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Abstract

Background: Metabolomics has emerged as a powerful tool in the quantitative identification of
physiological and disease-induced biological states. Extracellular metabolome or metabolic profiling
data, in particular, can provide an insightful view of intracellular physiological states in a noninvasive
manner.

Results: We used an updated genome-scale metabolic network model of Saccharomyces
cerevisiag, iIMM904, to investigate how changes in the extracellular metabolome can be used to
study systemic changes in intracellular metabolic states. The iIMM904 metabolic network was
reconstructed based on an existing genome-scale network, iIND750, and includes 904 genes and
1,412 reactions. The network model was first validated by comparing 2,888 in silico single-gene
deletion strain growth phenotype predictions to published experimental data. Extracellular
metabolome data measured in response to environmental and genetic perturbations of ammonium
assimilation pathways was then integrated with the iIMM904 network in the form of relative
overflow secretion constraints and a flux sampling approach was used to characterize candidate
flux distributions allowed by these constraints. Predicted intracellular flux changes were consistent
with published measurements on intracellular metabolite levels and fluxes. Patterns of predicted
intracellular flux changes could also be used to correctly identify the regions of the metabolic
network that were perturbed.

Conclusion: Our results indicate that integrating quantitative extracellular metabolomic profiles
in a constraint-based framework enables inferring changes in intracellular metabolic flux states.
Similar methods could potentially be applied towards analyzing biofluid metabolome variations
related to human physiological and disease states.

Background

"Omics" technologies are rapidly generating high
amounts of data at varying levels of biological detail. In
addition, there is a rapidly growing literature and accom-
panying databases that compile this information. This has
provided the basis for the assembly of genome-scale met-

abolic networks for various microbial and eukaryotic
organisms [1-11]. These network reconstructions serve as
manually curated knowledge bases of biological informa-
tion as well as mathematical representations of biochem-
ical components and interactions specific to each
organism.
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A genome-scale network reconstruction is a structured col-
lection of genes, proteins, biochemical reactions, and
metabolites determined to exist and operate within a par-
ticular organism. This network can be converted into a
predictive model that enables in silico simulations of
allowable network states based on governing physico-
chemical and genetic constraints [12,13]. A wide range of
constraint-based methods have been developed and
applied in order to analyze network metabolic capabilities
under different environmental and genetic conditions
[13]. These methods have been extensively used to study
genome-scale metabolic networks and have successfully
predicted, for example, optimal metabolic states, gene
deletion lethality, and adaptive evolutionary endpoints
[14-16]. Most of these applications utilize optimization-
based methods such as flux balance analysis (FBA) to
explore the metabolic flux space. However, the behavior
of genome-scale metabolic networks can also be studied
using unbiased approaches such as uniform random sam-
pling of steady-state flux distributions [17]. Instead of
identifying a single optimal flux distribution based on a
given optimization criterion (e.g. biomass production),
these methods allow statistical analysis of a large range of
possible alternative flux solutions determined by con-
straints imposed on the network. Sampling methods have
been previously used to study global organization of E.
coli metabolism [18] as well as to identify candidate dis-
ease states in the cardiomyocyte mitochondria [19].

Network reconstructions provide a structured framework
to systematically integrate and analyze disparate datasets
including transcriptomic, proteomic, metabolomic, and
fluxomic data. Metabolomic data is one of the more rele-
vant data types for this type of analysis as network recon-
structions define the biochemical links between
metabolites, and recent advancements in analytical tech-
nologies have allowed increasingly comprehensive intrac-
ellular and extracellular metabolite level measurements
[20,21]. The metabolome is the set of metabolites present
under a given physiological condition at a particular time
and is the culminating phenotype resulting from various
"upstream" control mechanisms of metabolic processes.
Of particular interest to this present study are the quanti-
tative profiles of metabolites that are secreted into the
extracellular environment by cells under different condi-
tions. Recent advances in profiling the extracellular
metabolome (EM) have allowed obtaining insightful bio-
logical information on cellular metabolism without dis-
rupting the cell itself. This information can be obtained
through various analytical detection, identification, and
quantization techniques for a variety of systems ranging
from unicellular model organisms to human biofluids
[20-23].
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Metabolite secretion by a cell reflects its internal meta-
bolic state, and its composition varies in response to
genetic or experimental perturbations due to changes in
intracellular pathway activities involved in the production
and utilization of extracellular metabolites [21]. Varia-
tions in metabolic fluxes can be reflected in EM changes
which can, in turn, provide insight into the intracellular
pathway activities related to metabolite secretion. The
extracellular metabolomic approach has already shown
promise in a variety of applications, including capturing
detailed metabolite biomarker variations related to dis-
ease and drug-induced states and characterizing gene
functions in yeast [24-27]. However, interpreting changes
in the extracellular metabolome can be challenging due to
the indirect relationship between the proximal cause of
the change (e.g. a mutation) and metabolite secretion.

Since metabolic networks describe mechanistic, biochem-
ical links between metabolites, integration of such data
can allow a systematic approach to identifying altered
pathways linked to observed quantitative changes in
secretion profiles. Measured secretion rates of major
byproduct metabolites can be applied as additional
exchange flux constraints that define observed metabolic
behavior. For example, a recent study integrating small-
scale EM data with a genome-scale yeast model correctly
predicted oxygen consumption and ethanol production
capacities in mutant strains with respiratory deficiencies
[28]. The respiratory deficient mutant study used high
accuracy measurements for a small number of major
byproduct secretion rates together with an optimization-
based method that are well suited for such data. Here, we
expand the application range of the model-based method
used in [28] to extracellular metabolome profiles, which
represent a temporal snapshot of the relative abundance
for a larger number of secreted metabolites. Our approach
is complementary to statistical (i.e. "top-down")
approaches to metabolome analysis [29] and can poten-
tially be used in applications such as biofluid-based diag-
nostics or large-scale characterization of mutants strains
using metabolite profiles.

