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INTRODUCTION 
 

Mismatch repair genes are DNA damage response 

pathway’s prominent components, which is responsible 

for maintaining genome integrity [1], including MLH1 

(mutL homolog 1), MSH2 (mutS homolog 2), PMS2 

(postmeiotic segregation increased 2), MSH6 (mutS 

homolog 6), etc. The human MSH6 protein, also known 

as GTBP or p160, is one of the three most important 

mismatch repair proteins in the post-replicative DNA 

mismatch repair system (MMR)’s MutS family, which 

exists in mammalian cells, primarily on the short arm of 

chromosome 2, and plays a core role in repairing 

mismatched DNA bases [2, 3]. Common to all MutS 

homologues, MSH6 contains a Walker-A/B adenine 

nucleotide motif of approximately 150 amino acids, 

which is a highly conserved sequence with intrinsic 

ATPase activity [4]. In the process of DNA mismatch 

binding dissociation, the encoded protein can 

heterodimerize with MSH2 to form mismatch 

recognition complex, and exchange ADP and ATP as 

bidirectional molecular switch [5, 6]. The human MSH6 

protein can be split into five conserved domains 

(MutS_1~5) comparable to E. coli MutS, and the 
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associated fibroblasts and CD8+ T-cells infiltration levels in various cancer types, e. g. pancreatic 
adenocarcinoma or testicular germ cell tumors. Furthermore, pathway enrichment analysis demonstrated that 
the main biological activities of MSH6 were related to ATPase activity, mismatch repair, and DNA metabolism-
related functions. Altogether, our pan-cancer research has suggested that the MSH6 expression level was 
closely related to the carcinogenesis and prognosis of certain tumors, which helps to know the effect of MSH6 
in tumorigenesis from the point of view of clinical tumor samples. 
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disordered N-terminal PWWP domain [7, 8]. Within 

these five domains, the specific biochemical functions 

of MSH6 have been driven based on the sequence 

differences in MSH2 [9]. Previous studies have shown 

that abnormal expression of the MSH6 gene and its 

transcription characteristics have been detected in many 

cancer types [10–13].  

 

The available GEO database and publicly funded 

TCGA project contain functional genomics datasets of 

human different tumors, aiming at cataloguing and 

discovering major carcinogenic genome alterations to 

create the cancer genome profiles’ comprehensive 

“atlas” [14–16]. Research on individual cancer types 

and comprehensive pan-cancer analysis have provided 

new insights into the occurrence and development of 

tumors. In recent years, the close relationship between 

MSH6 and tumor has also been continuously 

discovered. Our research team has been committed to 

the study of this MSH6 protein with different functions 

and reported the functional connection between MSH6 

and the tumorigenesis and development of osteo-

sarcoma [17]. However, currently, no pan-cancer 

analysis has been performed to comprehensively 

evaluate the relationship between MSH6 expression and 

the carcinogenesis and clinical prognosis of a variety of 

tumor types. 

 

Through this paper, we will reveal the oncogenic role  

of human MSH6 (NM_000179 for mRNA or 

NP_000170.1 for protein) in human tumors. TCGA 

project and GEO database were used to perform pan-

cancer analysis of MSH6 for the first time, and 

systematically described the expression differences, 

prognostic value, protein phosphorylation as well as 

relevant cellular pathways of MSH6 in different cancer 

types. The genetic alteration status and prognostic value 

of MSH6 across multiple cancer types and the 

relationship with immune cell infiltration were also 

investigated. Taken together, our research provided a 

new understanding of the potential effect of MSH6 in 

the pathogenesis or in clinical prognosis of various 

different cancers. 

 

RESULTS 
 

MSH6 expression in pan-cancer 

 

We utilized the TIMER2 tool firstly to analyze MSH6’s 

expression status in the TCGA project’s different cancer 

types. In Figure 1A, MSH6’sexpression level in the 

tumor tissues of HNSC [HPV (Human papillomavirus) 

+/-] (Head and neck squamous cell carcinoma), LUSC 

(Lung squamous cell carcinoma), COAD (Colon 

adenocarcinoma), CHOL (Cholangiocarcinoma), BRCA 

(Breast invasive carcinoma), ESCA (Esophageal 

carcinoma), BLCA (Bladder urothelial carcinoma), 

LIHC (Liver hepatocellular carcinoma), LUAD (Lung 

adenocarcinoma), STAD (Stomach adenocarcinoma) 

(P<0.001), READ (Rectum adenocarcinoma) (P<0.01) 

and GBM (Glioblastoma multiforme (P<0.05) is all 

higher than that of adjacent normal tissues. But the 

MSH6 expression level in the tumor tissues of KIRP 

(Kidney renal papillary cell carcinoma), KICH (renal 

hepatocellular carcinoma), UCEC (Uterine corpus 

endometrial carcinoma) (P<0.001), THCA (Thyroid 

carcinoma) and PCPG (Pheochromocytoma and 

paraganglioma) (P<0.05) is lower than that in adjacent 

normal tissues. 

