaded onto a chromium controller chip. The input
DNA was portioned into ~1 million droplets (GEMs), each containing a unique barcode (Gemcode).
The droplets were then recovered from the chop and isothermally included at 30 ◦C for ~3 hrs to
generate barcoded short reads; they were then purified and size-selected using Silane and Solid Phase
reverse immobilization (SPRI) beads. Then, Illumina-compatible paired-end sequencing libraries were
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prepared following 10X Genomics recommendations. The libraries were quantified by qPCR (KAPA
Biosystems Library Quantification Kit for Illumina platforms). Sequencing was conducted with an
Illumina HiSeq X with 2 × 150 bp paired-end reads (Illumina, San Diego, CA, USA) following the
manufacturer’s protocol.

2.3. Hi-C Chromosome Conformation Captured Reads Sequencing

Approximately 100µL of blood was cross-linked for Hi-C using previously described protocols [24].
The cross-linked cells were subsequently lysed, and nucleic acid was extracted as described
previously [25]. The extracted DNA was digested with DpnII (New England Biolabs, Ipswich,
MA, USA) and cohesive end was repaired with biotinylated nucleotide with DNA polymerase I,
followed by proximity ligation. The DNA was subsequently purified with QIAamp DNA mini
Kit (Qiagen) following the manufacturers protocol. The purified DNA was sheared to a length of
~400 bp, and the biotinylated fragment was pulled down with Dynabeads MyOne Streptavidin C1
(Thermofisher, Waltham, MA, USA) following the manufacturers protocol. The Hi-C library for
Illumina sequencing was prepared using NEBNext Ultra II DNA library Prep Kit for Illumina (NEB)
according to the manufacturer’s instructions. The library was paired-end sequenced (2 × 150 bp) on
Illumina HiSeq X platform.
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2.4. Read Assembly and Haplotype Phasing

All the runs were done on an Ubuntu (version 18.04.02) server with Intel® Xenon®_CPU E5-2698
v4 @ 2.20 GHz (40 physical cores and 80 logical cores) and 1.5 TB of RAM.

The 10X sequencing data was analyzed using the Long Ranger pipeline [15] implemented by
10X genomics using default options. First, the reads were aligned to the bovine reference genome
(UMD 3.1) using the Lariat aligner; subsequently, SNPs and insertion-deletion polymorphisms (indels)
were called using the GATK mode (version 3.8) [26] within Long Ranger pipeline. The identified
SNPs (Single nucleotide polymorphisms) were phased using two methods: first, using the phasing
method implemented in Long Ranger, which builds on the Markov chain Monte Carlo (MCMC)
algorithm-based phasing method proposed by Bansal et al. [27] by extending the probabilistic model
to be robust to mixed fragments containing alleles from both haplotypes [28]. In the second method,
the variants (SNPs) were phased using Hapcut2 [18] using default options. HapCut2 is an extension of
the original Hapcut method [17] that performs haplotype assembly using DNA sequence fragments
rather than population genotypes. HapCut2 uses a likelihood-based model which models and estimates
platform specific errors.

For the Hi-C data, we followed the GATK best practice pipeline to call a variant. First, the reads
were aligned to the bovine reference genome (UMD 3.1) using BWA MEM (version 0.7.12) [29],
the reads were then sorted, duplicates were marked, and the BAM file was indexed using Picard tools
(version 2.9.2). SNPs and indels were called using HaplotypeCaller, implemented in GATK 3.8 [26].
Then, SNPs were phased using HapCut2 [18] using the default options.

