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LIM domain proteins Pinch1/2 regulate chondrogenesis and
bone mass in mice
Yiming Lei1, Xuekun Fu1, Pengyu Li1, Sixiong Lin1,2, Qinnan Yan1, Yumei Lai3, Xin Liu1, Yishu Wang1, Xiaochun Bai 4, Chuanju Liu5,6,
Di Chen7, Xuenong Zou2, Xu Cao8, Huiling Cao1 and Guozhi Xiao1

The LIM domain-containing proteins Pinch1/2 regulate integrin activation and cell–extracellular matrix interaction and adhesion.
Here, we report that deleting Pinch1 in limb mesenchymal stem cells (MSCs) and Pinch2 globally (double knockout; dKO) in mice
causes severe chondrodysplasia, while single mutant mice do not display marked defects. Pinch deletion decreases chondrocyte
proliferation, accelerates cell differentiation and disrupts column formation. Pinch loss drastically reduces Smad2/3 protein
expression in proliferative zone (PZ) chondrocytes and increases Runx2 and Col10a1 expression in both PZ and hypertrophic zone
(HZ) chondrocytes. Pinch loss increases sclerostin and Rankl expression in HZ chondrocytes, reduces bone formation, and increases
bone resorption, leading to low bone mass. In vitro studies revealed that Pinch1 and Smad2/3 colocalize in the nuclei of
chondrocytes. Through its C-terminal region, Pinch1 interacts with Smad2/3 proteins. Pinch loss increases Smad2/3 ubiquitination
and degradation in primary bone marrow stromal cells (BMSCs). Pinch loss reduces TGF-β-induced Smad2/3 phosphorylation and
nuclear localization in primary BMSCs. Interestingly, compared to those from single mutant mice, BMSCs from dKO mice express
dramatically lower protein levels of β-catenin and Yap1/Taz and display reduced osteogenic but increased adipogenic
differentiation capacity. Finally, ablating Pinch1 in chondrocytes and Pinch2 globally causes severe osteopenia with subtle limb
shortening. Collectively, our findings demonstrate critical roles for Pinch1/2 and a functional redundancy of both factors in the
control of chondrogenesis and bone mass through distinct mechanisms.
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INTRODUCTION
In vertebrates, the skeleton is formed through intramembranous
and endochondral ossification.1,2 The former forms the skull vault
and part of the clavicle directly through condensation and
differentiation of mesenchymal stem cells (MSCs) into osteopro-
genitors, osteoblasts, and, terminally, osteocytes, while the latter
forms the majority of skeletal elements, including all long bones
and vertebrae. During endochondral ossification, a cartilage anlage
is initially formed through a process that involves MSC condensa-
tion, chondrocyte proliferation, differentiation, hypertrophy, and
apoptosis. The anlage is eventually digested and replaced by bone
in the adjacent metaphysis; this process involves new blood vessel
invasion, osteoclast differentiation, digestion of the calcified
cartilage, osteoblastogenesis from perichondrial cells, and bone
formation.1–3 Endochondral ossification is critical for the long-
itudinal growth of the skeleton. Abnormal endochondral ossifica-
tion causes chondrodysplasia and dwarfism.
A number of factors are required for proper control of

chondrogenesis.2,4 Among these factors, Sox9, a transcription
factor of the sex-determining region Y (SRY)-related high mobility

group box family of proteins,5,6 acts as a major regulator of
chondrogenesis by promoting MSC condensation and chondro-
cyte formation and proliferation and inhibiting chondrocyte
differentiation and hypertrophy.7–14 In addition to acting as a
master regulator of osteoblast and bone formation,15–18 Runx2
directly activates the transcription of the collagen type X alpha 1
chain (Col10a1) gene and promotes chondrocyte differentiation
and hypertrophy.19–23 Transforming growth factor-β (TGF-β) is
critical for chondrocyte function and skeletogenesis24–30 and
represses chondrocyte differentiation and hypertrophy.31,32 TGF-β
exerts its function primarily through binding to its receptors (TβRI
and TβRII), which causes the transactivation of TβRI by TβRII and
activation and nuclear translocation of R-Smad (Smad2/3).
Interestingly, TGF-β suppresses Runx2 expression and activity.33

While the importance of the above factors in the control of
skeletogenesis is well documented in the literature, the key signals
that modulate their expression and function are incompletely
defined.
Mammalian cells have two functional Pinch proteins, Pinch1

