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Background. Functional receptors for leptin were described on the surface of cardiomyocytes, and there was a prohypertrophic
effect with high concentrations of the cytokine. Therefore, leptin could be a link between obesity and the prevalence of
cardiovascular diseases. On the other hand, a deleterious effect of leptin on mitochondrial performance was described, which
was also associated with the evolution of cardiac hypertrophy to heart failure. The goal of our study was to analyze the effect of
the exposure of rat hearts to a high concentration of leptin on cardiac and mitochondrial function. Methods. Rat hearts were
perfused continuously with or without 3.1 nM leptin for 1, 2, 3, or 4 hours. Homogenates and mitochondria were prepared by
centrifugation and analyzed for cardiac actin, STAT3, and pSTAT3 by Western blotting, as well as for mitochondrial oxidative
phosphorylation, membrane potential, swelling, calcium transport, and content of oxidized lipids. Results. In our results, leptin
induced an increased rate-pressure product as a result of increased heart rate and contraction force, as well oxidative stress. In
addition, mitochondrial dysfunction expressed as a loss of membrane potential, decreased ability for calcium transport and
retention, faster swelling, and less respiratory control was observed. Conclusions. Our results support the role of leptin as a
deleterious factor for cardiac function and indicates that mitochondrial dysfunction could be a trigger for cardiac hypertrophy
and failure.

1. Introduction

Leptin is a 167-amino-acid-long peptide, with a molecular
weight of 16 kDa. There is a direct correlation between the
serum leptin concentration and body fat because leptin is
mainly produced by adipocytes [1], reaching concentrations
over 200ng/mL in morbid-obese people compared with
10 ng/mL in thin people.

In addition to white fat, there are different tissues in the
heart with the ability to synthesize and release leptin. The

expression of leptin receptors on the cardiomyocyte surface
has been described as well, suggesting a direct effect of the
hormone on cardiac function [2, 3]. Results from previous
studies indicate that high levels of serum leptin are positively
associated with cardiac remodeling [4]. One of the first stud-
ies addressing the leptin effect on cardiac tissue found that 24
hours of treatment of neonatal isolated cardiomyocytes with
high concentrations of leptin induced a 42% increase on the
cellular surface [5], as well as the overexpression of alpha
skeletal actin (α-actin), the myosin light chain 2 (MLC-2),
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and the atrial natriuretic peptide (ANP), all of which are
considered to be hypertrophy markers. The average concen-
tration leading to prohypertrophic effects was 3.1 nM (50ng/
mL). This group also demonstrated that the cardiomyocytes
express the functional leptin receptors a and b (OB-Ra,
OB-Rb) [5, 6]. Later studies from the same group found
a mitochondrial deleterious effect of leptin that made car-
diac mitochondria more sensitive to calcium overload [7];
additionally, there was evidence of OB-Rb in mitochondria
isolated from rat hearts [8].

The heart is a high-energy-demand tissue; therefore,
functionalmitochondria are necessary for its correct function.
In this context, any alteration in the mitochondrial perfor-
mance induced by leptin will deeply affect heart functionality
and may provide clues to explain the well-described relation-
ship between obesity and cardiovascular diseases.

The goal of this study was to analyze the effects of the
prohypertrophic concentration of leptin in an isolated heart
model to demonstrate whether the in vitro deleterious effect
also affects cardiac function by perfusion of hearts with lep-
tin for 1, 2, 3, or 4 hours in an ex vivo model. We proposed
that with heart being a high-energy-demand organ, a possi-
ble link between obesity and development of cardiovascular
diseases might be related with direct effect of circulating lep-
tin on mitochondria.

2. Materials and Methods

2.1. Ethics. Animals were purchased from the Production,
Care and Animal Experimentation Unit (UPCEA), Juarez
Autonomous University of Tabasco. Male Wistar rats weigh-
ing 300–350 g were used for this experimental design in com-
pliance with theMexican regulations for the use of animals in
research (NORMA Oficial Mexicana NOM-062-ZOO-1999,
technical specifications for production, use, and care of
experimental animals), following the “Three Rs”: replace-
ment, reduction, and refinement in research with animals.

