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Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a
genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 59–untranslated regions (UTRs) of
mRNA has only been investigated for a limited number of genes. Here, the aim is to study genome-wide regulatory
effects of mRNA 59-UTR folding free energies. We performed computations of secondary structures in 59-UTRs and their
folding free energies for all verified genes in S. cerevisiae. We found significant correlations between folding free
energies of 59-UTRs and various transcript features measured in genome-wide studies of yeast. In particular, mRNAs
with weakly folded 59-UTRs have higher translation rates, higher abundances of the corresponding proteins, longer
half-lives, and higher numbers of transcripts, and are upregulated after heat shock. Furthermore, 59-UTRs have
significantly higher folding free energies than other genomic regions and randomized sequences. We also found a
positive correlation between transcript half-life and ribosome occupancy that is more pronounced for short-lived
transcripts, which supports a picture of competition between translation and degradation. Among the genes with
strongly folded 59-UTRs, there is a huge overrepresentation of uncharacterized open reading frames. Based on our
analysis, we conclude that (i) there is a widespread bias for 59-UTRs to be weakly folded, (ii) folding free energies of 59-
UTRs are correlated with mRNA translation and turnover on a genomic scale, and (iii) transcripts with strongly folded
59-UTRs are often rare and hard to find experimentally.
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Introduction

Regulation of gene expression is important for many
cellular processes. Numerous studies have focused on the
transcriptional level to investigate under what conditions a
gene is transcribed and to what extent. These investigations
have led to descriptions of system architectures, in which the
activity of specific transcription factors regulates the activity
of downstream target genes in such a way that the combined
activity results in large developmental or physiological
programs. In recent years, such descriptions have benefited
from DNA microarray technology, which has provided overall
mRNA levels for many systems. However, much less is known
about the system architecture of regulation of gene expres-
sion at the post-transcriptional level, including regulation of
mRNA subcellular localization, stability, and translation rate.

mRNA consists of three parts: a 59–untranslated region
(UTR) beginning with a 7-methyl-guanosine cap, a coding
region, and a 39-UTR ending in a poly(A) tail (Figure 1A).
UTRs of mRNAs are known to be a crucial part of post-
transcriptional regulation [1]. In yeast, the exact lengths of 59-
and 39-UTRs are unknown for most genes. Mignone et al. [1]
estimated the average lengths for yeast as 134 nucleotides (nt)
for 59-UTRs and 237 nt for 39-UTRs. Later, Hurowitz and
Brown [2] performed genome-wide measurements of total
transcript lengths and calculated the average combined 59-
and 39-UTR length to be 260 nt. Cis-acting sequence motifs in
39-UTRs can interact with specific RNA-binding proteins
(RBPs) to direct subcellular localization [3] and stability [4] of
mRNAs. DNA microarrays have also enabled a growing body
of work on global analysis of RBPs that supports the

importance of RBPs in many cellular processes through
post-transcriptional regulation of mRNAs [5–7]. Translation
of the majority of mRNAs depends on cap-dependent
ribosomal scanning of 59-UTRs [8], and this process is
influenced by features of 59-UTRs. For example, ribosomal
scanning is severely hampered by 59-UTRs containing start
codons or secondary structure [9–15].
The purpose of mRNA degradation is 2-fold: to regulate

transcript abundance and to destroy faulty transcripts.
Degradation of mRNA in yeast occurs via 59 to 39 exonu-
cleotic, 39 to 59 exonucleotic, and endonucleotic pathways
[16–19]. Regulation of transcript abundance via the exonu-
cleotic pathways occurs by first shortening the poly(A) tail
followed either by removal of the 59 cap, resulting in rapid 59
to 39 degradation, or by degradation from the 39 end without
prior decapping [18,20]. The dual importance of the cap
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structure, for translation initiation and 59 to 39 mRNA decay,
has led to the hypothesis that there is a competition between
translation and decay for access to the cap [13,20,21].
Transcripts with 59-UTRs that hamper their translation often
encode for proteins that need to be strongly and finely
regulated, such as growth factors, transcription factors, and
proto-oncogenes [14], suggesting that 59-UTRs are sometimes
structured in a way to prevent harmful overproduction of
regulatory proteins. Indeed, some diseases are caused by
mutations in 59-UTRs [22,23]. In agreement with this picture,
proteins involved in the regulation of dynamic cellular
processes such as transcription, signal transduction, cell cycle
control, and metabolism have long UTRs [2].

To our knowledge no one has found genome-wide
associations between secondary structure in 59-UTRs and
mRNA half-life, translation rates, or other transcript features.
For example, Bernstein et al. [24] performed a genome-wide
experiment of mRNA decay in Escherichia coli and found no
association to secondary structure in UTRs. To study the
regulatory effects of secondary structure in UTRs, we
performed genome-wide computations of secondary struc-
tures and their folding free energies in 59-UTRs for 5,888
verified genes in Saccharomyces cerevisiae. The folding free
energy is the difference in free energy between the unfolded
and folded state. For a given mRNA length, a lower folding
free energy corresponds to a more stable secondary structure.