(encoded by Lims1) and Pinch2 (encoded by Lims2). Pinch1/2 are
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five LIM domain-containing proteins that play important roles in
integrin activation, cytoskeletal organization, cell–extracellular
matrix adhesion, migration, proliferation, differentiation, and
survival.34–39 Both Pinch1 and Pinch2 are ubiquitously expressed
in most mammalian tissues and organs.38 Global deletion of
Pinch1 in mice is lethal,35 while Pinch2 knockout mice display no
apparent phenotypes.37,40 Pinch proteins exert their functions in
part by forming distinct functional protein–protein complexes,
including the ILK–Pinch–Parvin (IPP), Pinch-Nck2, and Pinch-Rsu1
complexes.36,38,41–44 The IPP complex regulates cell contractility
and cytoskeletal dynamics in mice.39,45–47 Previous studies on
Pinch proteins have primarily focused on their roles in cancers,
such as tumor cell growth, apoptosis, progression, invasion, and
radio- and chemoresistance.37,38,48–51 However, the roles of Pinch
proteins in skeletogenesis have not been established.
The aim of this study was to investigate whether Pinch1/2 play

roles in skeletogenesis and, if so, to determine the underlying
mechanisms. We evaluated the effects of deleting Pinch1 in limb
MSCs using Prx1-Cre mice or in chondrocytes using Col2a1-Cre
mice and/or deleting Pinch2 globally in mice. Through compre-
hensive analyses of cells and tissues from multiple genetic mouse
models, we established critical roles for Pinch1/2 and a functional
redundancy of both factors in the control of chondrogenesis and
bone mass through distinct mechanisms.

RESULTS
Double knockout (dKO), but not single mutant, mice display
dwarfism and severe osteopenia
To investigate the role of Pinch1/2 in skeletogenesis, we deleted
Pinch1 expression in limb MSCs using Prx1-Cre transgenic mice
and generated mice with Pinch2 global deletion (Pinch1Prx1;
Pinch2−/− mice, referred to as dKO mice hereafter). The Prx1-Cre,
Pinch1Prx1, Pinch2−/−, and dKO mice were all viable at birth and
born at the expected Mendelian ratio. Body size, weight, and
length were not significantly different among Prx1-Cre, Pinch1Prx1,
and Pinch2−/− mice (Fig. 1a–c). In contrast, dKO mice developed
growth retardation after birth, exhibiting lower body weights than
Prx1-Cre, Pinch1Prx1, or Pinch2−/− mice (Fig. 1a, b). The majority of
dKO mice died before 10 weeks of age of undefined cause(s)
(Fig. 1c). Alcian blue and alizarin red double staining of
P0 skeletons revealed that the dKO mice had markedly smaller
skeletons than Prx1-Cre, Pinch1Prx1, and Pinch2−/− mice (Fig. 1d)
and exhibited bifurcation of the sternum (Fig. 1e). At P0, dKO mice
displayed a larger unmineralized fontanel than control mice (Fig.
1f), suggesting that intramembranous ossification was also
affected in dKO mice. Alcian blue/hematoxylin/Orange G staining
of humeral sections from E18.5 and P0 mice showed that while the
primary ossification center (POC) was formed in both the control
and dKO mice, the length of POC was markedly shorter in dKO
mice than in control mice (Fig. 1g). Hematoxylin and eosin (H/E)
staining of humeral sections from E18.5 and P0 control and dKO
mice showed that cellularity was markedly lower in the dKO
growth plate than in the control growth plate (Fig. 1h).
Furthermore, Pinch loss disrupted chondrocyte column formation
at E18.5 and P0 (Fig. 1h), delayed the formation of the secondary
ossification center (SOC) in the tibiae (Fig. 1i), and increased the
length of the proliferative zone (PZ) without markedly affecting
the length of the hypertrophic zone (HZ) in the tibial growth plate
(Fig. 1j, k).
Microcomputed tomography (μCT) analysis of the distal femurs

of 6-week-old male mice revealed that the bone mineral density
(BMD) and bone volume fraction (BV/TV) of dKO mice were
dramatically lower than those of age- and sex-matched Prx1-Cre
and single mutant (Pinch1Prx1 and Pinch2−/−) mice (Fig. 2a–c). The
trabecular number (Tb.N) was higher (Fig. 2d), while the trabecular
separation (Tb.Sp) was lower (Fig. 2e) in dKO mice than in control
mice. The trabecular thickness (Tb.Th) and cortical thickness (Cort.