2.2. Chemical Reagents. Primary and secondary antibodies
were purchased from Santa Cruz Biotechnology (Dallas,
Texas, USA). Luminol reagents for Western blotting were
purchased from Thermo Scientific (Waltham,Massachusetts,
USA). All remaining chemicals were purchased from
Sigma-Aldrich (St. Louis, MO, USA) unless another source
was described.

2.3. Heart Perfusion with Leptin. A Langendorff system
for isolated hearts (Radnoti LTD, Ireland) was used for
isolated-heart exposure to 3.1 nM leptin concentration as
follows: rats were deeply anesthetized by intraperitoneal
injection with sodium pentobarbital plus heparin (as an
anticoagulant) before the heart was extracted by thoracot-
omy and quickly cannulated through the aorta in order to
be continuously retrograde perfused with a physiologic
Krebs-Henseleit buffer, pH7.39, with or without leptin
[9]. The buffer was oxygenated (O295%/CO25%), main-
tained at 37°C during the entire perfusion time (1, 2, 3,
or 4 hours), and pumped at 12mL/min. Cardiac perfor-
mance was measured at left ventricular end-diastolic

pressure (LVEDP) of 10mmHg using a latex balloon
inserted into the left ventricle and connected to a pressure
transducer. The heart rate (beats per minute (bpm)) and
contraction force (pressure (P)) have values which were
used to calculate the rate pressure product.

2.4. Mitochondrial Isolation. After perfusion with or without
leptin, the hearts were washed with cold STE isolation
buffer (sucrose 250mM, Tris-HCl 10mM, and EDTA
1mM), cut into small pieces, and incubated for 10min with
nagarse (1mg/heart in cold STE). Nagarse was removed by
centrifugation at 2500×g, and the tissue was homogenized
in a Potter-Elvehjem homogenizer before a conventional
method of centrifugation [10, 11], including 10min incuba-
tion with 0.1% bovine serum albumin (BSA) in cold STE.
Finally, the protein concentration was calculated with the
Bradford method [12], using a standard curve with BSA as
the standard.

2.5. Mitochondrial Oxygen Consumption. One milligram of
isolated mitochondria was deposited on 1mL of KHE buffer
(KCl 130mM, HEPES 25mM, EGTA 0.1mM, MgCl2 1mM,
and KH2PO4 3mM) in a glass chamber adapted with a
Clark-type electrode and constant stirring. State 4 respiration
was evaluated [11] with either substrates for complex I (glu-
tamate/malate) or complex II (succinate plus rotenone) using
2mg of mitochondrial protein. State 3 of respiration was
stimulated with the addition of 200μmol of ADP.

2.6. Mitochondrial Calcium Transport. A reduced ability to
transport and accumulate calcium is a marker of mitochon-
drial dysfunction. We measured these mitochondrial features
following the quenching of the calcium green fluorescence, as
in previous reports [13, 14]. Five hundred milligrams of
freshly isolated mitochondria was added to 1mL of buffer
C (KCl 130mM, HEPES 25mM, EGTA 0.1mM, and
KH2PO4 10mM) supplemented with glutamate/malate as
substrates for the mitochondrial complex I, 4μM calcium
green, and 10mM CaCl2. The reaction was stopped by the
addition of a 0.1mM aliquot of the mitochondrial uncoupler
CCCP. Changes in the intensity of fluorescence were
recorded by a spectrofluorometer with continuous stirring.

2.7. Mitochondrial Potential (ΔΨm). The membrane
potential was measured in the isolated mitochondria by
monitoring changes in the fluorescence of the cationic dye
Rhodamine 123, for which fluorescence is quenched as a
result of mitochondrial accumulation of the dye [14, 15].
In brief, 0.5mg of freshly isolated mitochondria was added
to 2mL of buffer C, before the addition of 0.1mM rhodamine
and 0.5mM MgCl2. After a basal recording, the substrate
glutamate/malate was added in order to induce potential for-
mation, and finally, calcium and 10mM or 0.1mM CCCP
were added where indicated.

2.8. Mitochondrial Swelling. Swelling was measured by con-
ventional spectroscopy by monitoring the light absorption
at 540 nm according to previous reports [16]. One milligram
of isolated mitochondria was suspended in buffer C with
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glutamate/malate as a substrate, and swelling was induced by
adding 10mM CaCl2.