 

Moreover, as the TCGA project lacks information on 

the corresponding normal tissues of certain tumors, the 

TCGA and GTEx databases for analysis were 

combined. In Figure 1B, the expression level of MSH6 

in the tumor tissues of LGG (Brain lower grade glioma), 

DLBC (Lymphoid neoplasm diffuse large B-cell 

lymphoma), TGCT (Testicular Germ Cell Tumors) 

SKCM (Skin cutaneous melanoma) and THYM 

(Thymoma) (P<0.05) is all higher than the 

corresponding normal tissues compared with the normal 

tissues of the corresponding tumors in the GTEx 

dataset. However, in the expression level of MSH6 

between tumor and adjacent normal tissues in other 

tumors, we did not obtain significant differences, 

including LAML (Acute myeloid leukemia), ACC 

(Adrenocortical carcinoma) or OV (Ovarian serous 

cystadenocarcinoma) (Supplementary Figure 1A). 

 

In order to make clear the protein expression level of 

MSH6 in different tumors, protein expression analysis 

on the CPTAC dataset was performed. As shown in 

Figure 1C, the MSH6 total protein expression level in 

the primary tumor tissues of colon cancer, breast cancer, 

ovarian cancer, LUAD, and clear cell RCC was all 

higher than that of normal tissues (all P<0.001). 

 

In addition, the “Pathological Stage Plot” module of 

GEPIA2 was also used to analyze the relationship 

between MSH6 expression levels and different tumor 

pathological stages. In Figure 1D, MSH6 expression 

levels are significantly different in various pathological 

stages of tumors such as ACC, KIRP, LUAD, LIHC, 

KICH, OV and SKCM (P<0.05) but not others 

(Supplementary Figure 1B–1E). 

 

In pan-cancer, the expression of MSH6 is associated 

with prognosis  

 

In cancer, according to the expression level of MSH6, 

we divided cancer cases into two groups of MSH6 high-

expression and MSH6 low-expression. Subsequently, 

we applied TCGA and GEO datasets to find the 
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Figure 1. The MSH6 expression level in different tumor tissues and stages. (A) The TCGA project’s MSH6 gene expression difference 
in different tumors or specific tumor subtype tissues and adjacent normal tissues was analyzed by TIMER2. *P<0.05; **P<0.01; ***P<0.001. 
(B) In the GTEx database, the corresponding normal tissues were applied as controls, and GEPIA2 was applied to analyze the expression 
status of MSH6 gene in LGG, SKCM, DLBC, TGCT and THYM tumors. *P <0.05. (C) Difference of the MSH6 total protein expression between 
normal and tumor tissues of breast cancer, lung adenocarcinoma, colon cancer, ovarian cancer and clear cell RCC were analyzed based on the 
CPTAC dataset. ***P<0.001. (D) On the basis of the TCGA dataset, GEPIA2 was applied to analyze the expression level of MSH6 gene by the 
different pathological stages (stage I, II, III, IV and V) in LUAD, KICH, LIHC, ACC, KIRP, OV and SKCM tumors. 
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correlation between MSH6 expression and the prognosis 

of different cancer patients. In Figure 2A, we found that 

highly expressed MSH6 was linked with poor prognosis 

of OS (Overall survival) for cancer patients with ACC 

(P=0.0026), as well as KIRP (P=0.065), BLCA 

(P=0.008), SARC (Sarcoma) (P=0.015) and LGG 

(P=0.0056). However, the MSH6 gene low expression 

was linked with worse OS prognosis of KIRC (P=0.0082) 

and THYM (P=0.0053). In addition, DFS (Disease-free 

survival) analysis showed that high expression of MSH6 

was correlated to poor prognosis for cancers of KIRP 

(P=0.038), ACC (P=0.00015), UVM (Uveal melanoma) 

(P=0.038) and LGG (P=0.045) (Figure 2B). 

Moreover, Kaplan-Meier plotter tool was also applied to 

analyze the survival and prognosis data of different cancer 

patients. In Supplementary Figure 2A, MSH6’s high 

expression was linked with poor PFS (Progression-free 

survival) (P=0.0034), OS (P=0.022) and PPS (Post-

progression survival) (P=0.048) in patients with ovarian 

cancer. In addition, MSH6’s high expression level was 

also significantly linked to poor FP (First progression) 

(P=2.3e-09) and OS (P=2.8e-09) in lung cancer patients 

(Supplementary Figure 2B). By contrast, MSH6’s low 

expression level was significantly linked with poor FP 

(P=0.019), OS (P=6e-04) and PPS (P=1.7e-05) prognosis 

in patients with gastric cancer (Supplementary Figure 2C). 