Th) were slightly higher in the dKO mice than in the control mice,
but the differences did not achieve statistical significance (Fig. 2f,
g). Female dKO mice displayed lower body weights and body
lengths and less severe osteopenia than sex-matched control mice
(Supplementary Fig. 1a–e).

Pinch loss reduces chondrocyte proliferation and cellularity and
increases hypertrophic chondrocyte apoptosis, resulting in
shortened and broadened limbs
Because neither Pinch1Prx1 nor Pinch2−/− mice displayed marked
skeletal phenotypes, we next focused our investigation on
analyzing the phenotypes of dKO mice using Prx1-Cre mice as
controls. dKO mice displayed dramatically shorter and broader
limbs than Prx1-Cre mice (Fig. 3a, b). IHC staining of tibial sections
using an antibody against Ki67, a specific nuclear marker of cell
proliferation, showed a drastic reduction in Ki67-positive chon-
drocytes in dKO mice compared to control mice (Fig. 3c, d). The
expression of active caspase-3, an indicator of apoptosis, was
markedly higher in HZ chondrocytes in dKO mice than in control
mice (Fig. 3c). Pinch loss decreased the cellularity of the PZ in the
tibial growth plate (Fig. 3e).

Pinch loss downregulates Smad2/3 in PZ chondrocytes and
upregulates Runx2 and Col10a1 in PZ and HZ chondrocytes
We performed IHC staining of tibial sections from mice of the two
genotypes and found that the protein expression of Smad2/3 was
dramatically lower in PZ chondrocytes in dKO mice than in control
mice (Fig. 4a, b). The reduction in Smad2/3 expression in dKO mice
was specific to PZ chondrocytes, as the expression of Smad2/3 in
HZ chondrocytes and subchondral bone was not lower in dKO
mice than in control mice.
Col10a1 is normally expressed at very low levels in PZ

chondrocytes, while its expression is relatively higher in HZ
chondrocytes. Consistently, we found that Col10a1 was barely
detectable in PZ chondrocytes and strongly detected in HZ
chondrocytes in the tibial growth plate of control mice (Fig. 4c, d).
Strikingly, Col10a1 was expressed at a high level in the PZ
chondrocytes of dKO mice (Fig. 4c, d). Runx2 is a direct upstream
transcriptional activator of Col10a1,21 and chondrocyte hypertro-
phy is mainly regulated by Runx2.52 We found that Runx2 was
dramatically upregulated in PZ chondrocytes in the tibial growth
plates of dKO mice compared to those of control mice (Fig. 4e, f).
A number of Col10a1- and Runx2-expressing hypertrophic
chondrocytes were observed in the growth plates of dKO mice
close to the SOC (Fig. 4c, e). Notably, the expression of Runx2 was
also higher in HZ chondrocytes in the tibial growth plates of dKO
mice than in the tibial growth plates of control mice (Fig. 4e).

Pinch1 and Smad2/3 interact with each other and colocalize in the
nuclei of ATDC5 cells
We performed confocal microscopy analysis and found that Pinch1
and Smad2/3 colocalized in the nuclei of ATDC5 chondrocyte-like
cells (Fig. 5a). Immunoprecipitation (IP) assays using whole-cell
extracts from COS-7 cells overexpressing Pinch1 (Fig. 5b) or from
ATDC5 cells (Fig. 5c) revealed that Pinch1 interacted with Smad2/3
in both cell types. Deletion of the aa 1–121 region, which contains
LIMS domains 1 and 2, or the aa 1–184 region, which contains LIMS
domains 1–3, from Pinch1 did not abolish its interaction with
Smad2/3 (Fig. 5d), suggesting that the C-terminal region of Pinch1,
which is composed primarily of LIM domains 4 and 5, mediates the
interaction between the two factors.

Pinch1 loss increases Smad2/3 ubiquitination and degradation
and decreases TGF-β-induced Smad2/3 phosphorylation and
nuclear localization
We performed cycloheximide experiments in primary bone
marrow stromal cells (BMSCs) from Pinch2 KO mice with or
without Pinch1 siRNA knockdown. The results showed that Pinch
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loss accelerated the degradation of Smad2/3 proteins in primary
BMSCs (Fig. 5e, f). Pinch loss in these cells increased the level of
Smad2/3 ubiquitination (Fig. 5g, h). Immunofluorescence (IF)
staining of primary BMSCs showed that TGF-β1 rapidly and
dramatically increased Smad2/3 nuclear localization (Fig. 5i, j),
which was markedly decreased by Pinch loss (Fig. 5i, j).
Finally, Pinch loss significantly reduced TGF-β-induced Smad2/3

phosphorylation in BMSCs (Fig. 5k, l).