We analyzed associations between folding free energies and
various transcript features including translation and decay
rates. One result of our analysis is that low folding free energy
of 59-UTRs is, on average, associated with low translation
rates and high transcript turnover, in concordance with
previous results for single genes (e.g., [13]). We also found that
59-UTRs on average are more weakly folded than random
sequences with the same dinucleotide frequencies, and than
intergenic, coding, and 39-UTR sequences. Strikingly, genes
with unknown function were enriched among genes with
strongly folded 59-UTRs.

Results

Folding Free Energies of 59-UTRs
To investigate secondary structure in 59-UTRs, we used the

Vienna RNA package [25] to compute secondary structures
and the corresponding free energy changes for folding (DG).
The lower DG is, the more strongly folded is the secondary
structure. Using 59-UTRs of length 50 nt, the average DG was
�4.3 kcal/mol (standard deviation [SD]¼ 2.9 kcal/mol) for the
5,888 open reading frames (ORFs) investigated. The range of
DG was from�18.1 kcal/mol to 0 kcal/mol. The lowest value of
DG, �18.1 kcal/mol, was obtained for the gene YBR296C-A,
whose computed 59-UTR secondary structure is illustrated in
Figure 1B. There were 231 59-UTRs with folding free energies
below �10 kcal/mol. These thermodynamically most stable
structures had on average 12.9 base pairs (SD¼ 2.2), i.e., more
than half of the bases were typically paired. Their average
GC-content was 47% (SD ¼ 7%). The structures were mostly
hairpins similar to Figure 1B with unpaired bases in internal
or bulge loops or at the ends of the sequences, but also
structures containing two hairpins were found. There were
727 59-UTRs with folding energies above �1 kcal/mol. These
59-UTRs formed minimum free energy structures having on
average 2.6 base pairs (SD ¼ 3.0) and their average GC-
content was 29% (SD ¼ 7%).

Folding Free Energies of Other Genomic Regions
Folding free energies were computed for three control

groups, all containing 5,888 sequences of length 50 nt. The
first group consisted of randomly chosen sequences from
intergenic regions and had an average DG of �5.4 kcal/mol
(SD¼ 3.4 kcal/mol). The second group consisted of the first 50
nt of the 39-UTR of each ORF and had an average DG of�4.5
kcal/mol (SD¼ 3.1 kcal/mol). The third group consisted of the
50 nt located after the start codon of each ORF and had an
average DG of �6.3 kcal/mol (SD ¼ 3.2 kcal/mol). The free
energies of the 59-UTRs were significantly higher than those
of the three other groups (39-UTR: p , 33 10�4, intergenic: p
, 2 3 10�70, coding: p , 3 3 10�253; Mann–Whitney U test).
Figure 2A shows cumulative distributions of all free energies
for the four groups.

Folding Free Energies of Randomized Sequences
The free energy of secondary structure in RNA is highly

dependent on nucleotide composition. A base pair stacking
term that depends on dinucleotides contributes to the free
energy. We obtained the free energy contributions for each of
the 16 possible dinucleotides from Xia et al. [26]. We
calculated the dinucleotide frequencies in the four groups
of sequences and used the dinucleotide energy contributions

Figure 1. Structure of Yeast mRNA

(A) The mRNA has a tripartite structure consisting of a 59-UTR, a coding
region, and a 39-UTR. CRE, cis-acting regulatory element; m7G, 7-methyl-
guanosine cap; SS, secondary structure.
(B) The computed minimum free energy secondary structure for the 59-
UTR of the gene YBR296C-A.
DOI: 10.1371/journal.pcbi.0010072.g001
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Synopsis

In cells, proteins are made from messenger RNA copied from genes
in the DNA. The amount of each protein needs to be controlled by
cells. For this purpose, cells use a strategy that includes decompos-
ing RNA and varying the number of proteins made from each RNA.
One part of the RNA molecule is called the 59–untranslated region
(UTR), and it is known that this region can fold into a three-
dimensional structure. For some genes, such structures are
important for protein production. In this article, structures in 59-
UTRs are calculated for all genes in the yeast Saccharomyces
cerevisiae. The authors show that structures in 59-UTRs likely play a
role in RNA decomposition and protein production for many genes
in the genome: RNA molecules with weakly folded 59-UTRs live
relatively longer and produce more proteins. This study provides an
example of how genome-wide computational analysis complements
experimental results.