 

 
 

Figure 2. Correlation between MSH6 gene expression and survival prognosis of all TCGA tumors were analyzed by using the 
GEPIA2 tool. (A) Overall survival analysis. (B) Disease-free survival analysis. The positive results with significant differences were given 

through survival map and Kaplan-Meier curves. 
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Meanwhile, MSH6’s high expression was also linked with 

poor PFS (P=0.0036), OS (P=0.012) and RFS (Relapse-

free survival) (P=0.0034) prognosis of liver cancer 

patients (Supplementary Figure 2D). In addition, we also 

detected a relationship between the high expression level 

of MSH6 and the poor OS (P=0.00052), PFS (P=0.007), 

RFS (P=6.5e-14) and DMFS (Distant metastasis-free 

survival) (P=0.00022) prognosis of breast cancer patients 

(Supplementary Figure 2E). The above results indicate 

that the MSH6’s expression level is correlated to the 

prognosis of pan-cancer patients, but different cancer 

patients are also different.  

 

The genetic alteration of MSH6 in pan-cancer 

 

In different tumor samples of TCGA project, the MSH6 

genetic alteration status was gained from cBioPortal.  

In Figure 3A, the MSH6 gene has the highest alteration 

frequency (>10%) with “mutation” as the primary type 

in patients with uterine tumors. In addition, CAN’s 

“amplification” type was the primary type of genetic 

alteration in the LUSC patients, with an alteration 

frequency of approximately 2% (Figure 3A). What is 

noteworthy is that all DLBC patients with genetic 

alterations (~2% frequency) had MSH6’s gene copy 

number amplification (Figure 3A). In Figure 3B, the 

types, location and number of cases of MSH6 genetic 

alteration can be further shown. It is found that 

missense mutations were the primary type of MSH6 

gene mutation, and E946*/D alterations in the MutS_IV 

domain were detected in 2 cases of COAD, 4 cases of 

UCEC and 1 case of PRAD patients (Figure 3B). It can 

induce a frameshift mutation of the MSH6 gene, which 

translates from E (Glutamic) to D (Aspartic) at position 

 

 
 

Figure 3. Mutation characteristics and prognostic value of MSH6 gene in different kind of tumors of TCGA were analyzed by 
using the cBioPortal tool. (A) These are the mutation type and alteration frequency in various tumors. (B) The mutation site of MSH6. (C) The 

potential correlation between MSH6 mutation status and overall, disease-free, disease-specific and progression-free survival prognoses of UCEC. 
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946 of the MSH6 protein, and the subsequent MSH6 

protein truncation. Then, the potential relationship 

between genetic alteration of MSH6 and the clinical 

survival prognosis of patients with different types of 

cancer were also further analyzed. In Figure 3C, UCEC 

cancer patients with altered MSH6 indicated better 

prognosis in DSS (Disease-specific survival) 

(P=0.0183), OS (P=8.245e-03) and PFS (P=4.650e-03), 

but not in DFS (Disease-free survival) (P=0.141), 

compared with patients without MSH6 alteration. These 

results indicate that the MSH6’s expression status in 

pan-cancer is associated with MSH6 amplification and 

copy number gain, and the genetic alteration of MSH6 

is closely linked to the various cancer patients’ clinical 

survival prognosis. 

 

Difference of MSH6 protein phosphorylation level in 

pan-cancer 

 

The CPTAC dataset was applied to analyze the 

differences in the phosphorylation levels of MSH6 in 

normal and primary tumor tissues of six different 

tumors (colon cancer, breast cancer, LUAD, ovarian 

cancer, clear cell RCC and UCEC). S227 locus of 

MSH6 demonstrates higher phosphorylation level in 

primary tumor tissues of colon cancer, LUAD, breast 

cancer, clear cell RCC and UCEC compared with those 

normal tissues (Figure 4A–4D, 4F, all P <0.05). 

Similarly, the S830 locus within the MutS_III domain 

of MSH6 also indicates a higher phosphorylation level 

in primary tumor tissues of breast cancer, ovarian 

cancer colon cancer and UCEC in comparison with 

normal tissues (Figure 4A, 4B, 4E, 4F, all P<0.05). In 

contrast, in comparison with normal tissues, the S261 

locus and S137 locus of MSH6 demonstrated a lower 

phosphorylation level of primary tumor tissues of clear 

cell RCC and ovarian cancer, respectively (Figure 4D, 

4E, all P <0.05). Subsequently, the PhosphoNET 

database was also applied to further analyze the 

phosphorylation sites of MSH6 identified from the 

CPTAC dataset, and found that the phosphorylation of 

MSH6 in S227, S261, S830 [18] and S137 [19] in the 

cell cycle was confirmed by the previous publications 

experimentally. However, these phosphorylation sites 

deserve further molecular testing to further find the 

potential effect of these phosphorylation sites in the 

initiation and progression of different tumors. 