Pinch loss upregulates sclerostin in HZ chondrocytes and reduces
bone formation
We explored the potential mechanism(s) through which Pinch loss
causes osteopenia in dKO. The results of the calcein double
labeling experiments revealed that the mineralization apposition
rate (MAR) and bone formation rate (BFR) of the femoral
diaphyseal cortical bones and metaphyseal cancellous bones
were significantly lower in dKO mice than in control mice
(Fig. 6a–d). Pinch loss did not alter the mineralizing surface per
bone surface (MS/BS) (Fig. 6e). Consistent with the reductions in
the MAR and BFR, the level of serum procollagen type 1 amino-
terminal propeptide (P1NP), a bona fide bone formation marker,
was significantly lower in 6-week-old male dKO mice than in
control mice (Fig. 6f). Sclerostin is a secreted inhibitor of Wnt/
β-catenin signaling and bone formation.53–55 We found that its
expression was upregulated in the HZ chondrocytes of dKO mice
compared to those of control mice (Fig. 6g).

Pinch loss decreases osteoblast formation from bone marrow cells
To determine whether Pinch loss in limb MSCs impacts bone
marrow cells, we performed a colony forming unit-fibroblast (CFU-F)
assay using primary bone marrow cells from mice of the two
genotypes. The results showed that while CFU-F colonies were

formed in both groups, the CFU-F colonies were strikingly smaller in
dKO cultures than in control cultures (Fig. 7a). Furthermore, Pinch
loss reduced the formation of colony forming unit-osteoblasts (CFU-
OBs) (i.e., osteoprogenitors) in the bone marrow cell cultures
(Fig. 7b), and dKO BMSCs displayed defective proliferation (Fig. 7c).

Primary BMSCs from dKO mice display decreased osteoblastic but
increased adipogenic differentiation capacity
We next determined whether Pinch loss in Prx1-expressing cells
affects BMSC differentiation potential. Primary BMSCs were
isolated from control and dKO mice and induced to differentiate
into osteoblasts or adipocytes as described in the “Methods”
section. Osteoblasts derived from dKO BMSCs displayed drama-
tically lower alkaline phosphatase (Alp) protein expression and
Runx2, Alp, Col1a1, osteocalcin, and bone sialoprotein mRNA
expression than those derived from control BMSCs (Fig. 6d, e).
Alizarin red staining revealed lower calcium deposition in dKO
cultures than in control cultures (Fig. 6f). In contrast, dKO BMSCs
displayed higher expression of adipocyte genes, including those
encoding peroxisome proliferator-activated receptor gamma
(Ppar-γ), a major regulator of adipogenic differentiation, fatty acid
binding protein 4, adiponectin (Adipoq), and CCAAT-enhancer
binding protein α, than control BMSCs (Fig. 7g). Adipogenesis was
markedly enhanced in dKO cultures relative to control cultures, as
measured by Oil Red O staining (Fig. 7h).

Primary BMSCs from dKO mice express reduced proteins levels of
β-catenin, Yap1/Taz, and Runx2 and increased protein levels of
Ppar-γ
Western blotting revealed lower protein levels of active and total
β-catenin and Yap1/Taz in dKO BMSCs than in control BMSCs
(Fig. 7i). Furthermore, Pinch loss decreased the protein level of the
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key osteoblast transcription factor Runx2 but increased the level
of Pparγ in primary BMSC cultures (Fig. 7i). IF staining showed that
β-catenin and Yap1/Taz proteins were detected at high levels in
the nuclei of control BMSCs but that their levels were dramatically
lower in dKO BMSCs (Fig. 7j–l). It should be noted that the
expression of Pinch1 protein was not lower in dKO BMSCs than in
control BMSCs (Fig. 7i).