Regulatory Effects of 59-UTR Folding



as weights in a weighted average of the dinucleotide
frequencies. This calculation gave us a rudimentary measure
for the contribution to the free energies coming from
dinucleotide composition without actually folding the struc-
tures. The weighted dinucleotide composition for the four
groups was�1.74 kcal/mol for 39-UTRs,�1.81 kcal/mol for 59-
UTRs, �1.81 kcal/mol for intergenic sequences, and �1.95
kcal/mol for coding sequences. The dinucleotides with lowest
free energy are GC, CC, GG and CG, so GC-content is an even
simpler measure for the relative contribution of nucleotide
composition to the free energy. The GC-content of the four
groups was 31% for 39-UTRs, 34% for 59-UTRs, 34% for
intergenic sequences, and 40% for coding sequences.
Interestingly, the two measures are in perfect agreement.

We checked whether the folding free energies of 59-UTRs
were not only higher than for the other groups of sequences,
but also different from what was expected from 59-UTR
dinucleotide composition [27]. For this purpose, we used a
dinucleotide shuffling algorithm [28,29]. Native 59-UTR
sequences were shuffled 100 times each, and minimum free
energies were calculated for all randomized sequences. The
mean free energy of the randomized sequences was�4.4 kcal/

mol as compared to�4.3 kcal/mol for the native sequences. Z-
scores were calculated to compare the folding free energy of
each 59-UTR with the free energies of its randomized
sequences. 59-UTRs with positive Z-scores had higher folding
free energies than the average of their randomized sequences
and are therefore thought to have less secondary structure.
We found an overabundance of 59-UTRs with positive Z-
scores (Figure 2B). The mean value of the Z-scores was 0.050
(standard error of the mean [SEM] ¼ 0.013), which is
significantly different from zero (p , 10�4; t-test). Also 58%
of the 5,888 ORFs had a positive Z-score, which is significantly
more than expected by chance (p , 33 10�35).

Folding Free Energies of 59-UTRs and Transcript Features
We investigated the correlation between DG and the

ribosome density measured by Arava et al. [30]. We observed
a small but significant correlation (Figure 3). The Pearson
correlation was 0.12, with an associated p-value of 33 10�16.
Beyer et al. [31] argue that it is preferable to define ribosome
density as the number of ribosomes divided by transcript
length instead of ORF length. They provide a processed
dataset of such ribosome densities, and these densities had a
Pearson correlation of 0.09 (p , 10�10) with DG. Likewise,

Figure 2. Folding Free Energies of 59-UTRs

(A) Cumulative distributions of folding free energies, DG, are shown for 5,888 ORFs for 59-UTRs (50 nt upstream of the ORF; solid line), 39-UTRs (50 nt
downstream of the ORF; dashed-dotted line), coding sequences (50-nt sequences following downstream of the start codon of each ORF; dotted line),
and 5,888 sequences of length 50 nt selected randomly from intergenic regions (dashed line).
(B) Distribution of Z-scores for 59-UTRs of 5,888 ORFs. Each 59-UTR sequence was shuffled 100 times and a Z-score was calculated for each to compare
the folding free energy of the native sequence to the shuffled sequences. A histogram of these Z-scores is shown together with a standard normal
distribution (dashed line).
DOI: 10.1371/journal.pcbi.0010072.g002

Figure 3. Comparison between Ribosome Densities and Folding Free Energies of 59-UTRs

(A) Scatter plot of mRNA ribosome density and folding free energy of the 59-UTR (DG) for 5,888 ORFs.
(B) ORFs were grouped based on the change in free energy (DG). For each energy group, the average ribosome density (6SEM) is shown. From left to
right, the number of ORFs in each energy group used to calculate the average density was 573, 796, 1,214, 1,438, and 1,187.
DOI: 10.1371/journal.pcbi.0010072.g003
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using mRNA half-lives measured by Wang et al. [32], we
observed a small but significant correlation between DG and
mRNA half-lives (Figure 4). The Pearson correlation was 0.10
(p , 3 3 10�10). We also found significant correlations
between DG on the one hand and ribosome occupancy, the
number of ribosomes bound on the transcript, the mRNA
copy number, and protein abundance on the other hand
(Table 1). To avoid potential pitfalls in the assumptions used
to calculate p-values for Pearson correlations, we also
calculated Spearman rank correlations. We observed similar
results for both correlation measures (Table 1). In contrast to
our results for 59-UTRs, we found no significant correlations
between folding free energies of 39-UTRs and transcript
features.

