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Abstract

Non-random connectivity can emerge without structured external input driven by activity-

dependent mechanisms of synaptic plasticity based on precise spiking patterns. Here we

analyze the emergence of global structures in recurrent networks based on a triplet model of

spike timing dependent plasticity (STDP), which depends on the interactions of three pre-

cisely-timed spikes, and can describe plasticity experiments with varying spike frequency

better than the classical pair-based STDP rule. We derive synaptic changes arising from

correlations up to third-order and describe them as the sum of structural motifs, which deter-

mine how any spike in the network influences a given synaptic connection through possible

connectivity paths. This motif expansion framework reveals novel structural motifs under

the triplet STDP rule, which support the formation of bidirectional connections and ultimately

the spontaneous emergence of global network structure in the form of self-connected

groups of neurons, or assemblies. We propose that under triplet STDP assembly structure

can emerge without the need for externally patterned inputs or assuming a symmetric pair-

based STDP rule common in previous studies. The emergence of non-random network

structure under triplet STDP occurs through internally-generated higher-order correlations,

which are ubiquitous in natural stimuli and neuronal spiking activity, and important for cod-

ing. We further demonstrate how neuromodulatory mechanisms that modulate the shape of

the triplet STDP rule or the synaptic transmission function differentially promote structural

motifs underlying the emergence of assemblies, and quantify the differences using graph

theoretic measures.

Author summary

Emergent non-random connectivity structures in different brain regions are tightly

related to specific patterns of neural activity and support diverse brain functions. For

instance, self-connected groups of neurons, known as assemblies, have been proposed to

represent functional units in brain circuits and can emerge even without patterned exter-

nal instruction. Here we investigate the emergence of non-random connectivity in

recurrent networks using a particular plasticity rule, triplet STDP, which relies on the

interaction of spike triplets and can capture higher-order statistical dependencies in
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neural activity. We derive the evolution of the synaptic strengths in the network and

explore the conditions for the self-organization of connectivity into assemblies. We dem-

onstrate key differences of the triplet STDP rule compared to the classical pair-based rule

in terms of how assemblies are formed, including the realistic asymmetric shape and influ-

ence of novel connectivity motifs on network plasticity driven by higher-order correla-

tions. Assembly formation depends on the specific shape of the STDP window and

synaptic transmission function, pointing towards an important role of neuromodulatory

signals on formation of intrinsically generated assemblies.

Introduction

The synaptic wiring between neurons—originally proposed as a mechanism for learning and

memory—is sculpted by experience and has become a most relevant link between circuit struc-

ture and function [1]. The original formulation of Hebbian plasticity, whereby “cells that fire

together, wire together” [2, 3], fostered the concept of ‘cell assemblies’ [4], defined as groups of

neurons that are repeatedly co-activated leading to the strengthening of synaptic connectivity

between individual neurons. This has suggested that activity-dependent synaptic plasticity,

including both long-term potentiation and long-term depression, is a key mechanism for the

emergence of assemblies in the organization of neural circuits [5–7]. These interconnected

groups of neurons have become an important target for many theories of neural computation

and associative memory [8–11]. Recent technological developments that enable multiple neu-

rons to be simultaneously recorded have provided the much needed physiological evidence of

assembly organization [12–15]. For instance, synaptically connected neurons tend to receive

more common input than would be expected by chance, [12, 16–18] and cortical pyramidal

neurons tend to be more strongly connected to neurons that share stimulus preference [13, 19,

20], providing evidence for clustered architecture. It has been proposed that this organization

enables the cortex to intrinsically generate reverberating patterns of neural activity when rep-

resenting different stimulus features [1, 21]. Thus, neuronal assemblies can be interpreted as

the building blocks of cortical microcircuits which are differentially recruited during distinct

functions, such as the binding of different features of a sensory stimulus [7, 17, 22]. In addition

to cortical circuits, neuronal assemblies have also been observed in the optic tectum (a struc-

ture homologous to the superior colliculus in mammals [23]) in the developing zebrafish larva

[24–27]. Experiments in sensory deprived larvae have demonstrated that the basic structure of

spontaneous activity and functional connectivity emerges without intact retinal inputs, sug-

gesting that neuronal assemblies are intrinsically generated in the tectum and not just the

product of correlated external inputs [25–27]. This raises the important question of what

drives the emergence of these clustered structures, and whether patterned external input is

necessary.