2.9. Western Blotting. Heart homogenates were mixed with
loading buffer (glycerol 30%, SDS 10%, Tris 0.5M, bromo-
phenol blue 0.01%, and β-mercaptoethanol) and boiled for
10min in a water bath. Proteins were separated by electro-
phoresis in 12% acrylamide/bis-acrylamide gels and trans-
ferred to nitrocellulose membranes [17]. After that, the
membranes were blocked for 2 hours with 5% fat-free milk
in washing buffer and incubated overnight at 4°C with the
primary antibodies (mouse anticardiac actin, chicken anti-
GAPDH, rabbit anti-STAT3, and mouse anti-p-STAT3)
diluted 1 : 1000 with 3% BSA in washing solution. The next
morning, the membranes were washed and incubated with
the HRP-conjugated secondary antibodies diluted 1 : 10000
before detection with the Immobilon Western AP chemilu-
minescent substrate (Millipore, Bedford, MA, USA).

2.10. Determination of Oxidized Lipids. Lipid peroxidation
was analyzed by the thiobarbituric acid-reactive substance
(TBARS) methodology [18]. Isolated mitochondria or
homogenate samples were mixed with TBA buffer and incu-
bated for 20min at 92°C, followed by 20min of incubation in
an ice bath, before centrifugation at 1200×g. The absorbance
of the supernatants was measured at 532nm using a thiobar-
bituric acid standard curve for the final calculations.

2.11. Statistical Analysis. Values were assessed by Student’s
t test and are given as the mean ± standard error (SE). A
p value < 0 05 was considered to be the threshold for statis-
tical significance between the compared groups. The corre-
lation between variables was analyzed by Pearson’s test.
GraphPad Prism 6 was used for the statistical analysis,
and ImageJ was used for the densitometry analysis of
Western blots.

3. Results

3.1. Effect of Leptin on Cardiac Performance. The first part of
our study was focused on analysis of the effect of leptin on the
rate-pressure product of the hearts. Rat hearts were perfused
continuously with buffer containing or not 3.1 nM leptin.
Figures 1(a) and 1(b) show an increasing mean value for
the heart rate (HR) and the contraction pressure (CP) relative
to the perfusion time, reaching statistical significance for CP
after the third hour. Panel c in the same figure is the “rate-
pressure product” (HR∗CP) and is indicative of the capacity
of the heart for pumping. Note that leptin significantly
increases this value after 3 hours of perfusion. These results
are indicative of the direct and accumulative effect of these
concentration of leptin on the heart function.

3.2. Effect of Leptin on Mitochondrial Function. The second
set of the experiments was developed to analyze the effect
of leptin on the mitochondrial function. Therefore, mito-
chondria were isolated from each control (Ctrl) or leptin-
perfused heart (Lep) and analyzed by different approaches,
yielding the following results.

3.2.1. Respiratory Control. Oxidative phosphorylation is the
main pathway for ATP synthesis, which, coupled with con-
sumption of oxygen, is the foremost function of mitochon-
dria. The uncoupling effect of leptin is evident from the
first hour of perfusion. Table 1 displays resumed data for
respiratory control (RC), a value obtained by dividing the
rate of oxygen consumption in state 3 by that of state 4.
Leptin decreased the values of CR with substrates for either
complex I (glutamate/malate, G+M) or complex II (succi-
nate + rotenone (Succ)), indicating a lower efficiency for
ATP synthesis and increased uncoupled respiration.
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Figure 1: Effect of leptin on the cardiac rate-pressure product. (a)
Plot of heart rates (beats per minute, mmHg) of leptin-perfused
and control hearts. (b) Plot of heart contraction pressures of
leptin-perfused and control hearts. (c) Heart rate-pressure product
of leptin-perfused and control hearts; ∗p < 0 05 (n = 4). The
concentration of leptin was 3.1 nM in the perfusion solution.
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3.2.2. Calcium Internalization and Retention. The high
capacity of mitochondria for calcium internalization and
retention is highly important for other mitochondrial func-
tions, for example, intracellular calcium buffering. Figure 2
displays representative recordings of the fluorescence mea-
surements as a result of mitochondrial calcium movements.
In panel a, the ability of control mitochondria to internalize
and retain calcium is clear; calcium is released just after
membrane depolarization with the protonophore CCCP;
however, mitochondria isolated from leptin-perfused hearts
display a poor ability to transport and accumulate calcium,
with no changes in the fluorescence. Panels b, c, and d show
results from the same experiment after 2, 3, and 4 hours of
perfusion, respectively. Unexpectedly, we detected a reduced
capacity for calcium management in the control mitochon-
dria, with little or null changes after CCCP addition; mito-
chondria from the leptin group showed the same profile
with almost undetectable calcium retention.