2.5. Metrics for Comparing Phasing Performance between the Platforms

We had previously genotyped (with Illumina Bovine HD chip) and sequenced the individual used
in this study (TN1505D2184 (27214)) using Illumina TruSeq synthetic long-read sequencing (Moleculo)
and had generated a phased, error-corrected genome-scale haplotype. Briefly, based on the pedigree
analysis of the Hanwoo population, we sequenced a trio (sire, dam, and offspring (TN1505D2184
(27214))) using Illumina Long-read haplotyping technology known as Moleculo; the generated short
reads were assembled into synthetic long reads using BWA [29]. SNPs were called using default
options in GATK [26]. The reads were phased into haplotypes using a two-step local and global
phasing method [30]. Phasing accuracy was validated with array data (Illumina Bovine HD chip
777K) generated for the same animals. Results of this study are given in Table S1. We used this
data as the gold standard for measuring phasing performance and accuracy of phasing of the data
generated from the two platforms used in this study. We used four metrics for measuring phasing
performance, including SER (Switch Error Rate), which measures inconsistences in phasing into correct
haplotypes [7], and QAN50 (Quality Adjusted N50), which measures haplotype block length taking
into account switch errors, thereby controlling for completeness and quality of phased haplotypes [31].
Phasing rate is the number of SNPs phased. Finally, we also measured pairwise SNV phasing accuracy
and phasing yield, which measures the effect of distance between a pair of SNPs in a phasing block on
phasing accuracy [3,32]. All the data generated in this study and the gold standards used for comparing
are freely available for download from the National Agricultural Biotechnology Information Center
(www.nabic.rda.go.kr) website under the following accession number: NV-0623.

3. Results and Discussion

3.1. Sequencing and Variant Calling

A total of 790 million reads were generated using the 10X genomics platform at an average
sequencing depth of 37.9X, out of which 95.7% (~756 million) of the reads were mapped to the reference
genome, resulting in 8.8 million SNPs and 1.7 million indels (Table 1).

www.nabic.rda.go.kr
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Table 1. Summary of sequencing data from the two platforms.

10X Genomics Hi-C

Total Reads 790,643,590 441,889,616
Mapped Reads 756,645,916 (95.7%) 438,995,090 (99.2%)

Q30 (%) 92.50% 93.00%
Mean Depth 37.9X 21.2X

Out of the identified variants, 82% of the SNPs and 71% of the indels were heterozygous (Table 2).
While 441 million reads at an average depth of 21.2X was generated with the Hi-C method, out of this,
438 million (99.2%) reads were mapped to the reference genome (UMD 3.1), resulting in 7.1 million
SNPs and 1.7 million indels (Table 1), out of which 70% and 76% of the identified SNP and indels
were heterozygous. The 10X and HiC approaches identified 89.4% and 71.32% of the SNPs in the gold
standard (8,721,876 SNPs).

Table 2. Summary of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms
(indels) identified in this study.

10X Genomics Hi-C

SNPs Indels SNPs Indels

Total 8,670,477 1,749,472 7,132,127 1,753,086
Homozygous (%) 2,590,042 (30%) 507,761 (29%) 2,170,128 (30%) 417,903 (24%)
Heterozygous (%) 6,080,435 (70%) 1,241,711 (71%) 4,397,837 (70%) 1,335,183 (76%)

3.2. Genome-Scale Haplotype Phasing

We explored three strategies for assembling haplotypes (Figure 1) and compared the results with the
gold standard; 89.57% (7,766,580) of the SNPs identified by 10X genome sequencing (8,670,477 SNPs in total)
were phased using the Long Ranger pipeline, which includes a phasing algorithm optimized for using
10X barcode information while phasing, while only 67.31% SNPs (5,836,541) were phased using HapCut2
(Table 3). Out of the 7,132,127 SNPs identified through Hi-C, only 51.65% (3,687,511 SNPs) was phased
using HapCut2. The quality adjusted N50 (QAN50) length was longest for the 10X-LG at 1.2 Mb with a
low SER (switch error rate) of 0.069%, followed by HiC-Hapcut2 (1.03Mb) and 10X-Hapcut2 (0.54 Mb);
however, the HiC-Hapcut2 method had a higher SER of 0.24% than 10X-Hapcut2 (0.16%). The phasing
accuracy achieved with all the three methods were comparable to the phasing accuracy reported previously
in Holstein cattle using family-based and population-based methods [33].