Pinch loss in limb MSCs increases the expression of Rankl in HZ
chondrocytes and promotes osteoclast formation and bone
resorption
We next investigated whether Pinch loss in limb MSCs impacts
osteoclast formation and bone resorption. Staining of tibial
sections for the osteoclast enzyme tartrate-resistant acid phos-
phatase (TRAP) revealed that osteoclast formation was higher in
bone from dKO mice than in bone from control mice (Fig. 8a).
Specifically, the osteoclast number/bone perimeter (Oc.Nb/BPm)
and osteoclast surface/bone surface (Oc.S/BS) were significantly
higher in both primary and secondary spongiosa in the bones of
dKO mice than in the bones of control mice (Fig. 8b–f). Osteoclast
formation was also dramatically increased in primary bone
marrow monocyte (BMM) cultures from dKO mice compared to
BMM cultures from control mice (Fig. 8g). The numbers of TRAP+

multinucleated cells with more than 3, 10, or 30 nuclei were all
significantly increased in dKO BMM cultures relative to those in
control BMM cultures (Fig. 8h–j). Consistent with the increase in

osteoclast formation, the serum level of collagen type I cross-
linked C-telopeptide 1 (CTX1), an indicator of osteoclastic bone
resorption, was significantly higher in dKO mice than in control
mice (Fig. 8k). Hypertrophic chondrocytes are known to express
Rankl.56 We determined whether Pinch loss affects Rankl
expression and found that its expression was higher in the HZ
chondrocytes of dKO mice than in the HZ chondrocytes of control
mice in the tibial growth plate (Fig. 8i).

Deleting Pinch1 in chondrocytes and Pinch2 globally in mice
results in severe osteopenia with subtle limb shortening
To determine whether Pinch1/2 play direct roles in chondrocytes
and skeletogenesis, we deleted Pinch1 expression in chondrocytes
using Col2a1-Cre transgenic mice and generated mice with global
Pinch2 deletion (Pinch1Col2a1; Pinch2−/− mice). The breeding
strategy used to generate these mice is described in detail in the
“Methods” section. Col2a1-Cre mice were used as controls.
Pinch1Col2a1; Pinch2−/− mice displayed lower body weights and
body lengths than age- and sex-matched Col2a1-Cre, Pinch1Col2a1

and Pinch2−/− mice (Supplementary Fig. 2a–d). Compared to
control mice, two-month-old Pinch1Col2a1; Pinch2−/− mice displayed
slightly reduced body weights with subtle limb shortening
(Fig. 9a–c). Similar to Pinch1Prx1; Pinch2−/− mice, Pinch1Col2a1;
Pinch2−/− mice displayed disrupted chondrocyte column formation
and reduced cellularity in the growth plate (Fig. 9d, e). μCT analysis
of the femurs of 3-month-old male Pinch1Col2a1; Pinch2−/− mice
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revealed more severe osteopenia than that in the femurs of control
mice (Fig. 9f). Specifically, the BMD, BV/TV and Tb.N were lower, and
the Tb.Sp was higher in Pinch1Col2a1; Pinch2−/− mice than in control
mice (Fig. 9g–j). The Tb.Th was slightly but significantly lower in
Pinch1Col2a1; Pinch2−/− mice than in control mice (Fig. 9k). The Cort.
Th was not significantly different between Pinch1Col2a1; Pinch2−/−

mice and control mice (Fig. 9j). Unlike Pinch1Prx1; Pinch2−/− mice,
Pinch1Col2a1; Pinch2−/− mice did not die prematurely and displayed
a normal lifespan compared to that of control mice.

DISCUSSION
This study demonstrates critical roles for Pinch1/2 in the
regulation of skeletogenesis through the control of endochondral
ossification. We established that Pinch1/2 regulate chondrocyte

function at least in part by modulating TGF-β1 signaling in
chondrocytes and their precursors. These findings will improve
our understanding of endochondral ossification, abnormalities of
which cause dwarfism and low bone mass, which both have broad
clinical significance.
Our results demonstrate that Pinch1/2 regulate multiple

aspects of chondrocytes, including cell proliferation, differentia-
tion, hypertrophy, and apoptosis. Pinch loss in limb MSCs largely
reduces chondrocyte proliferation, as demonstrated by a
dramatic decrease in the number of Ki67+ cells in the PZ of
the long bone growth plates. Pinch loss accelerates chondrocyte
differentiation and hypertrophy. Strikingly, the majority of the
PZ chondrocytes of dKO mice express a high level of Col10a1, a
marker of hypertrophic chondrocytes. The chondrocyte column,
an important feature of the growth plate, is largely disrupted by
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Pinch deficiency, and Pinch loss delays SOC formation. Together,
these cellular defects largely impair the development of the long
bone growth plates, leading to severe limb shortening in
dKO mice.
The results of the present study suggest that Pinch1/2 regulate