In this study, we implemented a constraint-based sam-
pling approach on an updated genome-scale network of
yeast metabolism to systematically determine how EM
level variations are linked to global changes in intracellu-
lar metabolic flux states. By using a sampling-based net-
work approach and statistical methods (Figure 1), EM
changes were linked to systemic intracellular flux pertur-
bations in an unbiased manner without relying on defin-
ing single optimal flux distributions as was used in the
previously mentioned study [28]. The inferred perturba-
tions in intracellular reaction fluxes were further analyzed
using reporter metabolite and subsystem (i.e., metabolic
pathway) approaches [30] in order to identify dominant

Page 2 of 17

(page number not for citation purposes)



BMC Systems Biology 2009, 3:37

http://www.biomedcentral.com/1752-0509/3/37

o) B
12/ \ e ' @

Metabolite secretion to
extracellular medium

Extracellular

Detect and quantify secreted
metabolites using GC/LC-MS

Constrain flux
solution space using
secretion profiles

Intracellular
F

Detect significant
intracellular flux changes

Figure |

Compare flux samples in
two conditions

Sample allowed
intracellular fluxes

Schematic illustrating the integration of exometabolomic (EM) data with the constraint-based framework. (A)
Cells are subjected to genetic and/or environmental perturbations to secrete metabolite patterns unique to that condition. (B)
EM is detected, identified, and quantified. (C) EM data is integrated as required secretion flux constraints to define allowable
solution space. (D) Random sampling of solution space yields the range of feasible flux distributions for intracellular reactions.
(E) Sampled fluxes were compared to sampled fluxes of another condition to determine which metabolic regions were altered
between the two conditions (see Figure 2). (F) Significantly altered metabolic regions were identified.

metabolic features that are collectively perturbed (Figure
2). The sampling-based approach also has the additional
benefit of being less sensitive to inaccuracies in metabolite
secretion profiles than optimization-based methods and
thus can more readily be used in settings such as biofluid
metabolome analysis.

This study was divided into two parts and describes: (i)
the reconstruction and validation of an expanded S. cere-
visiae metabolic network, iMM904; and (ii) the systematic
inference of intracellular metabolic states from two yeast
EM data sets using a constraint-based sampling approach.
The first EM data set compares wild type yeast to the gdh1/
GDH2 (glutamate dehydrogenase) strain [31], which
indicated good agreement between predicted metabolic
changes of intracellular metabolite levels and fluxes
[31,32]. The second EM data set focused on secreted

amino acid measurements from a separate study of yeast
cultured in different ammonium and potassium concen-
trations [33]. We analyzed the EM data to gain further
insight into perturbed ammonium assimilation processes
as well as metabolic states relating potassium limitation
and ammonium excess conditions to one another. The
model-based analysis of both separately published extra-
cellular metabolome datasets suggests a relationship
between glutamate, threonine and folate metabolism,
which are collectively perturbed when ammonium assim-
ilation processes are broadly disrupted either by environ-
mental (excess ammonia) or genetic (gene deletion/
overexpression) perturbations. The methods herein
present an approach to interpreting extracellular metabo-
lome data and associating these measured secreted metab-
olite variations to changes in intracellular metabolic
network states.
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Schematic of sampling and scoring analysis to determine intracellular flux changes. (A) Reaction fluxes are sam-

pled for two conditions. (B & C) Sample of flux differences is calculated by selecting random flux values from each condition to
obtain a distribution of flux differences for each reaction. (D) Standardized reaction Z-scores are determined, which represent
how far the sampled flux differences deviates from a zero flux change. Reaction scores can be used in visualizing perturbation

subnetworks and analyzing reporter metabolites and subsystems.

Methods

Metabolic network reconstruction

The previously reconstructed iND750, a fully compart-
mentalized and elementally-balanced S. cerevisiae meta-
bolic network, was used as the basis for reconstructing the
iMM904 network [2]. The network was further expanded
to include additional genes and reactions based on
genomic, biochemical, and physiological information
[see Additional file 1]. The details of existing reactions
(substrate and cofactor specificity, reaction reversibility,
and compartmentalization) in the iND750 network were
also re-evaluated to update the model based on existing
literature. The iMM904 network was reconstructed using
the SimPheny® modeling software (Genomatica Inc, San
Diego, CA). Existing gene-protein-reaction (GPR) associa-
tions from iND750 were also reviewed and several were

modified to include additional genes and proteins. GPR
associations are Boolean representations of the logical
relationship between ORFs and their corresponding tran-
scripts, proteins, and reactions to enable mapping of
genes to their respective functions. The included model
text files [see Additional file 2] are compatible for compu-
tation with the COBRA toolbox [13].

Conversion of the network to a predictive model

The network reconstruction was converted to a constraint-
based model using established procedures [13]. Network
reactions and metabolites were assembled into a stoichio-
metric matrix S containing the stoichiometric coefficients
of the reactions in the network. The steady-state solution
space containing possible flux distributions is determined
by calculating the null space of S: S -v = 0, where v is the
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reaction flux vector. Minimal media conditions were set
through constraints on exchange fluxes corresponding to
the experimental measured substrate uptake rates. All the
model-based calculations were done using the Matlab
COBRA Toolbox [13] utilizing the glpk or Tomlab/CPLEX
(Tomopt, Inc.) optimization solvers.

Chemostat growth simulations

The iIMM904 model was initially validated by simulating
wild type yeast growth in aerobic and anaerobic carbon-
limited chemostat conditions and comparing the simula-
tion results to published experimental data on substrate
uptake and byproduct secretion in these conditions [34].
The study was performed following the approach taken to
validate the {FF708 model in a previous study [35]. The
predicted glucose uptake rates were determined by setting
the in silico growth rate to the measured dilution rate,
which are equivalent under continuous culture growth,
and minimizing the glucose uptake rate. The accuracy of
in silico predictions of substrate uptake and byproduct
secretion by the iMM904 model was similar to the accu-
racy obtained using the iFF708 model and results are
shown in Figure S1 [see Additional file 3].

Genome-scale gene deletion phenotype predictions

The iMM904 network was further validated by performing
genome-scale gene lethality computations following
established procedures to determine growth phenotypes
under minimal medium conditions and compared to
published data. A modified version of the biomass func-
tion used in previous iND750 studies was set as the objec-
tive to be maximized and gene deletions were simulated
by setting the flux through the corresponding reaction(s)
to zero. The biomass function was based on the experi-
mentally measured composition of major cellular constit-
uents during exponential growth of yeast cells and was
reformulated to include trace amounts of additional
cofactors and metabolites with the assumed fractional
contribution of 10-¢. These additional biomass com-
pounds were included according to the biomass formula-
tion used in the iLL672 study to improve lethality
predictions through the inclusion of additional essential
biomass components [3]. The model was constrained by
limiting the carbon source uptake to 10 mmol/h/gDW
and oxygen uptake to 2 mmol/h/gDW. Ammonia, phos-
phate, and sulfate were assumed to be non-limiting. The
experimental phenotyping data was obtained using
strains that were auxotrophic for methionine, leucine, his-
tidine, and uracil. These auxotrophies were simulated by
deleting the appropriate genes from the model and sup-
plementing the in silico strain with the appropriate supple-
ments at non-limiting, but low levels. Furthermore, trace
amounts of essential nutrients that are present in the
experimental minimal media formulation (4-aminoben-
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zoate, biotin, inositol, nicotinate, panthothenate, thia-
min) were supplied in the simulations [3].