3.3. Estimating Accuracy of Haplotype Phasing

We then measured the phasing accuracy and yield across pairs of SNPs (Figure 2) following the
method reported by Snyder et al. [3]. Figure 2a shows pairwise SNP phasing accuracy of the three
methods tested. The results showed that the phasing accuracy stayed above 98% (2 errors out of 100
heterozygous SNPs) for distances up to 72 Kb for HiC-Hapcut2, 93 Kb for 10X–HapCut2, and 100 Kb
for 10X-LG. The phasing accuracy for 10X-LG stayed over 92% for distance up to 4 Mb. Figure 2b
shows a phasing yield representing the probability that a pair of SNPs is phased in the same phasing
block as a function of distance between the pair. Considering a distance up to 550 Kb, the phasing
yield of 10X–HapCut2 and HiC-Hapcut2 remained over 90% and, for 10X-LG phasing, yielded over
90% extended up to 780 Kb.
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Table 3. Summary of phasing performance: Metrics shown are total number of SNPs phased, percentage
of SNPs phased, Quality adjusted N50 (QAN50), and the switch error rate.

Sequencing Platform—Phasing Method Metrics for Phasing Performance

10X-LG

Total SNPs Phased 7,766,580
% of SNPs Phased 89.57

QAN50 (bp) 1,249,365
SER * (%) 0.07

10X–HapCut2

Total SNPs Phased 5,836,541
% of SNPs Phased 67.31

QAN50 (bp) 541,912
SER * (%) 0.16

Hi-C–HapCut2

Total SNPs Phased 3,687,511
% of SNPs Phased 51.65

QAN50 (bp) 1,034,586
SER *(%) 0.24

* Switch Error Rate.
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4. Conclusions

Our results show that linked-read data along with the Long Ranger pipeline has the best phasing
performance, with high phasing rate, low switch error, and high phasing accuracy across distance.
This is consistent with reports from human genome phasing, where linked-read data was shown to
consistently outperform other methods [7]. Our analyses however have a few limitations such as
the results of this study rely heavily on the accuracy of the gold standard used and only SNPs were
considered in this study. Future studies must benchmark the ability of the sequencing platforms
assessed in this study for identifying and phasing other variants such as short insertion-deletion
polymorphisms (indels) and structural variations such as larger insertion, deletions, duplications,
and copy number variants (CNVs) which may play important roles in many diseases. Moreover,
haplotype-based genome-wide association studies are gaining popularity for identifying trait associated
genes [34]. Therefore, the ability to phase diploid genomes using long, highly accurate sequence
data along with low-cost computation will push haplotype-based genome analysis to higher levels
within livestock genomics. Recent improvements in Pacific Biosciences SMRT sequencing and Oxford
nanopore sequencing are suggested to have improved haplotype phasing quality [35,36]; therefore,
future studies could evaluate the performance of these technologies for accurately assemble genome
scale haplotypes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/3/332/s1,
Table S1: Summary of variants identified and phased in the reference library through Illumina Synthetic Long
Read Sequencing.

Author Contributions: Conceptualization, D.L. and I.-C.C.; formal analysis, K.S.; resources, J.C. and S.-R.C.;
writing—original draft preparation, K.S.; writing—review and editing, J.-E.P., D.L., and W.P.; project administration,
W.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was carried out with the support of “Cooperative Research Program for Agriculture Science
and Technology Development (Project No. PJ012519012019)” Rural Development Administration, Republic
of Korea. K.S. was supported by a 2020 RDA Fellowship Program of the National Institute of Animal Science,
Rural Development Administration, Republic of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing
technologies. Nat. Rev. Genet. 2016, 17, 333. [CrossRef]

2. Hayes, B.J.; Daetwyler, H.D. 1000 Bull Genomes project to map simple and complex genetic traits in cattle:
Applications and outcomes. Ann. Rev. Anim. Biosci. 2019, 7, 89–102. [CrossRef]

3. Snyder, M.W.; Adey, A.; Kitzman, J.O.; Shendure, J. Haplotype-resolved genome sequencing: Experimental
methods and applications. Nat. Rev. Genet. 2015, 16, 344. [CrossRef]

4. Ben-Elazar, S.; Chor, B.; Yakhini, Z. Extending partial haplotypes to full genome haplotypes using chromosome
conformation capture data. Bioinformatics 2016, 32, i559–i566. [CrossRef]

5. Ramaker, R.C.; Savic, D.; Hardigan, A.A.; Newberry, K.; Cooper, G.M.; Myers, R.M.; Cooper, S.J.
A genome-wide interactome of DNA-associated proteins in the human liver. Genome Res. 2017, 27,
1950–1960. [CrossRef]