3.2.3. Membrane Potential (ΔΨm). The mitochondrial mem-
brane potential is indicative of the inner membrane integrity.
Figure 3 shows similar features between the membrane
potential and calcium transport. In panel a, a large quenching
of fluorescence was detected after the addition of mitochon-
drial substrates G+M to the control mitochondria, indicative
of establishment of a potential, which was maintained upon
addition of calcium but collapsed with CCCP, in contrast to
the leptin-treated mitochondria that displayed a small
decrease in fluorescence (smaller potential). The effect of lep-
tin was maintained without changes even 2, 3, or 4 hours
after perfusion (panels b, c, and d). Panel d includes a plot
of leptin-treated mitochondria incubated with cyclosporine
A (CsA), a potent inhibitor of mPTP. As noted, CsA did
not correct the collapsed potential. For the semiquantitative
comparison between groups, the potential was calculated as
the difference of fluorescence before and after the addition
of CCCP (in arbitrary units of fluorescence (AUF)) as dis-
played in Figure 4. As noted, the difference in the potential
(measured as ΔAUF) was significantly higher after four
hours of leptin perfusion.

3.2.4. Mitochondrial Swelling. The last experiments for the
determination of mitochondrial performance investigated
calcium-dependent swelling. Damaged mitochondria swell
quickly when they are exposed to high concentrations of
calcium. Figures 5(a)–5(d) show a faster decrease in absor-
bance in Lep-treated mitochondria than in control mito-
chondria as a result of calcium-induced swelling of the

isolated mitochondria. Some of the plotted absorbance
values are significantly different at the first and second
hours, but such a difference disappeared at longer perfusion
times (3rd and 4th hours). These results are similar to those
of calcium transport, indicating a higher sensitivity of Lep-
group mitochondria to calcium since the first hour of perfu-
sion but also an effect on the control mitochondria at longer
perfusion times.

3.3. Hypertrophy Determination. One of the main goals of
our research was to determinate the prohypertrophic effect
of leptin on the whole heart. Figure 6(a) shows the results
of a semiquantitative determination of cardiac actin (c-
ACT), as a marker of heart hypertrophy. As noted, a signifi-
cant increase in the amount of this protein was detected after
3 and 4 hours of perfusion in homogenates of these hearts.
Such an increase was accompanied by phosphorylation of
STAT3 (p-STAT3, Figure 6(b)), a signaling protein that is
implicated in the prohypertrophic effect of leptin, but no
changes were detected in the total protein (STAT3, panel
c). These results suggest that 3 hours of perfusion with leptin
are sufficient for the triggering of prohypertrophic signaling,
in part through the STAT3 pathway.

3.4. Oxidative Stress. One of the main consequences of mito-
chondrial damage is increased oxidative stress. We analyzed
the level of oxidative stress in either the total tissue (homog-
enates) or isolated mitochondria with the TBARS technique,
which quantifies the level of oxidized lipids. Our results
plotted in Figure 7(a) show that the levels of these oxidized
lipids in the heart homogenates are higher after the third
and fourth hours of perfusion with leptin than in control
groups. Interestingly, these results are similar to those
obtained from the isolated mitochondria; however, in the
organelle, the difference was not significantly higher. To
determinate a cause-effect association, we calculated the cor-
relation between the levels of oxidized lipids in the homoge-
nates and in the mitochondria. As result, in panel C, the value
of the correlation between the control samples is very low
(R = −0 079) relative to that of the Lep group (R = 0 650),
indicating that oxidative stress increases simultaneously
in both mitochondria and whole tissue and explaining, at
least in part, mitochondrial dysfunction.