skeletogenesis at least in party by modulating TGF-β/Smad2/
3 signaling in chondrocytes and their precursors. This notion is
supported by the following lines of evidence: (1) lower expression
of Smad2/3 in PZ chondrocytes in the long bone growth plates of
dKO mice than those of control mice in vivo; (2) reduced TGF-
β-induced Smad2/3 phosphorylation in Pinch1/2-deficient BMSCs
compared to control BMSCs in vitro; (3) colocalization of Pinch1
and Smad2/3 in the nuclei of chondrocytes; (4) the interaction of
Pinch1 with Smad2/3 through the C-terminal region of Pinch1; (5)
increase in Smad2/3 protein ubiquitination and degradation due
to Pinch1 loss; and (6) the well-established roles of TGF-β/Smad2/
3 signaling in the regulation of chondrocyte function and

skeletogenesis.24–30 Thus, we demonstrate a novel mechanism
through which Pinch1/2 modulates TGF-β/Smad2/3 signaling
during skeletogenesis. The molecular mechanism(s) through
which Pinch1/2 stabilize Smad2/3 remain to be determined.
Runx2 upregulation induced by Pinch loss may play an

important role in promoting chondrocyte differentiation and
hypertrophy in dKO mice because chondrocyte differentiation and
hypertrophy are mainly regulated by Runx2.52 TGF-β represses
chondrocyte differentiation and hypertrophy,31,32 and TGF-β
signaling suppresses Runx2 function through Smad3.33,57,58 Thus,
it is likely that downregulation of Smad2/3 induced by Pinch loss
leads to upregulation of Runx2, which promotes chondrocyte
differentiation and hypertrophy.
It is known that hypertrophic chondrocytes express both

sclerostin and Rankl.53,56,59 The results of the present study show
that HZ chondrocytes in the growth plates of dKO mice express
abundant sclerostin and Rankl. At increased levels, both factors
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could diffuse into the bone marrow cavity and impact osteoblast
and osteoclast formation and differentiation, respectively, leading
to low bone mass in mutant mice. The molecular mechanism(s)
through which Pinch loss in limb MSCs increases osteoclast
formation remain to be determined in future studies.
We found that primary cultured BMSCs from dKO mice

displayed lower osteoblastic but higher adipogenic and differ-
entiation capacity than primary cultured BMSCs from control mice.
However, our western blotting results show that the expression of
Pinch1 is not decreased in dKO BMSCs. This result suggests that (1)
dKO BMSCs are not derived from the Prx1-expressing limb MSC
population and that (2) dKO BMSCs are influenced in the bone
microenvironment by signal(s) induced by Pinch loss in limb
MSCs. Increased sclerostin expression by dKO HZ chondrocytes
may play a role in this regulation. We recently demonstrated that
Yap1/Taz play an important role in the control of MSC
differentiation fate by promoting osteoblastic differentiation but
inhibiting adipogenic differentiation of MSCs.60 The results of the
present study reveal that dKO BMSCs express dramatically lower
levels of Yap1/Taz proteins than control BMSCs, which may
contribute in part to the altered BMSC differentiation capacity of
dKO BMSCs. However, the molecular mechanism(s) through which
Pinch loss in limb MSCs downregulates Yap1/Taz in BMSCs remain
to be determined.
It is interesting to compare the skeletal phenotypes of the

Pinch1/2 dKO mice (used in this study) and Kindlin-2Prx1 mice (used
in our previous study61). Deletion of Kindlin-2 or Pinch1/2 in Prx1-
expressing cells causes severe limb shortening. Furthermore,
Kindlin-2Prx1 mice display complete loss of the skull; this striking
phenotype is not observed in Pinch1/2 dKO mice. Nonetheless, P0
dKO mice did display a larger unmineralized posterior fontanel
than control mice (Fig. 1f), suggesting that intramembranous
ossification is also affected by Pinch loss.
In this study, we demonstrate a functional redundancy of

Pinch1 and Pinch2 in the control of skeletogenesis. Interestingly, a
similar functional redundancy of both factors was observed in the
heart under pathological, but not physiological, conditions.62