 

MSH6 is associated with tumor immune infiltration 

in pan-cancer 

 

Figure 5 shows the cancer-associated fibroblast 

infiltration in different cancer types of TCGA and 

potential relationships between MSH6 gene 

expression. We found that the cancer-associated 

fibroblasts’ estimated infiltration value for the TCGA 

tumors of ESCA, HNSC (HPV -) and PAAD analyzed 

based on all algorithms was statistically positively 

related with the expression of MSH6, and only 

negatively related in TGCT tumors. Moreover, we also 

noted that the estimated infiltration value of CD8+ T-

cells immune infiltration analyzed based on all or most 

of the algorithms was statistically positively related 

with the MSH6 expression in PAAD and THYM 

tumors, but was negatively correlated in UCEC and 

TGCT tumors (Supplementary Figure 3). In Figure 5B 

and Supplementary Figure 3B, there are scatterplot 

data of the above-mentioned tumor generated using 

one of the algorithms. For example, the expression of 

MSH6 gene in THCA was positively related with the 

cancer-associated fibroblasts’ infiltration level 

(cor=0.342, P=7.65e-15) based on the TIDE algorithm 

(Figure 5B). The above results indicate that tumor 

infiltrating immune cells are important components of 

the tumor microenvironment and were closely related 

to the occurrence, development, or metastasis of 

cancer. 

 

Function enrichment analysis of MSH6-related 

genes 

 

On the basis of the STRING tool, a total of 50 available 

experimentally verified MSH6-binding proteins were 

obtained. Figure 6A shows the interaction network of 

these proteins. Moreover, the GEPIA2 tool was applied 

to combine the dataset of all tumors and adjacent 

normal tissues of TCGA to gain the top 100 targeted 

genes correlated to the expression of MSH6. In Figure 

6B, the MSH6’s expression level was positively 

correlated with that of MCM6 (Mini-chromosome 

maintenance complex component 6) (R=0.68), MSH2 

(R=0.87), CDC25A (Cell division cycle 25A) (R=0.70), 

RFWD3 (Ring finger and wd repeat domain 3) 

(R=0.68)and ERCC6L (ERCC excision repair 6 like and 

spindle assembly checkpoint helicase) (R=0.68) genes 

(all P <0.001). We obtained the heatmap data by using 

the TIMER2 online tool, which further indicated that 

the expression level of MSH6 and these five genes were 

positively related to the most tumor types of TCGA 

(Figure 6C). In Figure 6D, Jvenn tool was used for 

intersection analysis of the above two groups to obtain 5 

common members, including RAD51 (RAD51 

recombinase), SUPT16H (SPT16 homolog, facilitates 

chromatin remodeling subunit), BRCA1 (BRCA1 DNA 

repair associated), SMC3 (Structural maintenance of 

chromosomes 3) and MSH2. Similarly, both scatterplot 

data and heatmap data indicated that the MSH6 

expression level was positively related to that of 

RAD51(R=0.65), BRCA1 (R=0.57), SMC3 (R=0.58) 

and SUPT16H (R=0.57) genes (all P <0.001), and it was 

also true in most of TCGA tumor types (Supplementary 

Figure 4A, 4B). 
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Moreover, the two datasets were combined to perform 

GO and KEGG pathway enrichment analysis. In Figure 

6E, the enrichment analysis of the KEGG pathway 

demonstrates that “DNA replication”, “mismatch repair” 

and “cell cycle” may be included in the effect of MSH6 in 

tumorigenesis and development. GO enrichment analysis 

data will illustrate that majority of these genes are related 

to the pathways or cellular biology of DNA metabolism, 

including ATPase activity, DNA recombination, catalytic 

activity acting on DNA, double−strand break repair, 

chromosomal region, nuclear chromosome, etc. (Figure 

6F and Supplementary Figure 4C, 4D). 

 

DISCUSSION 
 

As one of the three most important mismatch repair 

genes in the MutS family, MSH6 has been shown to be 

involved in the occurrence and development of many

 

 
 

Figure 4. Phosphorylation differences of MSH6 protein in various cancers of TCGA. Based on the CPTAC dataset, the expression 
differences of MSH6 phosphoprotein (NP_000170.1, S14, S137, S200, S219, S227, S261, S309, and S830 sites) between normal tissue and 
tumor tissue from selected tumors were detected through the UALCAN. (A) Breast cancer. (B) Colon cancer. (C) LUAD. (D) Clear cell RCC.  
(E) Ovarian cancer. (F) UCEC. 
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different cancers, including colorectal cancer, 

endometrial cancer, prostate cancer, pituitary adenoma 

and osteosarcoma [10–13, 17]. Edelmann’s results 

revealed that mutations in the MSH6 gene increased 

cancer susceptibility and may be directly related to 

hereditary cancer predisposition syndrome and certain 

sporadic tumors without microsatellite instability [20]. 