As expected, we observed a large correlation between DG
and GC-content for the 59-UTRs. The Pearson correlation was
0.48 (p, 3310�16). To rule out that our observed correlations
between DG and transcript features were merely a conse-
quence of GC-content, we investigated whether DG was
correlated with the transcript features independently of GC-
content. We regressed the transcript features as a function of
GC-content and free energy in a multivariate model. First,

significance was calculated for the correlation between GC-
content and a transcript feature. Second, significance was
calculated for free energy being correlated to the transcript
features after subtraction of the GC-content effect. For
ribosome density, we obtained p ¼ 5 3 10�4 for GC-content
and p , 5 3 10�14 for free energy. For mRNA half-life, we
obtained p , 10�15 for GC-content and p , 0.004 for free
energy. For the combined protein abundance dataset [31], we
obtained p, 2310�12 for GC-content and p, 0.0002 for free
energy. Similar results were obtained when correcting for
weighted dinucleotide composition instead of for GC-content.

Fast and Slowly Decaying Genes
In order to check whether the relations between various

transcript features depended on the half-life of the mRNA,
we designated the 1,013 genes with a half-life below 13 min as
fast decaying, and the 1,058 genes with a half-life above 33
min as slowly decaying. These cutoffs were chosen to get
closest to, and above, 1,000 genes. The only correlations
between DG and any of the other nine transcript features in
Table 1 that changed significantly (p , 0.001) were with
half-life and heat shock: in the fast decaying group of genes,
DG and half-life had a correlation of �0.06, which is
significantly different from their correlation of 0.10 among
all genes (p, 8310�7). Similarly in the fast decaying group of
genes, DG and heat shock had a correlation of�0.01, which is
significantly different from their correlation of 0.10 among
all genes (p , 63 10�4).

Correlation between Decay and Translation
It has been argued that translational efficiency of a

transcript is a determinant of mRNA half-life: decreased
translation leads to decreased half-life. Evidence for this
model has come from yeast strains either mutated in
translation initiation factors [33] or with translation of
individual mRNAs inhibited [13]. To see whether such an
effect is present globally in yeast without such modifications,
we calculated the correlations between half-life on the one
hand and ribosome density and ribosome occupancy on the
other hand. We found a small, but significant, correlation
among all genes. However, for the fast decaying genes the
correlations were much stronger, especially between half-life
and ribosome occupancy, for which the correlation was 0.24
(Figure 5).

Figure 4. Comparison between mRNA Half-Lives and Folding Free Energies of 59-UTRs

(A) Scatter plot of mRNA half-life and folding free energy of the 59-UTR (DG) for 5,888 ORFs.
(B) ORFs were grouped based on the folding free energy (DG). For each energy group, the average mRNA half-life (6SEM) is shown. From left to right,
the number of ORFs in each energy group used to calculate the average density was 467, 657, 982, 1,169, and 983.
DOI: 10.1371/journal.pcbi.0010072.g004

Table 1. Correlations between Secondary Structure in 59-UTRs
and Transcript Features

DG versus Pearson

Correlation

Spearman

Correlation

Genesa

Ribosome density [30] 0.12 (p , 3 3 10�16) 0.13 (p , 3 3 10�16) 5,208

Ribosome density [31] 0.09 (p , 10�10) 0.13 (p , 3 3 10�16) 5,576

Ribosome occupancy [30] 0.12 (p , 3 3 10�16) 0.12 (p , 3 3 10�16) 5,208

Number of ribosomes [30] 0.07 (p , 7 3 10�8) 0.07 (p , 2 3 10�6) 5,208

Half-life [32] 0.10 (p , 3 3 10�10) 0.08 (p , 4 3 10�8) 4,258

Decay ratio [39] 0.05 (p , 7 3 10�4) 0.05 (p , 5 3 10�4) 5,530

Heat shock (5 min) [46] 0.10 (p , 9 3 10�13) 0.08 (p , 5 3 10�8) 4,849

mRNA copy number [30] 0.11 (p , 5 3 10�16) 0.11 (p , 8 3 10�16) 5,158

Protein abundance [47] 0.08 (p , 3 3 10�4) 0.12 (p , 2 3 10�8) 2,038

Protein abundance [48] 0.10 (p , 3 3 10�10) 0.15 (p , 3 3 10�16) 3,840

Protein abundance [31] 0.10 (p , 5 3 10�11) 0.16 (p , 3 3 10�16) 4,212

ORF length �0.01 (p ¼ 0.50) �0.05 (p , 2 3 10�4) 5,888

aThe number of ORFs used in the calculation of the correlations.

DOI: 10.1371/journal.pcbi.0010072.t001
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Gene Ontology Analysis
To see whether folding free energies of 59-UTRs were

associated with functional annotations, we mapped the 5,888
genes to 3,678 Gene Ontology (GO) categories [34]. The genes
were ranked according to DG in both increasing and
decreasing order, and a Wilcoxon rank sum test was
employed for each GO category [35]. The significant
categories, using a very stringent p-value cutoff of 10�8,
corresponding to a Bonferroni corrected cutoff of 4 3 10�5,
are listed in Table 2. Among genes with strongly folded 59-
UTRs, three categories were significant and no other
categories were close to being this significant. Remarkably,
these three categories were ‘‘molecular function unknown,’’
‘‘biological process unknown,’’ and ‘‘cellular component
unknown.’’ Among genes with weakly folded 59-UTRs, 12
categories were significantly overrepresented. Chief among
these were categories related to retrotransposons.