4. Discussion

The goal of this study was to determine whether the exposure
to a high concentration of leptin has a deleterious effect on

Table 1: Summary of respiratory control (RC) measured by conventional oximetry with a Clark-type electrode in isolated mitochondria.
Oxygen consumption was analyzed with substrates for complex I (glutamate/malate) and complex II (succinate + rotenone) by measuring
the slopes of state 4 and state 3, as shown in Figure 2. Values represent median ± SD; ∗p < 0 05 (n = 4).

Perfusion time (hr)
1 2 3 4

Ctrl Lep Ctrl Lep Ctrl Lep Ctrl Lep

Glutamate-malate: (complex I) 2.07± 0.3 1.18± 0.1∗ 2.26± 0.8 1.27± 0.3∗ 1.80± 0.4 1.34± 0.1∗ 2.96± 0.9 1.14± 0.1∗

Succinate: (complex II) 2.94± 1.1 1.28± 0.2∗ 2.67± 0.8 1.19± 0.2∗ 2.95± 0.5 1.15± 0.08∗ 2.17± 0.7 1.18± 0.1∗

4 International Journal of Endocrinology



the heart and mitochondrial performance using an isolated
rat-heart model. Previously, the existence of leptin receptors
in the heart was documented [15], suggesting a cardiac effect
of this cytokine. These reports gained special interest in the
context of obesity because obese people develop leptin resis-
tance, with serum levels of leptin over 200ng/mL. Although
a cardioprotective effect of leptin was reported previously
[19], the association between hyperleptinemia and develop-
ment of cardiovascular diseases was described [20], particu-
larly with congestive cardiac insufficiency and coronary
disease [21, 22] in addition to the well-demonstrated prohy-
pertrophic role on cardiomyocytes [5]. In our results, the
hearts exposed to the prohypertrophic concentration of lep-
tin developed an increase in either heart rate or ventricular
pressure from the first to the fourth hours of exposure, sug-
gesting an immediate effect, probably related to an increase
in the intracellular concentration of calcium; this is similar
to the constrictive effect that results from opening transient
receptor potential cation channels (TRPCs) and voltage-
dependent calcium channels and mobilizing intracellular cal-
cium deposits, as described previously in thoracic aorta and
lung artery from spontaneously hypertensive rats [23]. These

results should be interpreted carefully since high values of
rate-pressure product are not necessarily good for the heart.
Interestingly, these effects occur simultaneously with mito-
chondrial dysfunction, measured as low respiratory control,
decreased membrane potential, and reduced calcium trans-
port (Figures 2 and 3). Our group reported previously that
24 hours of incubation with leptin sensitized mitochondria
from isolated neonatal ventricular cardiomyocytes to calcium
overload, mainly through opening of the mitochondrial per-
meability transition pore [8]. In this new approach, we were
able to demonstrate that these deleterious effects occur in
the whole heart earlier than that in isolated myocytes. This
discrepancy is probably associated with the experimental
model because in this report, hearts were beating continu-
ously for the four hours, which suggests a higher mechanical
wear that could favor mitochondrial damage.

There are several mechanisms for the establishment
of mitochondrial dysfunction, that is, increased oxidative
stress, which damages lipids and proteins, calcium overload,
damage to mitochondrial respiratory chain complexes, or
the loss of the mitochondrial inner membrane (MIM) integ-
rity by swelling or pore formation. Our results showed an
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Figure 2: Calcium transported by mitochondria. (a) Plot of calcium internalization during active oxidative phosphorylation for control (gray)
and leptin-treated (black) mitochondria. Arrows indicate the time points when the indicated additions were made. The reaction was stopped
by the addition of CCCP to induce a complete release of calcium. (b), (c), and (d) are representative plots of control and leptin-treated
mitochondria after 2, 3, and 4 hours of perfusion, respectively. CCCP: carbonyl cyanide-m-chlorophenyl hydrazone; Mit: mitochondria;
AUF: arbitrary units of fluorescence.
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uncoupling effect of leptin on oxidative phosphorylation
(respiratory control), which affected oxygen consumption
through either complex I or II (Table 1), suggesting that
the function of other complexes may be affected; addition-
ally, the absence of oxidative stress between the first two
hours, which has a greater effect on complex I, supports this
hypothesis (Figure 7). On the other hand, either the ability
of mitochondria to internalize and retain calcium or the
establishment of a potential was affected (Figures 2–5),
resulting, again, in the uncoupling of oxidative phosphory-
lation (oxygen consumption without ATP syntheses) and
mitochondrial swelling. These last effects have been attrib-
uted to the opening of MIM pores/channels, such as mPTP
or the mitochondrial apoptosis-induced channel (MAC)
[24, 25], which could be activated by a calcium overload,
oxidative stress, or apoptotic signaling [26]. In order to test
this point, we added the mPTP inhibitor CsA to leptin-
exposed mitochondria. Interestingly, the collapsed potential
was not corrected (Figure 3(d)), which is a clear discrepancy
with our study on the isolated myocytes, where sanglifehrin
A, another mPTP inhibitor, completely prevented MIM
permeation [8]. Another likely explanation is the activation
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4 independent determinations with different mitochondrial
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and was considered the membrane potential. ∗p < 0 05 (n = 4).