Three distinct methods to simulate the outcome of gene
deletions were utilized: Flux-balance analysis (FBA) [36-
38], Minimization of Metabolic Adjustment (MoMA)
[39], and a linear version of MoMA (linearMoMA). In the
linearMoMA method, minimization of the quadratic
objective function of the original MoMA algorithm was
replaced by minimization of the corresponding 1-norm
objective function (i.e. sum of the absolute values of the
differences of wild type FBA solution and the knockout
strain flux solution). The computed results were then
compared to growth phenotype data (viable/lethal) from
a previously published experimental gene deletion study

[3].

The comparison between experimental and in silico dele-
tion phenotypes involved choosing a threshold for the
predicted relative growth rate of a deletion strain that is
considered to be viable. We used standard ROC curve
analysis to assess the accuracy of different prediction
methods and models across the full range of the viability
threshold parameter, with results shown in Figure S2 [see
Additional file 3]. The ROC curve plots the true viable rate
against the false viable rate thus allowing comparison of
different models and methods without requiring arbitrar-
ily choosing this parameter a priori [40]. The optimal pre-
diction performance corresponds to the point closest to
the top left corner of the ROC plot (i.e. 100% true viable
rate, 0% false viable rate). The values reported in Table 1
correspond to selecting the optimal viability threshold
based on this criterion. We summarized the overall pre-
diction accuracy of a model and method using the Mat-
thews Correlation Coefficient (MCC) [40]. The MCC
ranges from -1 (all predictions incorrect) to +1 (all predic-
tions correct) and is suitable for summarizing overall pre-
diction performance in our case where there are
substantially more viable than lethal gene deletions. ROC
plots were produced in Matlab (Mathworks, Inc.).

Inferring perturbed metabolic regions based on EM profiles

The method implemented in this study is shown schemat-
ically in Figures 1 and 2 and the steps are described as fol-
lows.

Constraining the iMM904 network

Relative levels of quantitative EM data were incorporated
into the constraint-based framework as overflow secretion
exchange fluxes to simulate the required low-level produc-
tion of experimentally observed excreted metabolites. The
primary objective of this study is to associate relative
metabolite levels that are generally measured for metabo-
nomic or biofluid analyses to the quantitative ranges of
intracellular reaction fluxes required to produce them.
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Table I: Comparison of iMM904 and iLL672 gene deletion predictions and experimental data under minimal media conditions.

Media Model Method True viable False viable False lethal True lethal True viable % False viable % MCC
Glucose iMM904 full FBA 647 10 32 33 95.29 23.26 0.60
iMM904 full linMOMA 644 10 35 33 94.85 23.26 0.58
iMM904 full MOMA 644 10 35 33 94.85 23.26 0.58
iMM904 reduced FBA 440 9 28 33 94.02 21.43 0.6l
iMM904 reduced linMOMA 437 9 31 33 93.38 21.43 0.60
iMM904 reduced MOMA 437 9 31 33 93.38 21.43 0.60
iLL672 full MOMA 433 9 35 33 92.52 21.43 0.57
Galactose iMM904 full FBA 595 32 36 59 94.29 35.16 0.58
iMM904 full linMOMA 595 32 36 59 94.29 35.16 0.58
iMM904 full MOMA 595 32 36 59 94.29 35.16 0.58
iMM904 reduced FBA 409 12 33 56 92.53 17.65 0.67
iMM904 reduced linMOMA 409 12 33 56 92.53 17.65 0.67
iMM904 reduced MOMA 409 12 33 56 92.53 17.65 0.67
iLL672 full MOMA 411 19 31 49 92.99 27.94 0.61
Glycerol iMM904 full FBA 596 43 36 47 94.30 47.78 0.48
iMM904 full linMOMA 595 44 37 46 94.15 48.89 0.47
iMM904 full MOMA 598 44 34 46 94.62 48.89 0.48
iMM904 reduced FBA 410 20 34 46 92.34 30.30 0.57
iMM904 reduced lihnMOMA 409 21 35 45 92.12 31.82 0.56
iMM904 reduced MOMA 412 21 32 45 92.79 31.82 0.57
iLL672 full MOMA 406 20 38 46 91.44 30.30 0.55
Ethanol iMM904 full FBA 593 45 29 55 95.34 45.00 0.54
iMM904 full linMOMA 592 45 30 55 95.18 45.00 0.54
iMM904 full MOMA 592 44 30 56 95.18 44.00 0.55
iMM904 reduced FBA 408 21 27 54 93.79 28.00 0.64
iMM904 reduced lihnMOMA 407 21 28 54 93.56 28.00 0.63
iMM904 reduced MOMA 407 20 28 55 93.56 26.67 0.64
iLL672 full MOMA 401 13 34 62 92.18 17.33 0.68

MCC, Matthews correlation coefficient (see Methods). Note that the iLL672 predictions were obtained directly from [3] and thus the viability threshold was not optimized using the maximum

MCC approach.
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However, without detailed kinetic information or
dynamic metabolite measurements available, we approx-
imated EM datasets of relative quantitative metabolite lev-
els to be proportional to the rate in which they are
secreted and detected (at a steady state) into the extracel-
lular media. This approach is analogous to approximating
uptake rates based on metabolite concentrations from a
previous study performing sampling analysis on a cardio-
myocyte mitochondrial network to identify differential
flux distribution ranges for various environmental (i.e.
substrate uptake) conditions [19].