RNA-Binding Proteins
Affinity tagging of RBPs followed by microarray hybrid-

izations has been used to obtain genome-wide lists of

bound transcripts. We obtained the lists of bound tran-
scripts for the RBPs Yra1, Mex67 [6], and for five members
of the Puf family [7]. Furthermore, we identified all the
genes whose 39-UTR contained the consensus motifs for
Puf3p, Puf4p, and Puf5p. For each of these ten gene sets,
we examined whether there was a significant difference in
the number of fast decaying genes relative to slowly
decaying genes, and whether there was a significant differ-
ence in the number of genes having strongly folded 59-
UTRs relative to genes with weakly folded 59-UTRs (Table
3). The most significant associations were that transcripts
bound by Puf3p, Puf4p, and Puf5p were fast decaying. The
Puf3p, Puf4p, and Puf5p motifs confirm this picture. The
most significant associations with folding free energy were
that Mex67 and Yra1 preferentially bind transcripts with
weakly folded 59-UTRs.

Figure 5. Correlations between Decay and Translation Rates

Pearson correlations together with corresponding p-values are shown for mRNA half-life versus (A) ribosome density and (B) ribosome occupancy. ORFs
were, depending onmRNA half-life, grouped into all ORFs, 1,058 slowly decaying ORFs with t1/2� 33min, and 1,013 fast decaying ORFs with t1/2� 13min.
DOI: 10.1371/journal.pcbi.0010072.g005

Table 2. GO Terms Overrepresented among Genes with Strongly
and Weakly Folded 59-UTRs

Category GO Term p-Value Genesa

Strongly folded

59-UTRs

Molecular function unknown 7 3 10�10 2,213

Biological process unknown 10�9 1,615

Cellular component unknown 2 3 10�9 892

Weakly folded

59-UTRs

Retrotransposon nucleocapsid 10�18 94

Ty3 element transposition 10�18 95

Ty element transposition 10�15 108

Apoptosome 3 3 10�14 368

Spore wall 2 3 10�12 94

Cell septum edging 2 3 10�12 94

Extracellular matrix (sensu Magnoliophyta) 2 3 10�12 94

BRE binding 3 3 10�11 283

Localization 3 3 10�10 4,218

Cell tip 3 3 10�9 4,968

RNA-directed DNA polymerase activity 3 3 10�9 51

Silicate metabolism 8 3 10�9 2,896

aNumber of genes in the GO category.

DOI: 10.1371/journal.pcbi.0010072.t002

Table 3. Number of RBP Targets and Sequence Motifs Found in
All mRNAs, mRNAs with Fast and Slow Decay Rates, and mRNAs
with Strongly and Weakly Folded 59-UTRs

RBP or

Motif

Total Fasta Slowb p-Valuec Stronglyd Weaklye p-Valuef

Puf1p 51 9 9 1 4 13 0.05

Puf2p 167 35 26 0.2 19 40 0.008

Puf3p 220 51 21 2 3 10�4 47 29 0.03

Puf3p

motif

193 42 12 10�5 38 31 0.4

Puf4p 205 98 10 ,3 3 10�16 27 38 0.2

Puf4p

motif

206 75 9 2 3 10�15 19 37 0.02

Puf5p 224 61 13 2 3 10�9 46 30 0.06

Puf5p

motif

77 20 5 0.002 17 12 0.4

Mex67 1,140 184 198 0.8 154 209 0.003

Yra1 1,002 151 203 0.01 139 196 0.002

aOf 1,013 ORFs with t1/2 � 13 min.
bOf 1,058 ORFs with t1/2 � 33 min.
cThe probability that the difference between the fast and slow gene sets is by chance (Fisher’s exact test).
dOf 1,015 ORFs with DG � �7.1.
eOf 1,035 ORFs with DG � �1.4.
fThe probability that the difference between the gene sets with strongly and weakly folded 59-UTRs is by chance

(Fisher’s exact test).

DOI: 10.1371/journal.pcbi.0010072.t003
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Comparison with Longer Upstream Regions
The 59-UTRs of yeast genes vary in length. In this study, we

used the 50 nt upstream of the start codon as a representa-
tion of the 59-UTR. Since 50 nt is shorter than many 59-UTRs,
we also used 100- and 200-nt 59-UTRs for comparison. The
correlation between DG and ribosome density decreases for
longer regions, but is still significant for 100 nt (Table 4).
Similar behavior was observed for other transcript features.