Based on the findings of this study and those of other studies,
we propose a working model to explain how Pinch controls
chondrogenesis and bone mass. Pinch regulates TGF-β/Smad2/
3 signaling to maintain Runx2 at a proper level, which keeps
chondrocytes in a proliferative state and prevents them from
undergoing premature differentiation, hypertrophy, and apopto-
sis. In the absence of Pinch, TGF-β/Smad2/3 signaling is impaired
due to reduced expression and activation and accelerated
degradation of Smad2/3, which reduces chondrocyte proliferation
and survival and upregulates Runx2. Upregulation of Runx2
accelerates chondrocyte differentiation and hypertrophy. These
alterations impair the development of the growth plates, leading
to chondrodysplasia and limb shortening. Furthermore, Pinch loss
largely promotes the expression of sclerostin and Rankl in HZ
chondrocytes, which reduces bone formation and increases resorp-
tion, leading to a low bone mass phenotype. Collectively, Pinch1/2,
through being expressed in chondrocytes and their precursors, play
a critical role in the control of chondrogenesis and bone mass.

METHODS
Animal studies
Prx1-Cre transgenic mice,63 Col2a1-Cre mice,64 and Pinch1f/f and
Pinch2−/− mice62 were previously described. To obtain the double
mutant mice, Pinch1f/f mice were first crossed with Pinch2−/− mice
to generate Pinch1f/+; Pinch2+/− mice. Pinch1f/+; Pinch2+/− mice
were then crossed to each other to generate Pinch1f/f; Pinch2−/−

mice. Hemizygous Prx1-Cremice were crossed with Pinch1f/f; Pinch2−/−

mice to generate Prx1-Cre; Pinch1f/+; Pinch2+/− mice. Finally, Prx1-Cre;
Pinch1f/+; Pinch2+/− mice were bred with Pinch1f/f; Pinch2−/− mice to
generate Prx1-Cre; Pinch1f/f; Pinch2−/− mice (Pinch1Prx1; Pinch2−/− or

dKO mice) and other genotypes. A similar breeding strategy was used
to generate Col2a1-Cre; Pinch1f/f; Pinch2−/− (Pinch1Col2a1; Pinch2−/−)
mice. The mice used in this study, including Prx1-Cre, Col2a1-Cre,
Pinch1f/f and Pinch2−/− mice, were maintained in our laboratory and
bred with normal C57BL/6 mice for more than ten generations. All
animal experiments were conducted in the specific pathogen-free
Experimental Animal Center of Southern University of Science and
Technology. Animals were housed four/cage at 20 °C–24 °C, exposed
to a 12-h/12-h light/dark cycle, and given water and rodent chow ad
libitum. The mice were monitored daily. All animal protocols were
approved by the Institutional Animal Care and Use Committee at the
Southern University of Science and Technology. The age, sex, and
number of the mice used for each experiment are specified in the
figure legends.

Histology, histomorphometry, and immunohistochemistry
At the time of euthanasia, bone tissues were dissected, fixed,
decalcified, and embedded in paraffin as previously described.65

Five-micron sections were used for H/E staining, alcian blue staining,
toluidine blue staining, and TRAP staining as previously
described.61,66 For histomorphometry, parameters such as the Oc.S/
BS and Oc.Nb/BPm in both the primary and secondary spongiosa,
Ob.S/BS, Ob.Nb/BPm of the metaphyseal cancellous bone, lengths of
the SOC, PZ, and HZ, and growth plate cellularity of the tibiae and
knee joints were measured using Image-Pro Plus 7.0 software (Media
Cybernetics Inc.) as we described.61,66 For immunohistochemistry,
5-μm sections were deparaffinized with xylene and rehydrated in a
descending series of ethanol. Antigen retrieval was performed using
citrate buffer (10mmol·L−1, pH 6.0). Endogenous peroxidase activity
was blocked with peroxidase-blocking solution (Dako), and protein
was blocked with normal horse serum (Vector). The sections were
incubated with primary antibodies in a slide staining tray at 4 °C
overnight and then incubated with horse biotinylated anti-mouse/
rabbit IgG secondary antibody (Vector) followed by streptavidin-
horseradish peroxidase (Vector). Immunoreactivity was visualized by
the DAB Peroxidase Substrate Kit (Vector) according to the
manufacturer’s instructions.

Calcein double labeling and MAR, MS/BS, and BFR measurement
Calcein double labeling and MAR, MS/BS, and BFR measurements
were performed as previously described.65

μCT
Fixed nondemineralized bones were subjected to μCT analysis at
the Department of Biology of Southern University of Science and
Technology using a Bruker CT imaging system (SkyScan 1172
Micro-CT, Bruker MicroCT, Kontich, Belgium) following the
standards of techniques and terminology recommended by the
American Society for Bone and Mineral Research (ASBMR).67

Quantitative real-time PCR (qRT-PCR) and western blot analysis
RNA and protein isolation, qRT-PCR, and western blot analysis
were performed as previously described.68 The specific primers for
gene expression analysis are listed in Supplementary Table 1.
Primary antibody information is listed in Supplementary Table 2.