The raw data was normalized by the raw maximum value
of the dataset (thus the maximum secretion flux was 1
mmol/hr/gDW) with an assumed error of 10% to set the
lower and upper bounds and thus inherently accounting
for sampling calculation sensitivity. The gdhl/GDH?2
strains were flask cultured under minimal glucose media
conditions; thus, glucose and oxygen uptake rates were set
at 15 and 2 mmol/hr/gDW, respectively, for the gdhl/
GDH?2 strain study. In the anaerobic case the oxygen
uptake rate was set to zero, and sterols and fatty acids were
provided as in silico supplements as described in [35]. For
the potassium limitation/ammonium toxicity study the
growth rate was set at 0.17 1/h, and the glucose uptake
rate was minimized to mimic experimental chemostat cul-
tivation conditions. These input constraints were constant
for each perturbation and comparative wild-type condi-
tion such that the calculated solution spaces between the
conditions differed based only on variations in the output
secretion constraints.

FBA optimization of EM-constrained networks

A modified FBA method with minimization of the 1-
norm objective function between two optimal flux distri-
butions was used to determine optimal intracellular fluxes
based on the EM-constrained metabolic models. This
method determines two optimal flux distributions simul-
taneously for two differently constrained models (e.g.
wild type vs. mutant) - these flux distributions maximize
biomass production in each case and the 1-norm distance
between the distributions is as small as possible given the
two sets of constraints. This approach avoids problems
with alternative optimal solutions when comparing two
FBA-computed flux distributions by assuming minimal
rerouting of flux distibution between a perturbed network
and its reference network. Reaction flux changes from the
FBA optimization results were determined by computing
the relative percentage fold change for each reaction
between the mutant and wild-type flux distributions.

Random sampling of the steady-state solution space

We utilized artificial centering hit-and-run (ACHR) Monte
Carlo sampling [19,41] to uniformly sample the meta-
bolic flux solution space defined by the constraints

http://www.biomedcentral.com/1752-0509/3/37

described above. Reactions, and their participating metab-
olites, found to participate in intracellular loops [42] were
discarded from further analysis as these reactions can have
arbitrary flux values. The following sections describe the
approaches used for the analysis of the different datasets.

Sampling approach used in the gdh|/GDH2 study

Due to the overall shape of the metabolic flux solution
space, most of the sampled flux distributions resided close
to the minimally allowed growth rate (i.e. biomass pro-
duction) and corresponded to various futile cycles that
utilized substrates but did not produce significant bio-
mass. In order to study more physiologically relevant por-
tions of the flux space we restricted the sampling to the
part of the solution space where the growth rate was at
least 50% of the maximum growth rate for the condition
as determined by FBA. This assumes that cellular growth
remains an important overall objective by the yeast cells
even in batch cultivation conditions, but that the intracel-
lular flux distributions may not correspond to maximum
biomass production [43].

To test the sensitivity of the results to the minimum
growth rate threshold, separate Monte Carlo samples were
created for each minimum threshold ranging from 50% to
100% at 5% increments. We also tested the sensitivity of
the results to the relative magnitude of the extracellular
metabolite secretion rates by performing the sampling at
three different relative levels (0 corresponding to no extra-
cellular metabolite secretion, maximum rate of 0.5 mmol/
hr/gDW, and maximum rate of 1.0 mmol/hr/gDW). For
each minimum growth rate threshold and extracellular
metabolite secretion rate, the ACHR sampler was run for
5 million steps and a flux distribution was stored every
5000 steps. The sensitivity analysis results are presented in
Figures S3 and S4 [see Additional File 3], and the results
indicate that the reaction Z-scores (see below) are not sig-
nificantly affected by either the portion of the solution
space sampled or the exact scaling of secretion rates. The
final overall sample used was created by combining the
samples for all minimum growth rate thresholds for the
highest extracellular metabolite secretion rate (maximum
1 mmol/hr/gDW). This approach allowed biasing the
sampling towards physiologically relevant parts of the
solution space without imposing the requirement of
strictly maximizing a predetermined objective function.
The samples obtained with no EM data were used as con-
trol samples to filter reporter metabolites/subsystems
whose scores were significantly high due to only random
differences between sampling runs.

Sampling approach used in the potassium limitation/ammonium
toxicity study

Since the experimental data used in this study was gener-
ated in chemostat conditions, and previous studies have

Page 7 of 17

(page number not for citation purposes)



BMC Systems Biology 2009, 3:37

indicated that chemostat flux patterns predicted by FBA
are close to the experimentally measured ones [43], we
assumed that sampling of the optimal solution space was
appropriate for this study. In order to sample a physiolog-
ically reasonable range of flux distributions, samples for
four different oxygen uptake rates (1, 2, 3, and 4 mmol/
hr/gDW with 5 million steps each) were combined in the
final analysis.

Standardized scoring of flux differences between
perturbation and control conditions

A Z-score based approach was implemented to quantify
differences in flux samples between two conditions (Fig-
ure 2). First, two flux vectors were chosen randomly, one
from each of the two samples to be compared and the dif-
ference between the flux vectors was computed. This
approach was repeated to create a sample of 10,000 (n)
flux difference vectors for each pair of conditions consid-
ered (e.g. mutant or perturbed environment vs. wild
type). Based on this flux difference sample, the sample
mean (;) and standard deviation (o) between the
two conditions was calculated for each reaction i. The
reaction Z-score was calculated as:

reactlon,l (o_dlff’l/\/z)/

which describes the sampled mean difference deviation
from a population mean change of zero (i.e. no flux dif-
ference between perturbation and wild type). Note that
this approach allows accounting for uncertainty in the
flux distributions inferred based on the extracellular
metabolite secretion constraints. This is in contrast to
approaches such as FBA or MoMA that would predict a
single flux distribution for each condition and thus poten-
tially overestimate differences between conditions.

The reaction Z-scores can then be further used in analysis
to identify significantly perturbed regions of the meta-
bolic network based on reporter metabolite [44] or sub-
system [30] Z-scores. These reporter regions indicate, or
"report", dominant perturbation features at the metabo-
lite and pathway levels for a particular condition. The
reporter metabolite Z-score for any metabolite j can be
derived from the reaction Z-scores of the reactions con-
suming or producing j (set of reactions denoted as R;) as:

mmet,j_#met,[\]j
z ,

met,j —

C’met,Nj

-is cal-

where N; is the number of reactions in R;and m,,,;

culated as
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m 1 ZZ
met,j — i
: \/Nij i€ Rj

To account and correct for background distribution, the
metabolite Z-score was normalized by computing t,,, x;
and o, n; corresponding to the mean m,,, and its stand-
ard deviation for 1,000 randomly generated reaction sets
of size N;. Z-scores for subsystems were calculated simi-
larly by considering the set of reactions R, that belongs to
each subsystem k. Hence, positive metabolite and subsys-
tem scores indicate a significantly perturbed metabolic
region relative to other regions, whereas a negative score
indicate regions that are not perturbed more significantly
than what is expected by random chance. Perturbation
subnetworks of reactions and connecting metabolites
were visualized using Cytoscape [45].