Discussion

We carried out genome-wide computations of secondary
structures in 59-UTRs of mRNA in yeast, and correlated 59-
UTR folding free energy with various other transcript features.
We chose somewhat arbitrarily to fold sequences of length 50
nt upstream of the coding start, because these sequences are
almost certainly inside the 59-UTR. We also folded 100- and
200-nt sequences, and had similar but weaker results (Table 4).
Folding of RNA is somewhat local in sequence: when folding
100- or 200-nt upstream sequences, the last 50 nt were typically
computed to fold into the same structure as when the 50-nt
upstream sequences were folded. Translation has been shown
to be most sensitive to secondary structure close to the 59 end
of mRNA [12]. Hence, we think that the weaker results
obtained for longer upstream sequences reflect an increase
of sequence spanning genomic DNA not being transcribed,
and not that secondary structure close to the translation start
is most important for the transcript features we have
investigated. We used 59-UTRs of fixed length to avoid
comparing free energies for sequences of different lengths.
Bernstein et al. [24] used predicted UTRs for each gene in E.
coli and found no association between secondary structure in
UTRs and mRNA half-life. Our different findings may be due
to differences between pro- and eukaryotes, or difficulties in
comparing UTRs of different length.

To compare 59-UTRs with other genomic regions, 50-nt
sequences from intergenic regions, coding regions, and 39-
UTRs were also folded. These three sets of sequences had
significantly lower free energies than the 59-UTR sequences (see
Figure 2A). The folding free energy of RNA depends on both
nucleotide composition and the order of the nucleotides. The
nucleotide composition, quantified both by GC-content and
weighted dinucleotide composition, was similar in 59-UTRs and
intergenic regions, indicating that the difference in free
energies between these groups is due to nucleotide order.
Indeed, the 59-UTRs had higher folding free energies than
random sequences with the same dinucleotide composition
(Figure 2B). In contrast, yeast coding regions have lower folding
energies than randomized sequences preserving the encoded
protein, the codon usage, and the dinucleotide composition
[36]. This opposite behavior is in agreement with the huge

difference in folding free energies between coding regions and
59-UTRs (Figure 2A), even thoughGC-content probably ismore
important for this difference. Our results indicate that there
has been evolutionary selection for 59-UTRs to beweakly folded
and suggest that folding free energy might be used as one
probabilistic component of a gene prediction program.
In line with our observation that 59-UTRs tend to be weakly

folded is our finding that uncharacterized ORFs are over-
represented among the genes with strongly folded 59-UTRs.
Assuming that uncharacterized genes typically are expressed
at low levels or under rare conditions, or even are
pseudogenes, this finding hints at a larger selective pressure
for absence of secondary structure for commonly or highly
expressed genes. Confirming this picture is our finding that
59-UTR folding free energy is significantly positively corre-
lated with mRNA copy number and protein abundance (see
Table 1). Since we only investigated verified genes, we could
look into the source of the verification of the genes with
strongly folded 59-UTRs. The 59-UTR of the gene YBR296C-A
(see Figure 1B) has the secondary structure with the lowest
free energy of all genes, and is annotated as unknown in GO.
Remarkably, this gene has only one literature reference, in
which Kumar et al. [37] describe an approach for finding
overlooked genes in yeast. Of the 137 new genes reported by
Kumar et al., 41 are annotated as verified in the Saccharomyces
Genome Database (SGD). Ten of these 41 genes have a free
energy below �10 kcal/mol, which is significantly more genes
than expected by chance (p ¼ 43 10�6, Fisher’s exact test).
The three most significant GO categories among the genes

with weakly folded 59-UTRs were related to Ty element
retrotransposons (see Table 2). Ty element retrotransposons
are stretches of DNA that replicate and move in the genome
through RNA intermediates [38]. The Ty elements contain
various genes in their sequences, e.g., proteases, integrases, and
reverse transcriptases. The fact that they haveweakly folded 59-
UTRs suggests that folding of their RNA is detrimental to their
function or integration in the genome. Interestingly, Ty
elements showed up in a study of RNA half-life where different
methods of transcriptional inhibitionwere compared [39]. The
RNA transcripts whose stability differed most between rpb1–1
inhibition on the one hand and Thiolutin, 1,10-phenanthro-
line, and 6-azauracil on the other hand were predominantly Ty
elements. It may be worth investigating whether there is a
connection between this difference in transcript stability and
the lack of 59-UTR secondary structure.
We found that 59-UTR folding free energy was significantly

positively correlated with both translational activity and
mRNA half-life (see Table 1). These correlations were still
significant after correction for GC-content, indicating that
the correlations are not simply a secondary effect caused by
nucleotide frequencies. Parker and colleagues showed that
the insertion of secondary structures into the 59-UTR of
PGK1 yeast mRNA inhibited translation and stimulated decay
of PGK1 [13]. Together, these findings suggest a widespread
use of 59-UTR secondary structure in post-transcriptional
regulation. Our correlations may not be caused by any
biochemical mechanism, e.g., transcripts of one evolutionary
origin could have both strongly folded 59-UTRs and low
translation rates, whereas transcripts of another evolutionary
origin could have weakly folded 59-UTRs and high translation
rates. Nevertheless, we believe that the correlations do reflect
more direct connections. Our findings may be explained by