Alcian blue-alizarin red double staining of the skeleton
Alcian blue-alizarin red double staining of the skeleton was
performed as previously described.61

ELISA
Serum levels of P1NP were measured using the RatLaps EIA Kit
(Immunodiagnostic Systems Limited, Gaithersburg, MD, USA, cat#:
AC-33F1) according to the manufacturer’s instructions. Serum
levels of CTX1, a degradation product of type I collagen that forms
during osteoclastic bone resorption, were measured using the
RatLaps EIA Kit (Immunodiagnostic Systems Limited, Gaithersburg,
MD, USA, cat#: AC-06F1) as previously described.69
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Primary BMSC culture and CFU-F and CFU-OB assays
Primary BMSCs were isolated from tibiae and femurs as previously
described.65 The CFU-F assay and CFU-OB assay were performed
as previously described.70

In vitro BMSC proliferation and differentiation assays
Mouse primary BMSCs were isolated and cultured as described
previously.70 To evaluate BMSC proliferation, the number of
attached cells was assayed by the Cell Counting Kit-8 (Beyotime)
assay according to the manufacturer’s instructions. The optical
density at 450 nm was determined with a microplate reader
(PerkinElmer). For osteogenic differentiation, BMSCs were cultured
in osteogenic medium (α-MEM containing 10% FBS and
50 μg·mL−1 ascorbic acid) for 7 days and then stained for ALP
using a BCIP/NBT Alp color development kit (Beyotime, China) or
cultured in osteogenic medium for 7 days followed by
mineralization-inducing medium (osteogenic medium plus
2.5 mmol·L−1 β-glycerophosphate for 7 days and then subjected
to alizarin red S (40 mmol·L−1, pH 4.2) (Sigma) staining. For
adipogenic differentiation, BMSCs were cultured with reagents
from the MesenCult™ Adipogenic Differentiation Kit (STEMCELL
Technologies) for 9 days and then stained with Oil Red O (Sigma).

In vitro and in vivo osteoclast differentiation
Isolation of nonadherent BMMs and in vitro and in vivo osteoclast
assays were conducted as previously described.69

TUNEL staining
Cell survival was evaluated using the ApopTag Peroxidase In Situ
Apoptosis Detection Kit according to the manufacturer’s instruc-
tions (EMD Millipore Corporation, Temecula, CA, USA, cat#: S7100)
as previously described.61

DNA constructs and transfection
To generate pCMV/Flag-Pinch1 expression plasmids expressing
full-length and truncated forms of Pinch1, DNA elements
encoding full-length and respective Pinch1 regions (aa 1–121, aa
1–184) obtained by PCR were subcloned into the HindIII/XhoI sites
of the pcDNA3.1(+)-3FLAG vector. All sequences were verified by
automatic DNA sequencing.

IP assay
Whole-cell extracts (1 000 μg) isolated from ATDC5 chondrocyte-
like cells or COS-7 cells overexpressing Pinch1 were incubated
with 3 μg Smad2/3 antibody overnight at 4 °C with gentle
rocking. The immune complexes were collected by the addition
of 25 μL of protein A/G Magnetic Beads (Thermo Scientific),
incubated for 1 h at RT and centrifuged. The precipitates were
washed five times with 1x washing buffer (pH 7.4, 0.025 mol·L−1

Tris, 0.15 mol·L−1 NaCl, 0.001 mol·L−1 EDTA, 1% NP40, and 5%
glycerin), and the immunoprecipitated complexes were sus-
pended in loading buffer (pH 7.4, 0.025 mol·L−1 Tris, 0.15 mol·L−1

NaCl, 0.001 mol·L−1 EDTA, 1% NP40, and 50% glycerin) and
subjected to SDS-PAGE and western blotting analyses using a
Pinch1 or Smad2/3 antibody.

Statistical analyses
The sample size for each experiment was determined based on our
previous experience. Statistical analyses were performed using Prism
GraphPad. Unpaired Student’s t test (two groups) and two-way
ANOVA (multiple groups) followed by the Tukey–Kramer test were
used for analysis. P < 0.05 was considered statistically significant.
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