Nevertheless, it remains unclear whether MSH6 plays a 

role in the pathogenesis of different tumors through 

some common molecular mechanisms. To address this, 

we performed pan-cancer analysis of MSH6 gene across 

33 different cancer types, based on the data of TCGA, 

CPTAC, and GEO databases, as well as the molecular 

characteristics of gene expression, genetic alteration, or 

protein phosphorylation. In this study, we provided new 

insights into the underlying molecular mechanisms of 

MSH6 in the pathogenesis or clinical prognosis of 

different cancers.  

 

MSH6 mRNA was highly expressed in most tumors of 

TCGA and corresponded to both the increased MSH6 

protein expression and target gene expression of 

 

 
 

Figure 5. Correlation analysis between MSH6 gene expression and immune infiltration of cancer-associated fibroblasts.  
(A) Different algorithms (including MCPCOUNTER, EPIC, XCELL and TIDE) were applied to evaluate the relationship between MSH6 expression 
and the immune infiltration level of cancer-associated fibroblasts for all TCGA tumors. (B) The scatterplot data of the selected tumor 
generated using one of the algorithms were supplied. 
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corresponding tumors, indicating that MSH6 has 

functional activity in these tumors. Wilczak et al. [12] 

performed immunohistochemical analysis on a tissue 

microarray of 11152 prostate cancer specimens and 

showed that MSH6 overexpression is common in 

prostate cancer and is associated with poor survival 

prognosis and genetic instability. Similarly, our 

previous study on the expression level of MSH6 in 

 

 
 

Figure 6. MSH6-related gene function enrichment analysis. (A) On the basis of the STRING tool, a total of 50 available experimentally 
verified MSH6-binding proteins were obtained. (B) The top 100 MSH6-correlated genes in the TCGA project were gained by using the GEPIA2 
tool, and it analyzed the expression correlation between MSH6 and the top 5 targeting genes (including MSH2, MCM6, RFWD3, CDC25A and 
ERCC6L). (C) It displayed the corresponding heatmap data of the selected targeting genes in the TCGA detailed cancer type are displayed.  
(D) Intersection analysis of MSH6-correlated genes and MSH6-binding protein. (E) KEGG pathway analysis on the basis of MSH6-correlated 
genes and MSH6-binding protein. (F) The cnetplot for GO enrichment analysis (molecular function data) based on MSH6-correlated genes 
and MSH6-binding protein. 
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osteosarcoma tissues found that MSH6 was 

significantly overexpressed in the pathological tissues 

of osteosarcoma, and silencing MSH6 gene may have a 

better effect on inhibiting osteosarcoma cell proliferation 

and promoting cell apoptosis [17].  

 

In this work, GEPIA2 tool was used to detect the 

correlation between the expression of MSH6 and the 

prognosis of different tumors in TCGA. We found that 

high expression of MSH6 was linked to poor prognosis 

of OS for cancers of ACC, BLCA, KIRP, LGG, and 

SARC, while the opposite was true for KIRC and 

THYM. A number of recent studies have also shown 

that the expression of MSH6 was associated with the 

poor survival of cancer patients such as LGG and 

SARC, and that MSH6 gene mutations may increase 

the risk of certain tumors with lower prevalence, such 

as ACC [21–23]. Nevertheless, However, no study has 

been reported on the clinical prognosis of MSH6 

expression in BLCA, KIRP, KIRC and THYM tumors. 

Although the survival prognosis analysis data of 

MSH6 gene showed different conclusions in different 

tumors, we believe that the abnormal expression of 

MSH6 gene is closely related to the poor survival 

prognosis of most tumors. 

 

A number of recent studies have reported that MSH6 

gene expression is associated with an increased risk of 

breast or ovarian cancer [11, 24, 25]. Nevertheless, we 

failed to observe the correlation between MSH6 

expression and the survival prognosis of patients with 

breast or ovarian cancer in the TCGA-BRCA/OV 

cohort. Different data processing or updated survival 

information may contribute to this result. Consequently, 

based on the survival data of the Kaplan-Meier plotter 

with Affymetrix 202911_at and 211449_at microarrays 

[26], we observed that the high expression of MSH6 

was associated with poor prognosis of OS, RFS, PFS 

and DMFS prognosis in breast cancer cases. 