To understand the emergence of such non-random connectivity, a growing body of theo-

retical and computational work has been developed to link connectivity architecture to the

coordinated spiking activity of neurons, especially in recurrent networks [28–41]. These stud-

ies can be divided into two classes: those that examine the influence of externally structured

input on activity-dependent refinement [42–47], and those that investigate the autonomous

emergence of non-random connectivity in the absence of patterned external input, purely

driven by emergent network interactions [5, 6, 48]. Specifically, assemblies in recurrent net-

works can be imprinted based on internally-generated network interactions [6] or through

rate-based plasticity where inputs with higher firing rates to subsets of neurons strengthen
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recurrent connections [49, 50]; assemblies can also be initially determined by externally pat-

terned input but maintained by internal correlations [51].

Despite this success, all of these studies have assumed pair-based models of STDP, which

induce plasticity based on the precise timing and order of a pair of pre- and postsynaptic spikes

[52, 53]. Here, we consider a spike-based learning rule, “the triplet STDP model” [54], which

uses sets of three spikes (triplets) to induce plasticity. Specifically, we focus on the ‘minimal’

triplet STDP model, where only potentiation depends on the interval between the pre- and

postsynaptic spikes, and on the timing of the previous postsynaptic spike. This triplet learning

rule has been shown to explain a variety of synaptic plasticity data [55, 56] significantly better

than pair-based STDP [54]. We have previously shown a tight correspondence between the

triplet STDP rule and the well-known Bienenstock-Cooper-Munro (BCM) synaptic learning

rule, which maximizes the selectivity of the postsynaptic neuron, and thereby offers a possible

explanation for experience-dependent cortical plasticity such as orientation and direction

selectivity [57]. In addition, triplet STDP can also induce selectivity for input patterns consist-

ing of up to third-order correlations, here referred to as higher-order correlations (HOCs).

HOCs have been experimentally measured in several brain areas [58], and shown to account

for a substantial amount of information transfer in sensory cortex [58–61]. HOCs are also

important for characterizing the firing of a postsynaptic neuron [62, 63], circuit function and

coding [64, 65], and the synchronous firing and the distribution of activity in a neuronal pool

[66–69]. Here we investigated the functional significance of such HOCs for shaping recurrent

network structure through synaptic plasticity.

First, we investigate how HOCs up to third order affect the development of connectivity in

recurrent networks of Poisson spiking neurons in the absence of structured external stimuli,

where the stochastic activity of each neuron is described by a mutually exciting Hawkes pro-

cess [70]. Assuming a slow change of synaptic efficacies and fast spiking dynamics, we develop

a formal analytical framework for the evolution of synaptic connections in the network based

on the second- and third-order cumulants of spike timing interactions, which arise from

assuming an STDP rule governed by pairs and triplets of spikes [54, 55]. The simplified

neuronal model allows us to write exact and self-consistent equations for the synaptic change

depending on the full network connectivity by taking into account non-local interactions

between different neurons in the network and writing them as a sum of structural motifs of

varying orders. We demonstrate differences to the classical pair-based STDP rule [52, 71] that

ignores those HOCs, and compare the relative strength of the emergent structural motifs up to

third-order induced by triplet STDP. Second, we examine the biological conditions which pro-

mote the formation of assembly structures of self-connected neurons without externally struc-

tured inputs under the triplet STDP rule. We find that this is achieved either by modulating

the shape of the STDP function through neuromodulators or the shape of the evoked postsyn-

aptic current (EPSC) and characterize changes in functional connectivity in terms of graph

theoretic measures [25–27]. Third, we show that the novel structural motifs, and specifically

‘loop’ motifs, which follow from the triplet STDP rule, are crucial for the spontaneous emer-

gence of assemblies. Finally, we compare them to assemblies generated via correlated external

input.

Results

We present two main results: first, we derive a formal analytical framework for the evolution

of synaptic weights depending on the second- and third-order cumulants of spike time interac-

tions under the triplet STDP rule by expressing them as a sum of structural motifs; second, we
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discuss the functional implications of this framework and present the biological conditions

which promote the formation of assemblies without external instruction.