6. Huddleston, J.; Eichler, E.E. An incomplete understanding of human genetic variation. Genetics 2016, 202,
1251–1254. [CrossRef]

7. Choi, Y.; Chan, A.P.; Kirkness, E.; Telenti, A.; Schork, N.J. Comparison of phasing strategies for whole human
genomes. PLoS Genet. 2018, 14, e1007308. [CrossRef]

8. Chaisson, M.J.; Huddleston, J.; Dennis, M.Y.; Sudmant, P.H.; Malig, M.; Hormozdiari, F.; Antonacci, F.;
Surti, U.; Sandstrom, R.; Boitano, M. Resolving the complexity of the human genome using single-molecule
sequencing. Nature 2015, 517, 608. [CrossRef]

9. Stapleton, J.A.; Kim, J.; Hamilton, J.P.; Wu, M.; Irber, L.C.; Maddamsetti, R.; Briney, B.; Newton, L.;
Burton, D.R.; Brown, C.T. Haplotype-phased synthetic long reads from short-read sequencing. PLoS ONE
2016, 11, e0147229. [CrossRef]

http://www.mdpi.com/2073-4425/11/3/332/s1
http://dx.doi.org/10.1038/nrg.2016.49
http://dx.doi.org/10.1146/annurev-animal-020518-115024
http://dx.doi.org/10.1038/nrg3903
http://dx.doi.org/10.1093/bioinformatics/btw453
http://dx.doi.org/10.1101/gr.222083.117
http://dx.doi.org/10.1534/genetics.115.180539
http://dx.doi.org/10.1371/journal.pgen.1007308
http://dx.doi.org/10.1038/nature13907
http://dx.doi.org/10.1371/journal.pone.0147229


Genes 2020, 11, 332 9 of 10

10. Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31. [CrossRef]
11. Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.;

Huang, X. The potential and challenges of nanopore sequencing. In Nanoscience and Technology: A Collection
of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 261–268.

12. Berlin, K.; Koren, S.; Chin, C.-S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling large genomes
with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015, 33, 623. [CrossRef]
[PubMed]

13. Koren, S.; Schatz, M.C.; Walenz, B.P.; Martin, J.; Howard, J.T.; Ganapathy, G.; Wang, Z.; Rasko, D.A.;
McCombie, W.R.; Jarvis, E.D. Hybrid error correction and de novo assembly of single-molecule sequencing
reads. Nat. Biotechnol. 2012, 30, 693. [CrossRef] [PubMed]

14. McCoy, R.C.; Taylor, R.W.; Blauwkamp, T.A.; Kelley, J.L.; Kertesz, M.; Pushkarev, D.; Petrov, D.A.;
Fiston-Lavier, A.-S. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex,
highly-repetitive transposable elements. PLoS ONE 2014, 9, e106689. [CrossRef] [PubMed]

15. Zheng, G.X.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.;
Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M. Haplotyping germline and
cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016, 34, 303. [CrossRef]
[PubMed]

16. Selvaraj, S.; Dixon, J.R.; Bansal, V.; Ren, B. Whole-genome haplotype reconstruction using proximity-ligation
and shotgun sequencing. Nat. Biotechnol. 2013, 31, 1111. [CrossRef] [PubMed]

17. Bansal, V.; Bafna, V. HapCUT: An efficient and accurate algorithm for the haplotype assembly problem.
Bioinformatics 2008, 24, i153–i159. [CrossRef]

18. Edge, P.; Bafna, V.; Bansal, V. HapCUT2: Robust and accurate haplotype assembly for diverse sequencing
technologies. Genome Res. 2017, 27, 801–812. [CrossRef]

19. Shin, G.; Greer, S.U.; Xia, L.C.; Lee, H.; Zhou, J.; Boles, T.C.; Ji, H.P. Assembly of Mb-size genome segments
from linked read sequencing of CRISPR DNA targets. bioRxiv 2018. [CrossRef]

20. Zhang, X.; Zhang, S.; Zhao, Q.; Ming, R.; Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid
genomes based on Hi-C data. Nat. Plants 2019, 5, 833–845. [CrossRef]

21. Delaneau, O.; Marchini, J.; Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat.
Methods 2012, 9, 179–181. [CrossRef]