Furthermore, we also observed a correlation between 

MSH6 high expression and poor prognosis of OS, PFS 

and PPS in ovarian cancer cases. Similar to previous 

studies, our research also indicated that MSH6 may be a 

susceptibility gene for breast cancer or ovarian cancer, 

and the expression of MSH6 gene may cause poor 

survival prognosis in these two cancer patients. 

Nevertheless, we believe that more in-depth molecular 

experimental evidence is still needed to confirm 

whether the high expression of MSH6 plays an essential 

role in the above mentioned tumor initiation process, or 

is just the result of normal tissues resisting tumor 

progress. 

 

Using the CPTAC dataset, we first explored the 

molecular mechanism of MSH6 protein in breast 

cancer, colon cancer, lung adenocarcinoma, clear cell 

renal cell carcinoma, ovarian cancer, and uterine corpus 

endometrial carcinoma from the perspective of total 

protein and phosphoprotein. The results of this study 

demonstrated that, compared with normal tissues, total 

MSH6 protein was highly expressed and 

phosphorylated at S830 and S227 sites in MutS_III 

domain in primary tumor tissues. Although the S227 

and S830 sites of MSH6 phosphorylation in the cell 

cycle have been experimentally confirmed [18], there is 

no research on the potential role of MSH6 

phosphorylation at S227 and S830 sites during cell 

cycle regulation. Hence, this may require additional 

molecular experiments to further evaluate the potential 

role of MSH6 phosphorylation at S227 and S830 sites 

in the initiation and progression of different tumors. 

 

Cancer-associated fibroblasts in the stroma of the 

tumor microenvironment were reported to be involved 

in regulating the functions of various tumor-infiltrating 

immune cells [27, 28]. Hence, to clarify the 

relationship between MSH6 expression and tumor-

infiltrating immune cells, we investigated the 

relationship between MSH6 expression and cancer-

associated fibroblasts, as well as CD8+ T-cells immune 

infiltration levels of different cancer types. 

Interestingly, MSH6 expression was positively 

correlated with cancer-associated fibroblasts and CD8+ 

T-cells infiltration levels in most cancer types, 

including PAAD, ESCA, HNSC (HPV -) and THYM, 

etc. Not surprisingly, this may be related to 

microsatellite instability (MSI). MSI refers to changes 

in microsatellite length caused by insertion or deletion 

of repeating units in tumors, which is mainly related to 

germline mutations in genes such as MLH1, PMS2, 

MSH2, and MSH6 [29]. Increasingly, MSI has been 

shown to be associated with a large number of tumor-

infiltrating lymphocytes, which provides indirect 

evidence for the special role of the antitumoral 

immune response in such tumors, possibly due to the 

increased neoantigen production [30–32].  

 

In this study, we determined the potential role of “DNA 

replication”, “mismatch repair”, “cell cycle”, “ATPase 

activity” and DNA metabolism in the etiology or 

pathogenesis of cancer through a series of enrichment 

analyses on MSH6-binding protein and MSH6 

expression-related genes across all tumors. As a 

mismatch binding factor, MSH6 can repair mismatched 

bases in DNA replication, gene damage, and 

recombination to maintain the stability of genetic 

information [33–35]. A large number of studies have 

confirmed that MSH6 can promote tumor genesis and 

development through the interaction with histone 

H3Kme36, chromatin complex effects, and genomic 

microsatellite instability and other mechanisms [29, 36, 

37]. These findings may help to understand the potential 
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role of the MSH6 gene in the pathogenesis of different 

tumors. 

 

Altogether, our first pan-cancer analysis of MSH6 

showed that MSH6 is expressed in most cancers, and 

the MSH6 expression is significantly correlated to  

the clinical prognosis of cancer patients, protein 

phosphorylation, and immune cell infiltration. These 

data provided a relatively comprehensive understanding 

of the oncogenic effects of MSH6 across different 

tumors, which helps us to know the effect of MSH6 in 

tumorigenesis in the view of clinical tumor samples. 

 

MATERIALS AND METHODS 
 

Expression analysis of gene 

 

The present study shows that we first entered “MSH6” in 

the “Gene_DE” module of Tumor Immune Estimation 

Resource (TIMER2, http://timer.cistrome.org/) and found 

the differences of MSH6 expression between adjacent 

normal tissues and thirty-three different tumors or 

specific tumor subtype tissues in the TCGA project 

(Supplementary Table 1). Some tumors, however, that 

have no normal tissue or a high degree of normal tissue 

deficiency in the TCGA project, such as TCGA-DLBC 

(Lymphoid Neoplasm Diffuse Large B-cell Lymphoma), 

TCGA-LGG (Brain Lower Grade Glioma), etc., the 

corresponding normal tissues in the Genotype-Tissue 

Expression (GTEx) database were obtained and it applied 

the Gene Expression Profiling Interactive Analysis’ 