Average synaptic modification due to the interaction of pairs and triplets

of spikes in recurrent networks

To study the autonomous emergence of assemblies in a recurrent network from a general

form of STDP that includes the contribution of pairs and triplets of spikes to synaptic plastic-

ity, we require a minimal theoretical representation of the network with plastic synapses

driven by internal correlations in the spike timing statistics. In our model, structure is given

by the connectivity matrix W between all excitatory neurons in the network (“all-to-all con-

nectivity”), where the synaptic efficacy element Wij denotes the connection strength between

postsynaptic neuron i and presynaptic neuron j. The analytical description of the dynamics

in recurrent networks can be dauntingly complex. On the one hand, to rigorously analyze

the impact of STDP on the formation of functional structures it is indispensable to take into

account the precise timing of action potentials or spikes. Therefore, models of neural activity

that are based on rates cannot fulfill this criterion [72]. More elaborate models such as Hodg-

kin-Huxley with multiple ion channels [73] and even the simpler spiking leaky integrate-

and-fire (LIF) models are much more accurate in reproducing the spiking dynamics of a

population of neurons [74–76]. Although they are computationally tractable, to extract

extensive and exact mathematical features from these models remains an elusive task. Under

certain conditions of approximately asynchronous firing, the spiking statistics in networks of

LIF neuron can be described by a linear theory [29]. Using this approach, here we make

approximations for the spiking dynamics of each individual excitatory cell and treat each

pre- and postsynaptic spike train as if they follow inhomogeneous Poisson statistics [6, 44,

52, 57].

In this model we assume that the probability of each neuron emitting an action potential at

a certain time (the ‘intensity’ or mean activity) is proportional to the weighted sum of the pre-

ceding activity of all the other cells in the network and a constant, unstructured external input

(Fig 1A). The activity of each neuron in this network is a stochastic process, also referred to as

a ‘mutually exciting point process’ or a Hawkes process [70]. The availability of an exact

expression for spike correlations in this model allows us to develop a precise theory for the syn-

aptic efficacies’ dynamics that are governed by different forms of STDP. To prevent runaway

excitation, we also consider that the firing of excitatory neurons is modulated by the activity of

a population of inhibitory neurons (Fig 1A). We assume that the total inhibitory input to each

excitatory neuron is tuned in order to balance the sum of inhibitory efficacies with the sum of

the excitatory ones (Methods) [6, 77–79].

Given the connectivity matrix W and assuming a slow learning rate (much slower than

the dynamics of neural activity), the rate of change in the strength of synaptic efficacy h _Wiji

between postsynaptic neuron i and presynaptic neuron j, can be expressed in terms of the

product of the time dependent cumulants of different orders and the STDP function, accord-

ingly (Methods). Specifically, we consider STDP learning rules where plasticity depends on

the timing and order of pairs and triplets of spikes, referred to as pair-based and triplet

STDP. Initially, we make no assumptions about the shape of these learning rules keeping the

framework general. The sign and magnitude of the net weight modification depends on

the time interval between the firing of the pre- and postsynaptic neurons, and also on the rel-

ative spike times of individual pre- and postsynaptic neurons (Fig 1B). The exact expression

for the evolution of the average (denoted by h�i) synaptic efficacy in the recurrent
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network due to STDP is

h _W STDP
ij i ¼

Z1

� 1

ðCijðt1Þ þ rirjÞL2ðt1Þdt1

þ

ZZ1

� 1

ðKijðt1; t2Þ þ riðCijðt1Þ þ Cijðt2 � t1ÞÞ þ rjCiiðt2Þ þ r2

i rjÞL3;yðt1; t2Þdt1 dt2

þ

ZZ1

� 1

ðKijðt1; t3Þ þ rjðCijðt1Þ þ Cijðt3 � t1ÞÞ þ riCjjðt3Þ þ rir
2

j ÞL3;xð� t1; � t3Þdt1 dt3:

ð1Þ

Fig 1. Framework set-up. A. A network of excitatory neurons (light blue triangles) fire stochastically, while their activity is driven by

unstructured external input (red arrows) and modulated by a population of inhibitory neurons (yellow circles). Excitatory connections

among the neurons can be weak (gray dashed arrows) or strong (black solid arrows), unidirectional or bidirectional. B. Cumulants of the

spike trains (see Eq 1). The second-order cumulants Cij, Cii and Cjj are calculated based on the time difference between a pair of spikes (cross-

covariance in green; auto-covariances in orange/red). The third-order cumulant Kij is calculated based on the time differences between three

spikes (purple). The spike triplets can be two post- and one presynaptic spikes, or one post- and two presynaptic spikes. The time differences