Table 4. Pearson Correlations between Ribosome Density and
DG in 59-UTRs of Length 50, 100, and 200 nt

Length of 59-UTR (nt) Correlation p-Value

50 0.12 ,3 3 10�16

100 0.08 ,4 3 10�9

200 0.02 0.15

DOI: 10.1371/journal.pcbi.0010072.t004
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an inhibitory effect of 59-UTR secondary structure on
translation initiation combined with competition between
translation and decay. However, more direct biochemical
pathways preferentially degrading mRNA with 59-UTR
secondary structure might also exist. Early support for the
inhibitory effect of 59-UTR secondary structure on trans-
lation came from insertion of hairpin loops into 59-UTRs
[9,10]. Later studies have shown connections between mRNA
59 secondary structure and proteins important for translation
such as eIF4A [15]. Competition between translation and
decay has been proposed because both may require cap
access [20,33]. Moreover, during translation the mRNA is
circularized through interactions between cap-binding trans-
lation initiation factors and the poly(A)-binding protein
(PABP). This conformation presumably protects mRNA from
degradation by preventing access to both the cap and the
poly(A) tail, suggesting that also the poly(A) tail is important
for competition [17]. We expected that such competition
would be more easily seen for short-lived transcripts because
degradation takes up a larger part of their lives. Indeed, our
global analysis revealed that transcript half-life is positively
correlated with both ribosome density and ribosome occu-
pancy, in particular for short-lived transcripts (see Figure 5).

A major mediator of heat shock response is mRNA decay
[40], and the mRNA decay profile is similar to the heat
response [39]. In line with these observations, we found a
positive correlation between 59-UTR free energy and mRNA
response to heat shock (Table 1), i.e., transcripts with weakly
folded 59-UTRs are, in addition to being relatively long-lived,
relatively upregulated after a heat shock. Given that tran-
scripts that are upregulated by heat shock have weakly folded
59-UTRs, it is expected that they would be translated at
relatively high rates. Indeed, the correlation between ribo-
some occupancy and relative upregulation 10 min after heat
shock was 0.23 (p , 23 10�60; similar for 5 min). Of interest,
the heat shock mRNA Hsp90 in Drosophila has extensive
secondary structure in its 59-UTR. Hsp90 translation is
inefficient at normal growth temperature, and is activated
by heat shock, perhaps by thermal destabilization of the
secondary structure in the 59-UTR [41]. It may be worthwhile
to perform genome-wide protein abundance experiments of
heat shock response to investigate whether preferential heat
shock translation is a common mechanism.

We assessed whether transcripts associated with RBPs, or
with sequence motifs associated with these RBPs in their 39-
UTRs, were over- or underrepresented among fast decaying
transcripts or among transcripts with strongly folded 59-UTRs.
Puf proteins are known to enhance mRNA turnover or repress
translation [42]. We found targets of Puf3p, Puf4p, and Puf5p
proteins to be significantly associated with fast decay, extend-
ing an earlier study [43]. Perhaps of interest, we note that the
three Puf proteins for which Gerber et al. identified sequence
motifs [7] were associated with fast decaying transcripts, while
the remaining two Puf proteins, as well as Mex67 and Yra1,
instead tended to be associated with weakly folded 59-UTRs.

To summarize, we found that (i) 59-UTRs have higher folding
free energies than other genomic regions and than expected
from their nucleotide composition, (ii) secondary structures in
59-UTRs likely play a role in mRNA translation and turnover
on a genomic scale, and (iii) genes with strongly folded 59-
UTRs are generally rarer, harder to find experimentally, and
less annotated. It is important to keep in mind that the highly

significant correlations we have found are small, showing that
folding of 59-UTRs is, as expected, only one aspect of post-
transcriptional regulation. However, the correlations may be
larger in subgroups of mRNAs, such as mRNAs targeted by
individual decay pathways [44] and specific RBPs [45]. An
example of a larger correlation in a subgroup is our
observation that translational activity and mRNA decay are
highly correlated for mRNAs with short half-lives.