Results and discussion

I. Reconstruction and validation of iMM904 network
iMM904 network content

A previously reconstructed S. cerevisiae network, iND750,
was used as the basis for the construction of the expanded
iMM904 network. Prior to its presentation here, the
iMM904 network content was the basis for a consensus
jamboree network that was recently published but has not
yet been adapted for FBA calculations [46]. The majority
of iND750 content was carried over and further expanded
on to construct iMM904, which accounts for 904 genes,
1,228 individual metabolites, and 1,412 reactions of
which 395 are transport reactions. Both the number of
gene-associated reactions and the number of metabolites
increased in iIMM904 compared with the iND750 net-
work. Additional genes and reactions included in the net-
work primarily expanded the lipid, transport, and
carbohydrate subsystems. The lipid subsystem includes
new genes and reactions involving the degradation of
sphingolipids and glycerolipids. Sterol metabolism was
also expanded to include the formation and degradation
of steryl esters, the storage form of sterols. The majority of
the new transport reactions were added to connect net-
work gaps between intracellular compartments to enable
the completion of known physiological functions. We
also added a number of new secretion pathways based on
experimentally observed secreted metabolites [31].

A number of gene-protein-reaction (GPR) relationships
were modified to include additional gene products that
are required to catalyze a reaction. For example, the pro-
tein compounds thioredoxin and ferricytochrome C were
explicitly represented as compounds in iND750 reactions,
but the genes encoding these proteins were not associated
with their corresponding GPRs. Other examples include
glycogenin and NADPH cytochrome p450 reductases
(CPRs), which are required in the assembly of glycogen
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and to sustain catalytic activity in cytochromes p450,
respectively. These additional proteins were included in
iMM904 as part of protein complexes to provide a more
complete representation of the genes and their corre-
sponding products necessary for a catalytic activity to
occur.

Major modifications to existing reactions were in cofactor
biosynthesis, namely in quinone, beta-alanine, and ribo-
flavin biosynthetic pathways. Reactions from previous S.
cerevisiae networks associated with quinone, beta-alanine,
and riboflavin biosynthetic pathways were essentially
inferred from known reaction mechanisms based on reac-
tions in previous network reconstructions of E. coli [2,47].
These pathways were manually reviewed based on current
literature and subsequently replaced by reactions and
metabolites specific to yeast. Additional changes in other
subsystems were also made, such as changes to the com-
partmental location of a gene and its corresponding reac-
tion(s), changes in reaction reversibility and cofactor
specificity, and the elucidation of particular transport
mechanisms. A comprehensive listing of iMM904 net-
work contents as well as a detailed list of changes between
iND750 and iMM904 is included [see Additional file 1].

Predicting deletion growth phenotypes

The updated genome-scale iIMM904 metabolic network
was validated by comparing in silico single-gene deletion
predictions to in vivo results from a previous study used to
analyze another S. cerevisiae metabolic model, iLL672 [3].
This network was constructed based on the iFF708 net-
work [22], which was also the starting point for recon-
structing the iND750 network [2]. The experimental data
used to validate the iLL672 model consisted of 3,360 sin-
gle-gene knockout strain phenotypes evaluated under
minimal media growth conditions with glucose, galac-
tose, glycerol, and ethanol as sole carbon sources. Growth
phenotypes for the iMM904 network were predicted using
FBA [32-34], MoMA [35], and linear MoMA methods as
described in Methods and subsequently compared to the
experimental data (Table 1). Each deleted gene growth
prediction comparison was classified as true lethal, true
viable, false lethal, or false viable. The growth rate thresh-
old for considering a prediction viable was chosen for
each condition and method separately to optimize the
tradeoff between true viable and false viable predictions
(maximum Matthews correlation coefficient, see Meth-
ods).

Since iIMM904 has 212 more genes than iLL672 with
experimental data, we also present results for the subset of
iMM904 predictions with genes included in iLL672
(reduced iIMM904 set). When the same gene sets are com-
pared, iMM904 improves gene lethality predictions under
glucose, galactose, and glycerol conditions over iLL672
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somewhat, but is less accurate at predicting growth phe-
notypes under the ethanol condition. It should be noted
that the iLL672 predictions were obtained directly from
[3] and thus the growth rate threshold was not optimized
similarly to iMM904 predictions. Overall, when viability
cutoff is chosen as indicated above for each method sepa-
rately, the three prediction methods (FBA, MOMA, and
linear MOMA) perform similarly.

While the full gene complement in iMM904 greatly
increased the number of true viable predictions, the full
model also made significantly more false viable predic-
tions compared with reduced iMM904 and iLL672 predic-
tions. However, it is important to note that 143 reactions
involved in dead-end biosynthetic pathways were actually
removed from iFF708 to build the iLL672 reconstruction
[3]. These dead-ends are considered "knowledge gaps" in
pathways that have not been fully characterized and, as a
result, lead to false viable predictions when determining
gene essentiality if the pathway is in fact required for
growth under a certain condition [2,26]. As more of these
pathways are elucidated and included in the model to fill
in existing network gaps, we can expect false viable predic-
tion rates to consequently decrease. Thus, while a larger
network has a temporarily reduced capacity to accurately
predict gene deletion phenotypes, it captures a more com-
plete picture of currently known metabolic functions and
provides a framework for network expansion as new path-
ways are elucidated [48].

Il. Inferring intracellular perturbation states from
metabolic profiles

Aerobic and anaerobic gdh|/GDH2 mutant behavior

The gdh1/GDH2 mutant strain was previously developed
[49,50] in order to lower NADPH consumption in ammo-
nia assimilation, which would in turn favor the NADPH-
dependent fermentation of xylose. In this strain, the
NADPH-dependent glutamate dehydrogenase, Gdhl, was
deleted and the NADH-dependent form of the enzyme,
Gdh2, was overexpressed. The net effect is to allow effi-
cient assimilation of ammonia into glutamate using
NADH instead of NADPH as a cofactor. While growth
characteristics remained unaffected, relative quantities of
secreted metabolites differed between the wild-type and
mutant strain under aerobic and anaerobic conditions.