are: τ1 between a presynaptic spike and a postsynaptic spike, τ2 between different postsynaptic spikes and τ3 between different presynaptic

spikes. C. STDP-induced plasticity by pairs and triplets of spikes. Left: An example of a classical pair-based STDP rule, with a learning

window denoted by L2. Potentiation is triggered by a postsynaptic following a presynaptic spike (τ1 = tpost − tpre> 0), whereas if a presynaptic

spike follows a postsynaptic spike (τ1 = tpost − tpre < 0), depression is induced. The total potentiation (depression) is given by the red (blue)

area under the curve. Right: Examples of triplet STDP rules denoted by L3,y and L3,x. Potentiation (red) and depression (blue) are given by

triplets of spikes: post-pre-post with a time difference t2 ¼ tpost � t0post, and pre-post-pre with a time difference t3 ¼ tpre � t0pre, respectively. D.

Minimal triplet STDP rule where potentiation depends on triplets of spikes L3 and depression on pairs of spikes L2.

https://doi.org/10.1371/journal.pcbi.1007835.g001
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Here ri and rj denote the mean firing rates of neuron i and j, respectively; Cij is the cross-

covariance between neuron i and neuron j, with Cii and Cjj being the auto-covariances (note

that all of these covariance terms, Cij, Cii and Cjj, make up the second-order cumulant); and

Kij is the third-order cumulant between neuron i and neuron j. These quantities represent

internal (i.e. not driven by external input) correlations in the network and are calculated as

functions of the excitatory postsynaptic current (EPSC), and assumed to be identical for

every pair of neurons. Both the second-order cumulants C and the third-order cumulants K
are probability densities of pairs and triplets of spikes separated by the given time lapses τ
accordingly (Fig 1B). τ1 is the time difference between a spike emitted by the presynaptic

neuron and one from the postsynaptic neuron, whereas τ2 and τ3 are the time intervals

between different spikes from the postsynaptic neuron and the presynaptic neuron, respec-

tively. The cumulant Kij is calculated for both ‘post-pre-post’ or ‘pre-post-pre’ spike triplets

and therefore depends on combinations of τ1 and τ2 or τ3, according to each case.

The STDP functions that describe how potentiation or depression depend on the spike tim-

ing intervals are given by L2 for pairs of spikes, and L3,x and L3,y for triplets of spikes. The sub-

indices x and y correspond to the triplet sets ‘pre-post-pre’ and ‘post-pre-post,’ respectively.

While Eq 1 can be calculated for any shape of the STDP function that depends on pairs and

triplets of spikes, an illustrative example for these learning rules, commonly used in other stud-

ies based on fits to experimental data [54, 55, 71], is given in Fig 1C.

The average synaptic efficacy change (Eq 1) is sufficient to describe the plasticity dynamics

when the learning rate is small relative to the spiking dynamics, and noise in the STDP dynam-

ics, arising from random fluctuations, is averaged out. Furthermore, Eq 1 is combined with

heterosynaptic competition [80] to restrict the amount of connections a neuron can make

with the rest and prevent the dominance of a few (Methods). For the sake of simplicity, in the

next steps we consider that triplets of spikes contribute only to potentiation and thus L3,y(τ1,

τ2) = L3(τ1, τ2) and L3,x(τ1, τ3) = 0, for all τ1 and τ3, in agreement with the so-called ‘minimal’

triplet STDP rule [54] (Fig 1D). Nevertheless, if spike triplets would also be taken into account

for depression, the derivation would be identical, with the corresponding modification to the

variables involved. We can rewrite Eq (1) in the Fourier domain as

h _W STDP
ij i ¼ rirj

�
~L2ð0Þ þ ri~L3ð0; 0Þ

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Independent spikes

þ

ZZ1

� 1

h
~Cijðo1Þ

~L2ð� o1Þdðo2Þ þ rið~Cijðo1Þdðo2Þ þ
~Cijðo2Þdðo1 þ o2ÞÞ

~L3ð� o1; � o2Þ
i
do1 do2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pre-post pairwise correlations ð�Þ

þrj

ZZ1

� 1

~Ciiðo2Þ
~L3ð� o1; � o2Þdðo1Þdo1do2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Post-post pairwise correlations ð��Þ

þ

ZZ1

� 1

~Kijðo1;o2Þ
~L3ð� o1; � o2Þdo1 do2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Post-pre-post triplet correlations ð���Þ