22. Genomics, X. Sample Preparation Demonstated Protocol. 2020. Available online: https:
//assets.ctfassets.net/an68im79xiti/6PoCPM1BUQmkcw4SK8AGi2/ae196e362b118842eea7cd73a46c02f7/

CG00019_SamplePrepDemonstratedProtocol_-_DNAQC_RevB.pdf (accessed on 21 December 2019).
23. Genomics, X. Genome Reagents Kits v2 User Guide. 2020. Available online: https:

//assets.ctfassets.net/an68im79xiti/1Jw6vQfW1GOGuO0AsS2gM8/61866afe8c8af5e0eecf6a3d890f58aa/

CG00043_GenomeReagentKitv2UserGuide_RevB.pdf (accessed on 21 December 2019).
24. Stewart, R.D.; Auffret, M.D.; Warr, A.; Wiser, A.H.; Press, M.O.; Langford, K.W.; Liachko, I.; Snelling, T.J.;

Dewhurst, R.J.; Walker, A.W. Assembly of 913 microbial genomes from metagenomic sequencing of the cow
rumen. Nat. Commun. 2018, 9, 870. [CrossRef] [PubMed]

25. Gong, G.; Dan, C.; Xiao, S.; Guo, W.; Huang, P.; Xiong, Y.; Wu, J.; He, Y.; Zhang, J.; Li, X. Chromosomal-level
assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis. GigaScience
2018, 7, giy120. [CrossRef] [PubMed]

26. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.;
Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [CrossRef] [PubMed]

27. Bansal, V.; Halpern, A.L.; Axelrod, N.; Bafna, V. An MCMC algorithm for haplotype assembly from
whole-genome sequence data. Genome Res. 2008, 18, 1336–1346. [CrossRef] [PubMed]

28. Marks, P.; Garcia, S.; Barrio, A.M.; Belhocine, K.; Bernate, J.; Bharadwaj, R.; Bjornson, K.; Catalanotti, C.;
Delaney, J.; Fehr, A. Resolving the full spectrum of human genome variation using Linked-Reads. Genome Res.
2019, 29, 635–645. [CrossRef] [PubMed]

29. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013,
arXiv:1303.3997.

30. Kuleshov, V.; Xie, D.; Chen, R.; Pushkarev, D.; Ma, Z.; Blauwkamp, T.; Kertesz, M.; Snyder, M. Whole-genome
haplotyping using long reads and statistical methods. Nat. Biotechnol. 2014, 32, 261. [CrossRef]

http://dx.doi.org/10.1038/nrg2626
http://dx.doi.org/10.1038/nbt.3238
http://www.ncbi.nlm.nih.gov/pubmed/26006009
http://dx.doi.org/10.1038/nbt.2280
http://www.ncbi.nlm.nih.gov/pubmed/22750884
http://dx.doi.org/10.1371/journal.pone.0106689
http://www.ncbi.nlm.nih.gov/pubmed/25188499
http://dx.doi.org/10.1038/nbt.3432
http://www.ncbi.nlm.nih.gov/pubmed/26829319
http://dx.doi.org/10.1038/nbt.2728
http://www.ncbi.nlm.nih.gov/pubmed/24185094
http://dx.doi.org/10.1093/bioinformatics/btn298
http://dx.doi.org/10.1101/gr.213462.116
http://dx.doi.org/10.1101/373142
http://dx.doi.org/10.1038/s41477-019-0487-8
http://dx.doi.org/10.1038/nmeth.1785
https://assets.ctfassets.net/an68im79xiti/6PoCPM1BUQmkcw4SK8AGi2/ae196e362b118842eea7cd73a46c02f7/CG00019_SamplePrepDemonstratedProtocol_-_DNAQC_RevB.pdf
https://assets.ctfassets.net/an68im79xiti/6PoCPM1BUQmkcw4SK8AGi2/ae196e362b118842eea7cd73a46c02f7/CG00019_SamplePrepDemonstratedProtocol_-_DNAQC_RevB.pdf
https://assets.ctfassets.net/an68im79xiti/6PoCPM1BUQmkcw4SK8AGi2/ae196e362b118842eea7cd73a46c02f7/CG00019_SamplePrepDemonstratedProtocol_-_DNAQC_RevB.pdf
https://assets.ctfassets.net/an68im79xiti/1Jw6vQfW1GOGuO0AsS2gM8/61866afe8c8af5e0eecf6a3d890f58aa/CG00043_GenomeReagentKitv2UserGuide_RevB.pdf
https://assets.ctfassets.net/an68im79xiti/1Jw6vQfW1GOGuO0AsS2gM8/61866afe8c8af5e0eecf6a3d890f58aa/CG00043_GenomeReagentKitv2UserGuide_RevB.pdf
https://assets.ctfassets.net/an68im79xiti/1Jw6vQfW1GOGuO0AsS2gM8/61866afe8c8af5e0eecf6a3d890f58aa/CG00043_GenomeReagentKitv2UserGuide_RevB.pdf
http://dx.doi.org/10.1038/s41467-018-03317-6
http://www.ncbi.nlm.nih.gov/pubmed/29491419
http://dx.doi.org/10.1093/gigascience/giy120
http://www.ncbi.nlm.nih.gov/pubmed/30256939
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1101/gr.077065.108
http://www.ncbi.nlm.nih.gov/pubmed/18676820
http://dx.doi.org/10.1101/gr.234443.118
http://www.ncbi.nlm.nih.gov/pubmed/30894395
http://dx.doi.org/10.1038/nbt.2833