We analyzed EM data for the gdh1/GDH2 and wild-type
strains reported in [31] under aerobic and anaerobic con-
ditions separately using both FBA optimization and sam-
pling-based approaches as described in Methods. 43
measured extracellular and intracellular metabolites from
the original dataset [31], primarily of central carbon and
amino acid metabolism, were explicitly represented in the
iMM904 network [see Additional file 4]. Extracellular
metabolite levels were used to formulate secretion con-
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straints and differential intracellular metabolites were
used to compare and validate the intracellular flux predic-
tions. Perturbed reactions from the FBA results were deter-
mined by calculating relative flux changes, and reaction Z-
scores were calculated from the sampling analysis to
quantify flux changes between the mutant and wild-type
strains, with Z,.,ion > 1.96 corresponding to a two-tailed
p-value < 0.05 and considered to be significantly per-
turbed [see Additional file 4].

To validate the predicted results, reaction flux changes
from both FBA and sampling methods were compared to
differential intracellular metabolite level data measured
from the same study. Intracellular metabolites involved in
highly perturbed reactions (i.e. reactants and products)
predicted from FBA and sampling analyses were identified
and compared to metabolites that were experimentally
identified as significantly changed (p < 0.05) between
mutant and wild-type. Statistical measures of recall, accu-
racy, and precision were calculated and represent the pre-
dictive sensitivity, exactness, and reproducibility
respectively. From the sampling analysis, a considerably
larger number of significantly perturbed reactions are pre-
dicted in the anaerobic case (505 reactions, or 70.7% of
active reactions) than in aerobic (394 reactions, or 49.8%
of active reactions). The top percentile of FBA flux changes
equivalent to the percentage of significantly perturbed
sampling reactions were compared to the intracellular
data. Results from both analyses are summarized in Table
2. Sampling predictions were considerably higher in recall
than FBA predictions for both conditions, with respective
ranges of 0.83-1 compared to 0.48-0.96. Accuracy was
also higher in sampling predictions; however, precision
was slightly better in the FBA predictions as expected due
to the smaller number of predicted changes. Overall, the
sampling predictions of perturbed intracellular metabo-
lites are strongly consistent with the experimental data
and significantly outperforms that of FBA optimization
predictions in accurately predicting differential metabo-
lites involved in perturbed intracellular fluxes.

Table 2: Statistical comparison of the differential intracellular
metabolite data set (p < 0.05) with metabolites involved in
perturbed reactions predicted by FBA optimization and
sampling analyses for aerobic and anaerobic gdhI/GDH2 mutant.

Aerobic Anaerobic Overall
FBA  Sampling  FBA  Sampling  FBA  Sampling
Recall 0.48 0.83 0.96 1.00 0.71 091

Accuracy  0.55 0.62 0.64 0.64 0.60 0.63
Precision 0.78 0.69 0.64 0.63 0.68 0.66

Overall statistics indicate combined results of both conditions.
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Figure 3

Perturbation reaction subnetwork of gdhI/GDH2
mutant under aerobic conditions. The network illus-
trates a simplified subset of highly perturbed reactions con-
nected to aerobically-secreted metabolites predicted from
the sampling analysis of the gdh//GDH2 mutant strain. The
major secreted metabolites (glutamate, proline, D-lactate,
and 2-hydroxybuturate) were also detected in the anaerobic
condition. Metabolite abbreviations are found in Additional
file 1.

Perturbation subnetworks can be drawn to visualize pre-
dicted significantly perturbed intracellular reactions and
illustrate their connection to the observed secreted metab-
olites in the aerobic and anaerobic gdh1/GDH2 mutants.
Figure 3 shows an example of a simplified aerobic pertur-
bation subnetwork consisting primarily of proximal path-
ways connected directly to a subset of major secreted
metabolites (glutamate, proline, D-lactate, and 2-
hydroxybuturate). Figure 4 displays anaerobic reactions
with Z-scores of similar magnitude to the perturbed reac-
tions in Figure 3. The same subset of metabolites is also
present in the larger anaerobic perturbation network and
indicates that the NADPH/NADH balance perturbation
induced by the gdh1/GDH2 manipulation has widespread
effects beyond just altering glutamate metabolism anaer-
obically. Interestingly, it is clear that the majority of the
secreted metabolite pathways involve connected per-
turbed reactions that broadly converge on glutamate.
Note that Figures 3 and 4 only show the subnetworks that
consisted of two or more connected reactions - for a
number of secreted metabolites no contiguous perturbed
pathway could be identified by the sampling approach.
This indicates that the secreted metabolite pattern alone is
not sufficient to determine which specific production and
secretion pathways are used by the cell for these metabo-
lites.

To further highlight metabolic regions that have been sys-
temically affected by the gdhl1/GDH2 modification,
reporter metabolite and subsystem methods [30] were
used to summarize reaction scores around specific metab-
olites and in specific metabolic subsystems. The top ten
significant scores for metabolites/subsystems associated
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Figure 4

Perturbation reaction subnetwork of gdhI/GDH2 mutant under anaerobic conditions. Subnetwork illustrates the
highly perturbed anaerobic reactions of similar Z,,;,, magnitude to the reactions in Figure 3. A significantly larger number of
reactions indicates mutant metabolic effects are more widespread in the anaerobic environment. The network shows that per-
turbed pathways converge on glutamate, the main site in which the gdh|/GDH2 modification was introduced, which suggests
that the direct genetic perturbation effects are amplified under this environment. Metabolite abbreviations are found in Addi-

tional file |.

with more than three reactions are summarized in Tables
3 (aerobic) and 4 (anaerobic), with Z > 1.64 correspond-
ing to p < 0.05 for a one-tailed distribution. Full data for
all reactions, reporter metabolites, and reporter subsys-
tems is included [see Additional file 4].

Perturbations under aerobic conditions largely consisted
of pathways involved in mediating the NADH and
NADPH balance. Among the highest scoring aerobic sub-
systems are TCA cycle and pentose phosphate pathway -
key pathways directly involved in the generation of
NADH and NADPH. Reporter metabolites involved in
these subsystems - glyceraldehyde-3-phosphate, ribulose-
5-phosphate, and alpha-ketoglutarate — were also identi-
fied. These results are consistent with flux and enzyme
activity measurements of the gdh1/GDH2 strain under aer-
obic conditions [32], which reported significant reduction
in the pentose phosphate pathway flux with concomitant
changes in other central metabolic pathways. Levels of

several TCA cycle intermediates (e.g. fumarate, succinate,
malate) were also elevated in the gdhl/GDH2 mutant
according to the differential intracellular metabolite data.
Altered energy metabolism, as indicated by reporter
metabolites (i.e. ubiquinone-6, ubiquinol-6, mitochon-
drial proton) and subsystem (oxidative phosphorylation),
is certainly feasible as NADH is a primary reducing agent
for ATP production. Pentose phosphate pathway and
NAD biosynthesis also appears among the most perturbed
anaerobic subsystems, further suggesting perturbed cofac-
tor balance as a common, dominant effect under both
conditions.