ð2Þ

where we use the notation ~f for the Fourier transform of a function f and δ is the Dirac delta

function. It should be noted that Eq 2 is not the Fourier transform of Eq 1 but rather an equiva-

lent expression of the latter. This comes about because we can express the integral of the prod-

uct of two functions as the convolution of the Fourier transform of those functions, evaluated

at zero.
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This formulation of the previous equation allows us to clearly break down the contribution

of spike interactions of different orders to the average synaptic efficacy in the recurrent net-

work. The first term of Eq 2 considers the change in synaptic efficacy that is obtained from

independent spiking and thus depends on the first-order cumulant (the mean firing rates) of

the activity of both the pre- and postsynaptic neurons, rj and ri, respectively. As firing rates

increase, ‘chance’ contributions to plasticity can occur. The second and third term account for

the probability of observing changes to the mean synaptic efficacy due to pairwise correlations

in the pre- and postsynaptic neurons. Cij refers to the family of probabilities that generate pair-

wise cross-correlations (second-order cumulant) between neurons i and j, depending on

spikes of other neurons in the network (Fig 1B, green). Accordingly, Cii includes the family of

probabilities that generate pairwise auto-correlations in the same neuron i due to the spiking

activity of all other neurons in the network (Fig 1B, orange). Therefore, the second (�) and

third (��) terms describe the total contribution of correlated spike pairs to plasticity through

the pair-based STDP rule L2 (Fig 1C, left) and the triplet STDP rule L3 (Fig 1C, right). In the

case of the latter, the first-order cumulant of the uncorrelated single postsynaptic neuron’s

spikes, ri, is also included in the second term (�) and the first-order cumulant of the uncorre-

lated single presynaptic neuron’s spikes, rj, in the third term (��). The fourth term (���)

describes the total contribution of correlated spike triplets (third-order cumulant) to plasticity.

Thus, Kij includes the family of probabilities for third-order correlations, where the relative

spike timing interacts with the triplet STDP learning window L3 to induce plasticity (Fig 1B,

purple and Fig 1C, right).

In conclusion, we have derived an exact analytical expression for the average change in syn-

aptic efficacy due to firing rates, pairwise and triplet correlations under a general STDP rule

that includes pairwise and triplet spike interactions. The resulting cumulants of up to third

order can depend in non-trivial ways on the full recurrent connectivity in the network.

Novel structural motifs emerge under triplet STDP compared to pair-based

STDP

The calculation of the cumulants involved in the equation for the average weight dynamics (Eq

2) depends on the full network connectivity. Therefore, the second- and third-order cumulants

in Eq 2 can be written as a sum over contributions from different structural motifs, following

the convention of [6]. These structural motifs determine all possible connectivity paths that a

given spike from a source neuron k travels to the postsynaptic neuron i or presynaptic neuron

j, and as a consequence affects the synaptic weight Wij. Thus, to calculate each term in Eq 2

we break down the second- and third-order cumulants Cij, Cii and Kij into expressions that

include the contribution of every spike propagated in the network through existing synaptic

connections, taking into account the full recurrence in the network (Methods). These expres-

sions consist of products of the corresponding synaptic efficacies along the two paths to the

presynaptic and postsynaptic neuron, the firing rate of the source neuron and the motif coeffi-

cient functions M, which depend on the number of synapses along the two paths, the EPSC

function, E, and the STDP learning rules, L2 and L3. The probability that neurons i and j jointly

fire a spike is transiently modulated whenever a neuron anywhere in the network produces a

spike. We can write the pairwise cross-covariance from Eq 2 as

ð�Þ �
XN

k¼1

rk
X

a;b

ðWaÞikðW
bÞjkðM

pair
a;b þ riM

trip
a;b Þ ð3Þ

which combines the contribution of structural motifs from the pair-based and triplet STDP

rules to a change in the connectivity matrix W. The expression consists of sums over two
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aspects to provide an intuitive description of the contribution of the pairwise cross-covariance

Cij between neurons i and j to plasticity of the connection Wij. The first sum takes into account

all spiking neurons in the network, while the second sum takes into account all possible ‘paths’

by which spikes originating from a ‘source’ neuron k affect the cross-covariance Cij. Specifi-

cally, α and β constitute the ‘path lengths’ of synapses from source neuron k to the postsynaptic

neuron i and the presynaptic neuron j, respectively (Fig 2A; see also [6]). We refer to the total

path length of a motif, α + β, as the ‘order’ of the motif.