Genes 2020, 11, 332 10 of 10

31. Duitama, J.; McEwen, G.K.; Huebsch, T.; Palczewski, S.; Schulz, S.; Verstrepen, K.; Suk, E.-K.; Hoehe, M.R.
Fosmid-based whole genome haplotyping of a HapMap trio child: Evaluation of Single Individual
Haplotyping techniques. Nucleic Acids Res. 2011, 40, 2041–2053. [CrossRef]

32. Amini, S.; Pushkarev, D.; Christiansen, L.; Kostem, E.; Royce, T.; Turk, C.; Pignatelli, N.; Adey, A.; Kitzman, J.O.;
Vijayan, K. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and
combinatorial indexing. Nat. Genet. 2014, 46, 1343. [CrossRef]

33. Miar, Y.; Sargolzaei, M.; Schenkel, F.S. A comparison of different algorithms for phasing haplotypes using
Holstein cattle genotypes and pedigree data. J. Dairy Sci. 2017, 100, 2837–2849. [CrossRef]

34. Braz, C.U.; Taylor, J.F.; Bresolin, T.; Espigolan, R.; Feitosa, F.L.; Carvalheiro, R.; Baldi, F.; Lucia, G.; De
Oliveira, H.N. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying
genes for meat tenderness in Nelore cattle. BMC Genet. 2019, 20, 1–12. [CrossRef] [PubMed]

35. Delaneau, O.; Zagury, J.-F.; Robinson, M.R.; Marchini, J.L.; Dermitzakis, E.T. Accurate, scalable and integrative
haplotype estimation. Nat. Commun. 2019, 10, 1–10. [CrossRef] [PubMed]

36. Bowden, R.; Davies, R.W.; Heger, A.; Pagnamenta, A.T.; de Cesare, M.; Oikkonen, L.E.; Parkes, D.; Freeman, C.;
Dhalla, F.; Patel, S.Y. Sequencing of human genomes with nanopore technology. Nat. Commun. 2019, 10, 1–9.
[CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/gkr1042
http://dx.doi.org/10.1038/ng.3119
http://dx.doi.org/10.3168/jds.2016-11590
http://dx.doi.org/10.1186/s12863-019-0713-4
http://www.ncbi.nlm.nih.gov/pubmed/30642245
http://dx.doi.org/10.1038/s41467-019-13225-y
http://www.ncbi.nlm.nih.gov/pubmed/31780650
http://dx.doi.org/10.1038/s41467-019-09637-5
http://www.ncbi.nlm.nih.gov/pubmed/31015479
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	DNA Sample 
	10X Genomics Sequencing and Analysis 
	Hi-C Chromosome Conformation Captured Reads Sequencing 
	Read Assembly and Haplotype Phasing 
	Metrics for Comparing Phasing Performance between the Platforms 

	Results and Discussion 
	Sequencing and Variant Calling 
	Genome-Scale Haplotype Phasing 
	Estimating Accuracy of Haplotype Phasing 

	Conclusions 
	References