“Expression analysis-Box Plots” module (GEPIA2, 

http://gepia2.cancer-pku.cn/#analysis) [38] to find the 

differential expression between these tumor tissues  

and the corresponding normal tissues (setting: P-value 

cutoff = 0.01, log2FC (fold change) cutoff = 1, and 

“Match TCGA normal and GTEx data”). The UALCAN 

portal (http://ualcan.path.uab.edu/analysis-prot.html) 

allowed us to conduct the analysis in protein expression 

level on the dataset of CPTAC (Clinical proteomic 

tumor analysis consortium) [39]. Hence, we input 

“MSH6” in the UALCAN portal’s “CPTAC Analysis” 

module to seek the total protein or phosphoprotein 

expression levels of MSH6 (NP_000170.1) between the 

TCGA project’s primary tumor and normal tissues. 

Herein, six available datasets for tumors have been 

selected, namely, colon cancer, breast cancer, ovarian 

cancer, LUAD (Lung adenocarcinoma), clear cell RCC 

(Renal cell carcinoma), and UCEC (Uterine corpus 

endometrial carcinoma). Finally, through the GEPIA2 

“Pathological Stage Plot” module, the MSH6 

expression violin plots in various pathological stages 

(stage I, II, III, IV and V) of the tumors in TCGA were 

all obtained. The log2 [Transcripts per million (TPM) + 

1] converted expression data were used to violin plots 

or box. 

Survival analysis 
 

In order to understand the effect of MSH6 gene 

expression on the survival and prognosis of all TCGA 

tumors. The current study shows that the GEPIA2 

“Survival Map” module [38] was applied to evaluate the 

relationship between MSH6 gene expression and overall 

survival (OS) and Disease-free survival (DFS) of all 

TCGA tumors (settings: cutoff-high value: 50%, cutoff-

low value: 50%). Log-rank tests were used as the 

hypothesis tests. Moreover, we also applied the 

GEPIA2 “Survival Analysis” module to gain survival 

plots with MSH6 expression significance correlated in 

all TCGA tumors. 

 

Genetic alteration analysis 
 

The Cancer Genomics cBioPortal portal 

(https://www.cbioportal.org/) [40] provides a network 

resource to explore, visualize, and analyze 

multidimensional cancer genomic data, which allows 

us to interactively explore the genetic changes across 

genes, samples, and pathways, and link these to 

clinical outcomes when available in the underlying 

data. In this study, we selected “TCGA Pan Cancer 

Atlas Study” in “Quick Select” section of the 

cBioPortal web and entered into “MSH6”to find the 

genetic alteration characteristics of MSH6. Next, we 

observed the alteration frequency results, structural 

variants, mutation type, and CNA (Copy number 

alteration) of all TCGA tumors within the “Cancer 

Types Summary” module. Finally, the “comparison/ 

survival” module was applied to analyze the disease-

free, progression-free and overall survival differences 

of UCEC cancer patients with or without MSH6 

genetic alteration. And Kaplan-Meier survival curves 

were used for data visualization. 

 

Immune infiltration analysis 
 

When logging into the TIMER2 web server, we chose 

the “Immune-Gene” module and entered “MSH6” to 

find the association between MSH6 expression and 

immune infiltrates for all the tumors in the TCGA 

project. In this study, we selected immune cells, 

including CD8+ T-cells and cancer-associated 

fibroblasts. Next, the potential relations between the 

immune infiltration level of different immune cells 

and the MSH6 expression for all TCGA tumors was 

estimated by the TIMER, XCELL, CIBERSORT-

ABS, MCPCOUNTER, CIBERSORT, EPIC, 

QUANTISEQ, and TIDE algorithms. Additionally, 

the P-values were gained by the rank correlation  

test of Spearman after purity adjustment, and a  

heatmap and a scatter plot were visualized to the final 

results. 

http://timer.cistrome.org/
http://gepia2.cancer-pku.cn/#analysis
http://ualcan.path.uab.edu/analysis-prot.html
https://www.cbioportal.org/
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MSH6-related gene enrichment analysis 

 

We used the single protein name (“MSH6”) firstly and an 

organism (“Homo sapiens”) to screen available 

experimentally verified MSH6-binding proteins in the 

“Protein By Name” module of STRING website 

(https://string-db.org/). At the same time, the following 

main parameters were set: minimum required interaction 

score [“Low confidence (0.150)”], active interaction 

sources (“experiments”), meaning of network edges 

(“evidence”) and max number of interactors to indicate 

(in the 1st shell, there is “no more than 50 interactors”). 

Finally, we gained 50 available experimentally verified 

MSH6-binding proteins and constructed a network of 

these protein interactions. Through Cytoscape software, 

the PPI network was visualized. 