The contribution of the pair-based STDP rule includes the motif coefficient functions,

Mpair
a;b , which are calculated in the Fourier domain (Eq 29 in Methods). The pairwise correla-

tions between i and j also contribute to plasticity of Wij based on the triplet STDP rule through

the motif coefficient functions Mtrip
a;b (Eq 30 in Methods). Examples of some motifs common

for both the pair-based and the triplet STDP rule are provided in Fig 3A. Their contribution to

plasticity through the EPSC function E and the STDP rules L2 and L3 is illustrated in Fig 3B.

In addition to the α and β path lengths, to derive the contribution of the triplet STDP rule

to the average change in synaptic efficacy, we also introduced the γ-path so that now motifs

have order α + β + γ. γ is the synapse path length from the source neuron k to the postsynaptic

neuron i, including a time delay relative to the α path from k to i, to account for the second

postsynaptic spike of the triplet (Fig 3C and 3D). Thus, for the auto-covariance term in Eq 2,

we obtain (Fig 2B)

ð��Þ �
XN

k¼1

rk
X

a;g

ðWaÞikðW
gÞikrjM

trip
a;g ð4Þ

Fig 2. Second-order cumulant contributions to plasticity. A. The cross-covariance Cij between the presynaptic

neuron j and the postsynaptic neuron i is obtained by summing over all the possible α- and β-paths from every

possible source neuron k in the network. Each path is calculated via the corresponding weights in the connectivity

matrix and the EPSC function (see Eq 3). B. Same as A but for the auto-covariance Cii of the postsynaptic neuron i (see

Eq 4). In this case, γ is the second index to sum over the path from the source neuron k to the postsynaptic neuron i. It

should be noted that the main difference between the α- and γ-path is given by the time dependence of the EPSC

function, here represented in the Fourier domain for convenience.

https://doi.org/10.1371/journal.pcbi.1007835.g002
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Fig 3. Structural motifs in the network under pair-based and triplet STDP. A. Examples of structural motifs common for both the pair-based and triplet STDP

framework. Here α and β constitute the path lengths of synapses from the source neuron to the postsynaptic neuron i and the presynaptic neuron j. α = 1, β = 0:

Presynaptic neuron j projects to the postsynaptic neuron i. α = 0, β = 1: Postsynaptic neuron i projects to the presynaptic neuron j. α = 1, β = 1: Common input from

source neuron k to presynaptic neuron j and postsynaptic neuron i. α = 2, β = 0: Presynaptic neuron j projects to the postsynaptic neuron i through another neuron k
in the network. B. Illustration of the calculation of the common input motif with α = 1 and β = 1 framed in purple in A (there are also additional terms which are not

illustrated). The motif coefficients Mα=1,β=1 (right) are calculated as the total area under the curve resulting from the product of the convolution of the EPSC function E
(left) and the STDP functions (pair-based L2 and triplet L3, middle). C. Examples of structural motifs found only in the triplet STDP framework, where γ denotes the
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where the motif coefficient function involving the triplet STDP rule is given in the Methods

(Eq 31).

For third-order interactions, however, it is possible that the paths by which spikes are prop-

agated branch out from a neuron other than the source neuron. Therefore, the third-order

cumulant Kij (Eq 2) is broken down into four sums:

ð� � �Þ �
XN

k¼1

rk
X

a;b;g

ðWaÞikðW
gÞikðW

bÞjkM
trip
a;b;g

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
No branching ðstraight pathsÞ

þ
XN

k;l¼1

rk
X

a;b;g;z

ðWzÞlkðW
aÞikðW

bÞjlðW
gÞilM

trip
ða;zÞ;b;g

þ
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k;l¼1
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a;b;g;z
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þ
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X
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bÞjlðW
gÞikM

trip
a;b;ðg;zÞ:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

Branched paths

ð5Þ

The first term in Eq 5 sums over the paths to the presynaptic neuron j and postsynaptic neuron

i from a source neuron k in the network that do not branch out. In other words, it considers

that the ‘distance’ to each respective spike of the triplet is given by α, β and γ (Fig 4A). The

remaining terms include the sum over possible branches in the network ‘tree’: z� 1 is the syn-

apse path length from the source neuron k to the neuron l that is the branching point (Fig 4B–

4D). It should be noted that the branched paths all have a total path length of at least four (i.e.