Glutamate dehydrogenase is a critical enzyme of amino
acid biosynthesis as it acts as the entry point for ammo-
nium assimilation via glutamate. Consequently, meta-
bolic subsystems involved in amino acid biosynthesis
were broadly perturbed as a result of the gdhl/GDH2
modification in both aerobic and anaerobic conditions.
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Table 3: List of the top ten significant reporter metabolite and
subsystem scores for the gdh/GDH2 vs. wild type comparison in
aerobic conditions.

Reporter metabolite Z-score No of reactions*

L-proline [c] 2.71 4
Carbon dioxide [m] 2.51 15
Proton [m] 2.19 51
Glyceraldehyde 3-phosphate [c] 1.93 7
Ubiquinone-6 [m] 1.82 5
Ubiquinol-6 [m] 1.82 5
Ribulose-5-phosphate [c] 1.80 4
Uracil [c] 1.74 4
L-homoserine [c] 1.72 4
Alpha-ketoglutarate [m] 1.71 8
Reporter subsystem Z-score No of reactions
Citric Acid Cycle 4.58 7
Pentose Phosphate Pathway 3.29 12
Glycine and Serine Metabolism 2.69 17
Alanine and Aspartate Metabolism 2.65 6
Oxidative Phosphorylation 1.79 8
Thiamine Metabolism 1.54 8
Arginine and Proline Metabolism 1.44 20
Other Amino Acid Metabolism 1.28 5
Glycolysis/Gluconeogenesis 0.58 14
Anaplerotic reactions 0.19 9

*Number of reactions categorized in a subsystem or found to be
neighboring each metabolite

For example, the proline biosynthesis pathway that uses
glutamate as a precursor was significantly perturbed in
both conditions, as supported by significantly changed
intracellular and extracellular levels. There were differ-
ences, however, in that more amino acid related subsys-
tems were significantly affected in the anaerobic case
(Table 4), further highlighting that altered ammonium
assimilation in the mutant has a more widespread effect
under anaerobic conditions. This effect is especially pro-
nounced for threonine and nucleotide metabolism, which
were predicted to be significantly perturbed only in anaer-
obic conditions. Intracellular threonine levels were
amongst the most significantly reduced relative to other
differential intracellular metabolites in the anaerobically
grown gdh1/GDH?2 strain (see [31] and Additional file 4),
and the relationship between threonine and nucleotide
biosynthesis is further supported by threonine's recently
discovered role as a key precursor in yeast nucleotide bio-
synthesis [51]. Other key anaerobic reporter metabolites
are glycine and 10-formyltetrahydrofolate, both of which
are involved in the cytosolic folate cycle (one-carbon
metabolism). Folate is intimately linked to biosynthetic
pathways of glycine (with threonine as its precursor) and
purines by mediating one-carbon reaction transfers neces-
sary in their metabolism and is a key cofactor in cellular
growth [52]. Thus, the anaerobic perturbations identified

http://www.biomedcentral.com/1752-0509/3/37

in the analysis emphasize the close relationship between
threonine, folate, and nucleotide metabolic pathways as
well as their potential connection to perturbed ammo-
nium assimilation processes. Interestingly, this associa-
tion has been previously demonstrated at the
transcriptional level as yeast ammonium assimilation (via
glutamine synthesis) was found to be co-regulated with
genes involved in glycine, folate, and purine synthesis
[53].

In summary, the overall differences in predicted gdhl/
GDH2 mutant behavior under aerobic and anaerobic con-
ditions show that changes in flux states directly related to
modified ammonium assimilation pathway are amplified
anaerobically whereas the indirect effects through NADH/
NADPH balance are more significant aerobically. Per-
turbed metabolic regions under aerobic conditions were
predominantly in central metabolic pathways involved in
responding to the changed NADH/NADPH demand and
did not necessarily emphasize that glutamate dehydroge-
nase was the site of the genetic modification. The majority
of affected anaerobic pathways were involved directly in
modified ammonium assimilation as evidenced by 1) sig-
nificantly perturbed amino acid subsystems, 2) a broad
perturbation subnetwork converging on glutamate (Fig-
ure 4), and 3) glutamate as the most significant reporter
metabolite (Table 4).

Potassium-limited and excess ammonium environments

A recent study reported that potassium limitation resulted
in significant growth retardation effect in yeast due to
excess ammonium uptake when ammonium was pro-
vided as the sole nitrogen source [33]. The proposed
mechanism for this effect was that ammonium could to
be freely transported through potassium channels when
potassium concentrations were low in the media environ-
ment, thereby resulting in excess ammonium uptake [33].
As a result, yeast incurred a significant metabolic cost in
assimilating ammonia to glutamate and secreting signifi-
cant amounts of glutamate and other amino acids in
potassium-limited conditions as a means to detoxify the
excess ammonium. A similar effect was observed when
yeast was grown with no potassium limitation, but with
excess ammonia in the environment. While the observed
effect of both environments (low potassium or excess
ammonia) was similar, quantitatively unique amino acid
secretion profiles suggested that internal metabolic states
in these conditions are potentially different.