Materials and Methods

Untranslated regions. The exact 59- and 39-UTR lengths are
unknown for most yeast genes. Mignone et al. [1] estimated the
average lengths for yeast as 134 nt for 59-UTRs and 237 nt for 39-UTRs.
With these numbers in mind, we retrieved 50, 100, and 200 nt of
predicted 59-UTRs and 237 nt of predicted 39-UTRs from SGD for the
5,888 ORFs annotated as verified in SGD. As three additional control
groups of 50-nt sequences, we retrieved nt 4–53 downstream (the first
50 nt following the start codon) for each of the 5,888 ORFs, the first 50
nt of the 39-UTR region for each of the 5,888 ORFs, and 5,888
randomly chosen 50-nt sequences from intergenic regions from SGD.

Folding of RNA secondary structures. We used the RNAfold
program in the Vienna RNA package [25] with default values for
parameters (T ¼ 37 8C) to compute secondary structures from RNA
sequences. For each sequence, we used the free energy of the
minimum free energy structure (the most negative DG) as a measure
for secondary structure formation. For a given sequence, there may
be other structures with similar DG, but we are interested in the
possible free energy change in folding and not the secondary
structure itself. A low DG corresponds to a strongly folded UTR,
while a high DG corresponds to a weakly folded UTR. To avoid any
pitfalls with using the free energy of the most strongly folded
structure for each sequence, we also performed our analysis using the
ensemble free energies [25], and none of the conclusions presented in
this study changed. In fact, the correlations were typically somewhat
more significant using ensemble averages. The free energies for all
5,888 genes are available in Dataset S1.

Transcript feature datasets. Translation profilesmeasured byArava
et al. [30] were downloaded from http://genome-www.stanford.edu/
yeast_translation/. From this dataset, the number of bound ribosomes,
the ribosome density (number of ribosomes per unit ORF length), and
the ribosome occupancy (the fraction of the transcripts engaged in
translation) were extracted for 5,700 genes, together with the mRNA
copy number for 5,643 genes. Half-lives for 4,687 genes measured by
Wang et al. [32] were downloaded from http://genome-www.stanford.
edu/turnover/. A second dataset of mRNAhalf-lives for 6,092 genes [39]
was obtained from http://hugheslab.med.utoronto.ca/Grigull/. For this
dataset, the decay ratios 5 min after temperature shift of the rpb1–1
strain were used. Changes in transcript abundance in cells responding
to heat shock for 5,259 genes measured by Gasch et al. [46] were
downloaded from http://www-genome.stanford.edu/yeast_stress/. A
dataset containing protein abundance information for 2,044 genes,
constructed by Greenbaum et al. [47] by merging publicly available
two-dimensional electrophoresis and MudPit data, was downloaded
from http://bioinfo.mbb.yale.edu/expression/prot-v-mrna. Another da-
taset containing protein abundance information for 1,669 genes was
obtained from the experiment by Ghaemmaghami et al. [48]. A merger
of these two protein abundance datasets was obtained fromBeyer et al.
[31], along with a set of ribosome densities normalized by transcript
length instead of ORF length.

Dinucleotide shuffling. Each native 59-UTR sequence was shuffled
100 times keeping the dinucleotide frequencies constant using a
publicly available implementation [28] of an algorithm developed by
Altschul and Erickson [29]. For each 59-UTR, the mean and the SD of
the free energies of its randomized sequences were calculated. A Z-
score was defined for each 59-UTR as the free energy of the native
sequence minus the mean of its randomized sequences divided by the
SD of its randomized sequences [49].

Statistical analysis. Pearson correlations, Spearman rank correla-
tions, Fisher’s exact tests on 23 2 contingency tables, Mann–Whitney
U tests, t-tests, and corresponding p-values were calculated using the
statistics package R [50]. For Pearson correlations, p-values were
calculated as the probability of obtaining a better correlation by
chance if the two vectors were drawn independently from a Gaussian
distribution. The multivariate linear model was done in R as well, and
p-values were obtained with the ANOVA test of a linear model. All p-
values were two-sided.

PLoS Computational Biology | www.ploscompbiol.org December 2005 | Volume 1 | Issue 7 | e720591

Regulatory Effects of 59-UTR Folding



GO analysis. The 5,888 genes were mapped to 3,678 GO categories
[34] using annotations from SGD. The genes were ranked according
to DG in both increasing and decreasing order, separately, and a
Wilcoxon rank sum test was employed for each GO category using
Catmap [35]. Catmap outputs p-values calculated as the probability
that a random ordering of the genes produces a lower, or equally low,
Wilcoxon rank sum as the ordering investigated. The p-values were
multiplied with the number of categories (3,678) to obtain Bonferroni
corrected p-values.

Supporting Information

Dataset S1. Calculated Folding Free Energies for All 5,888 Genes

Found at DOI: 10.1371/journal.pcbi.0010072.sd001 (487 KB TDS).
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