 

On the basis of the dataset of all tumors and adjacent 

normal tissues of TCGA project, we gained the top 100 

targeted genes linked to the MSH6 expression by using 

GEPIA2’s “Similar Gene Detection” module. Then, 

pairwise gene Pearson correlation analysis was performed 

to analyze the correlation between MSH6 and the top 5 

targeting genes by using the “Correlation Analysis” 

module of GEPIA2. P-values and the correlation 

coefficient (R) were displayed in the plot. Finally, 

TIMER2 “Gene_Corr” module was applied to create the 

selected genes’ heatmap data. The heatmap indicated the 

P-values in the Spearman’s rank correlation test and 

partial correlation (cor) values after purity adjustment. 

 

Jvenn (http://bioinformatics.psb.ugent.be/webtools/Venn/) 

[41] is a new JavaScript library that helps us process lists 

and generate Venn diagrams by classical or Edwards-

Venn layouts, thereby enhancing its readability function. 

In this paper, we applied the Jvenn online tool to 

implement an intersection analysis, of selected genes to 

obtain genes related to and interacting with MSH6 

expression. Subsequently, to further understand the 

functions of these genes, the two sets of data were 

combined to conduct GO (Gene ontology) and KEGG 

(Kyoto Encyclopedia of Genes and Genomes) path 

analysis. Specifically, we first use the DAVID online tool 

(visualization, database for annotation and integrated 

discovery, https://david.ncifcrf.gov) to obtain the 

functional annotation chart data. Next, the “cairo”, 

“stringr” and “ggplot2” R packages were applied to 

visualize these genes’ enrichment pathways, and the 

“clusterProfiler” R package was applied to perform the 

GO (Gene Ontology) enrichment analysis. Finally, by 

using CNET plot function, the data of CC (Cellular 

component), BP (Biological process), and MF (Molecular 

function) are turned to cnetplot. This paper applied the R 

language software [R-4.1.0, 64-bit] (https://www.r-

project.org/). Two-tailed P <0.05 was statistically 

significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Expression level of MSH6 gene in different tumors and pathological stages. (A) The corresponding 
normal tissues in the GTEx database were used as controls, and GEPIA2 was used to analyze the expression status of MSH6 gene in ACC, 
LAML, OV, SARC and UCS tumors. Expression levels of the MSH6 gene by different pathological stages of BLCA, BRCA, CESC, COAD (B); DLBC, 
ESCA, HNSC, KIRC (C); LUSC, PAAD, READ, STAD (D); and TGCT, THCA, UCEC, UCS (E). 
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Supplementary Figure 2. Kaplan-Meier plotter was used to analyze the correlation between MSH6 gene expression and 
cancer prognosis. Based on the expression level of MSH6 gene in ovarian cancer (A), lung cancer (B), gastric cancer (C), liver cancer (D) and 
breast cancer (E) cases, we performed a series of survival analysis using Kaplan-Meier plotter, including OS, DMFS, RFS, PFS, PPS, and FP. 
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Supplementary Figure 3. Correlation analysis between MSH6 gene expression and immune infiltration of CD8+ T-cells. (A) 

Different algorithms (including TIMER, EPIC, MCPCOUNTER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ and XCELL ) were applied to evaluate 
the relationship between MSH6 expression and the immune infiltration level of CD8+ T-cells for all TCGA tumors. (B) The scatterplot data of 
the selected tumor generated using one of the algorithms were supplied. 
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Supplementary Figure 4. GO-biological process/cellular component analysis of MSH6-related genes. (A) Using the GEPIA2 
approach, we analyzed the expression correlation between MSH6 gene and crossover genes (including BRCA1, RAD51, SMC3 and SUPT16H). 
(B) The corresponding heatmap data of the crossover genes in the TCGA detailed cancer type are displayed. (C) The cnetplot for the biological 
process data in GO enrichment analysis based on MSH6-correlated genes and MSH6-binding protein. (D) The cnetplot for the cellular 
component data in GO enrichment analysis based on MSH6-correlated genes and MSH6-binding protein. 
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Supplementary Table 
 

Supplementary Table 1. Summary of TCGA cancer types. 

TCGA cancer abbreviation TCGA cancer type 

ACC Adrenocortical carcinoma 

BLCA Bladder Urothelial Carcinoma  

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CHOL Cholangiocarcinoma 

COAD Colon adenocarcinoma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

HNSC  Head and Neck squamous cell carcinoma 

KICH Kidney Chromophobe 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LAML Acute Myeloid Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MESO Mesothelioma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PCPG Pheochromocytoma and Paraganglioma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SARC Sarcoma 

SKCM Skin Cutaneous Melanoma 

STAD Stomach adenocarcinoma 

TGCT Testicular Germ Cell Tumors 

THYM Thymoma 

THCA Thyroid carcinoma 

UCS Uterine Carcinosarcoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UVM Uveal Melanoma 

 