In order to elucidate the differences in internal metabolic
states, we utilized the iMM904 model and the EM profile
analysis method to analyze amino acid secretion profiles
for a range of low potassium and high ammonia condi-
tions reported in [33]. As before, we utilized amino acid
secretion patterns as constraints to the iMM904 model,
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Table 4: List of top ten significant reporter metabolite and subsystem scores for the gdhl/GDH?2 vs. wild type comparison in anaerobic

conditions.
Reporter metabolite Z-score No of reactions
Glutamate [c] 4.52 35
Aspartate [c] 3.21 I
Alpha-ketoglutarate [c] 2.66 17
Glycine [c] 2.65 7
Pyruvate [m] 2.56 7
Ribulose-5-phosphate [c] 243 4
Threonine [c] 2.28 6
10-formyltetrahydrofolate [c] 227 5
Fumarate [c] 2.27 5
L-proline [c] 2.04 4
Reporter subsystem Z-score No of reactions
Valine, Leucine, and Isoleucine Metabolism 3.97 15
Tyrosine, Tryptophan, and Phenylalanine Metabolism 3.39 23
Pentose Phosphate Pathway 3.29 I
Purine and Pyrimidine Biosynthesis 3.08 40
Arginine and Proline Metabolism 2.96 19
Threonine and Lysine Metabolism 2.74 14
NAD Biosynthesis 2.66 7
Alanine and Aspartate Metabolism 2.65 6
Histidine Metabolism 2.24 10
Cysteine Metabolism 1.85 10

sampled the allowable solution space, computed reaction
Z-scores for changes from a reference condition (normal
potassium and ammonia), and finally summarized the
resulting changes using reporter metabolites. Figure 5
shows a clustering of the most significant reporter metab-
olites (Z > 1.96 in any of the four conditions studied)
obtained from this analysis across the four conditions
studied. Interestingly, the potassium-limited environ-
ment perturbed only a subset of the significant reporter
metabolites identified in the high ammonia environ-
ments. Both low potassium environments shared a con-
sistent pattern of highly perturbed amino acids and
related precursor biosynthesis metabolites (e.g. pyruvate,
PRPP, alpha-ketoglutarate) with high ammonium envi-
ronments. The amino acid perturbation pattern (indi-
cated by red labels in Figure 5) was present in the
ammonium-toxic environments, although the pattern
was slightly weaker for the lower ammonium concentra-
tion. Nevertheless, the results clearly indicate that a simi-
lar ammonium detoxifying mechanism that primarily
perturbs pathways directly related to amino acid metabo-
lism exists under both types of media conditions.

In addition to perturbed amino acids, a secondary effect
notably appears at high ammonia levels in which meta-
bolic regions related to folate metabolism are significantly
affected. As highlighted in green in Figure 3, we predicted
significantly perturbed key metabolites involved in the
cytosolic folate cycle. These include tetrahydrofolate

derivatives and other metabolites connected to the folate
pathway, namely glycine and the methionine-derived
methylation cofactors S-adenosylmethionine and S-ade-
nosylhomocysteine. Additionally, threonine was identi-
fied to be a key perturbed metabolite in excess
ammonium conditions. These results further illustrate the
close connection between threonine biosynthesis, folate
metabolism involving glycine derived from its threonine
precursor, and nucleotide biosynthesis [51] that was dis-
cussed in conjunction with the gdh1/GDH?2 strain data.
Taken together with the anaerobic gdh1/GDH?2 data, the
results consistently suggest highly perturbed threonine
and folate metabolism when amino acid-related pathways
are broadly affected.

In both ammonium-toxic and potassium-limited envi-
ronments, impaired cellular growth was observed, which
can be attributed to high energetic costs of increased
ammonium assimilation to synthesize and excrete amino
acids. However, under high ammonium environments,
reporter metabolites related to threonine and folate
metabolism indicated that their perturbation, and thus
purine supply, may be an additional factor in decreasing
cellular viability as there is a direct relationship between
intracellular folate levels and growth rate [54]. Based on
these results, we concluded that while potassium-limited
growth in yeast indeed shares physiological features with
growth in ammonium excess, its effects are not as detri-
mental as actual ammonium excess. The effects on proxi-
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Figure 5

Clustergram of top reporter metabolites (i.e. in yellow) in ammonium-toxic and potassium-limited conditions.
Amino acid perturbation patterns (shown in red) were shown to be consistently scored across conditions, indicating that
potassium-limited environments K1 (lowest concentration) and K2 (low concentration) elicited a similar ammonium detoxifica-
tion response as ammonium-toxic environments NI (high concentration) and N2 (highest concentration). Metabolites associ-
ated with folate metabolism (highlighted in green) are also highly perturbed in ammonium-toxic conditions. Metabolite
abbreviations are found in Additional file I.
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mal amino acid metabolic pathways are similar in both
environments as indicated by the secretion of the majority
of amino acids. However, when our method was applied
to analyze the physiological basis behind differences in
secretion profiles between low potassium and high
ammonium conditions, ammonium excess was predicted
to likely disrupt physiological ammonium assimilation
processes, which in turn potentially impacts folate metab-
olism and associated cellular growth.

Conclusion

The method presented in this study presents an approach
to connecting intracellular flux states to metabolites that
are excreted under various physiological conditions. We
showed that well-curated genome-scale metabolic net-
works can be used to integrate and analyze quantitative
EM data by systematically identifying altered intracellular
pathways related to measured changes in the extracellular
metabolome. We were able to identify statistically signifi-
cant metabolic regions that were altered as a result of
genetic (gdh1/GD2 mutant) and environmental (excess
ammonium and limited potassium) perturbations, and
the predicted intracellular metabolic changes were con-
sistent with previously published experimental data
including measurements of intracellular metabolite levels
and metabolic fluxes. Our reanalysis of previously pub-
lished EM data on ammonium assimilation-related
genetic and environmental perturbations also resulted in
testable hypotheses about the role of threonine and folate
pathways in mediating broad responses to changes in
ammonium utilization. These studies also demonstrated
that the sampling-based method can be readily applied
when only partial secreted metabolite profiles (e.g. only
amino acids) are available.

With the emergence of metabolite biofluid biomarkers as
a diagnostic tool in human disease [55,56] and the avail-
ability of genome-scale human metabolic networks [1],
extensions of the present method would allow identifying
potential pathway changes linked to these biomarkers.
Employing such a method for studying yeast metabolism
was possible as the metabolomic data was measured
under controllable environmental conditions where the
inputs and outputs of the system were defined. Measured
metabolite biomarkers in a clinical setting, however, is far
from a controlled environment with significant variations
in genetic, nutritional, and environmental factors
between different patients. While there are certainly limi-
tations for clinical applications, the method introduced
here is a progressive step towards applying genome-scale
metabolic networks towards analyzing biofluid metabo-
lome data as it 1) avoids the need to only study optimal
metabolic states based on a predetermined objective func-
tion, 2) allows dealing with noisy experimental data
through the sampling approach, and 3) enables analysis
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even with limited identification of metabolites in the
data. The ability to establish potential connections
between extracellular markers and intracellular pathways
would be valuable in delineating the genetic and environ-
mental factors associated with a particular disease.
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