6 International Journal of Endocrinology



of MAC, which is regulated by the proapoptotic members of
the Bcl-2 family of proteins, Bax and Bak, and plays a key
role in the intrinsic pathway of apoptosis [27, 28]. In addi-
tion, MAC could be activated and is more sensitive to both
calcium overload and oxidative stress [28, 29]. Under spe-
cific circumstances, it is also possible that both pores are
activated simultaneously, as we demonstrated previously
[30]. It is important to point out that mitochondrial “dys-
function” does not mean that the mitochondrion is
completely unable to synthetize ATP, but that means the
functionality is affected or the organelle is sensitized to
insults like calcium overload which is used in some of the
experimental protocols; besides, the isolation process itself
affects the organelle as can be appreciated with the control
group. We did not develop a specific experiment analyzing
integrity of the isolated mitochondria; however, in a previ-
ous report [7], it was demonstrated that a direct exposition
to leptin induces mitochondrial swelling for itself and these
mitochondria are more sensitive to calcium overload. On
the other hand, although the detailed mechanisms to
explain the effect of leptin on the electric properties of the
heart are not well described. Lin et al. described a stimulant
effect on the adrenergic receptors because a high concentra-
tion of leptin increases the QT interval, triggering arrhyth-
mias such as premature ventricular bits, sinus pauses, and
ventricular tachycardia [31]. Our results indicate that leptin
induces alterations in cardiac performance, probably through
upregulation of different calcium channels such as the L-type

or Na/Ca translocator, resulting in calcium overload in mito-
chondria during contractile function and explaining the
in vitro sensitization to calcium, but this remains a topic for
future research.

5. Conclusions

In conclusion, our results strongly support previous reports
that noted the deleterious effect of a high concentration of
leptin on cardiac mitochondrial function but with a differ-
ent mechanistic pathway (without participation of the
mPTP) than that observed for isolated myocytes. Further-
more, mitochondrial dysfunction is an earlier event than
the prohypertrophic effect, associated with the alteration of
the electrical function, reinforcing the hypothesis that
leptin-induced mitochondrial dysfunction contributes to
hypertrophy and heart failure as a triggering and early phe-
nomenon during obesity.

6. Limitations of the Study

The demonstration of the role of MAC is missing in our
report. The swelling and collapse of the potential of both
leptin and control mitochondria after hours of perfusion
suggest that the experimental methodology had damaging
affects in addition to the effects of the treatment.
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Figure 5: Mitochondrial swelling induced by calcium. Panels (a), (b), (c), and (d) are plots of the median ± SEM of 4 independent
determinations of mitochondrial swelling of different mitochondrial preparations after 1, 2, 3, and 4 hours of perfusion, respectively.
Reactions were started by the addition of CaCl2, and absorbance was recorded each minute for ten minutes. ∗p < 0 05 (n = 4).
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phosphorylated STAT3 protein content was measured by Western
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Figure 7: Quantification of oxidized lipids in heart homogenates
and isolated mitochondria. Levels of oxidized lipids were
measured by TBARS methodology in (a) homogenates after 1, 2,
4, or 4 hours of perfusion with/without leptin. Bars represent the
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