α + β + γ + z� 4) so that the motif order is at minimum four, since at least one synapse must

be taken into account before the splitting of the path. The corresponding motif coefficients for

the ‘straight’ triplet motif (Fig 4A, see Eq 32), and for the ‘branching’ motifs (Fig 4B–4D, see

Eqs 33, 34 and 35) are provided in the Methods.

This analysis reveals novel motifs in the triplet STDP rule which have the potential to pro-

mote particular connectivity structures that are not possible with pair-based STDP [6] (Fig

3C). These include motifs which directly exclude the presynaptic neuron j but can still impact

the synaptic weight, Wij (Fig 3C, left and middle). This can be achieved, for example, through

an additional neuron k that does not directly affect the weight Wij but projects to the postsyn-

aptic neuron i through the synaptic weight Wik (Fig 3C, left and middle). Because these motifs

exclude the presynaptic neuron j, they do not impact the pairwise cross-covariance term Cij
and do not have influence on the weight Wij through pair-based STDP. For example, in the

case when α = 2 and γ = 0 (Fig 3C, middle), the postsynaptic neuron i is both the source neu-

ron and the neuron involved in the path with the additional neuron k. We call this path involv-

ing the synaptic efficacies Wik and Wki a ‘loop’. These loops involve a different neuron in

addition to the pre- and postsynaptic neuron of the weight Wij, and are a unique feature of

incorporating spike triplets in the STDP rule. Loops include a neuron as both the source and

target for the spike in the corresponding path, so that a ‘loop’ closes on itself. The direction

time-delayed path length from the source neuron to the postsynaptic neuron i. α = 1, γ = 1: Source neuron k projects twice to postsynaptic neuron i with a different

time delay. α = 2, γ = 0: Feedback loop through another neuron k in the network (source and projecting neuron are the postsynaptic neuron i). α = 1, β = 1, γ = 1:

Source neuron k projects to the presynaptic neuron j and postsynaptic neuron i via all the three possible paths. D. Illustration of the calculation of the motif with α = 1

and γ = 1 for the triplet STDP rule framed in purple in C, compare to B.

https://doi.org/10.1371/journal.pcbi.1007835.g003
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of the edges are relevant for this definition. We propose that motifs with these ‘loop’ character-

istics promote the formation of connections between clusters of neurons, and therefore

assemblies.

To illustrate motifs of different orders and their relationship to cumulants of different

orders, we depict all motifs up to third order arising from the expansion of the second- and

the third-order cumulants (Fig 5). While it is clear that the full network connectivity through

motifs of different orders from the cross-covariance Cij influences plasticity under pair-based,

as well as triplet STDP (Fig 5, first row), we also reveal novel motifs from the auto-covariance

Cii and the third-order cumulant Kij that influence plasticity uniquely under triplet STDP (Fig

5, second and third row).

Taken together, our motif expansion framework reveals novel structural motifs under the

triplet STDP rule that have the potential to form assemblies without structured external input.

We next investigated the role of the different structural motifs (specifically the ‘loop’ motifs)

on the emergence of assemblies under triplet STDP.

Fig 4. Third-order cumulant contributions to plasticity can be broken down into four terms. A. The first term

contains all the α-, β- and γ-paths originating from the source neuron k to the spiking neurons i and j. B-D. The other

terms take into account the possibility of an intermediate neuron l that acts as a new source neuron for two of the

paths. These are referred to as ‘branched paths’, and the path length from the source neuron k to the intermediate

neuron l is denoted with z. The branching describes the individual terms in Eq 5.

https://doi.org/10.1371/journal.pcbi.1007835.g004
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Modulation of the triplet STDP rule promotes the autonomous emergence

of assemblies

So far, we considered general STDP rules that depend on the precise timing between pairs and

triplets of spikes, without taking into account the exact dependence of potentiation or depres-

sion on these spikes. To further study the complex relationship between plasticity and network

correlations, we considered a particular biologically identified STDP rule that relies on third-

order interactions (Methods; Fig 1C). This rule has an asymmetric shape around the time lag

of 0 (where pre- and postsynaptic spikes are coincident), similar to the classical pair-based

STDP rule [71]. However, while synaptic depression is induced by the relative timing of pairs

of presynaptic and postsynaptic spikes, the minimal triplet STDP model uses sets of three

spikes to induce potentiation: the amount depends on the timing between pre- and postsynap-

tic spike pairs and in addition, on the timing between the current and the previous postsynap-

tic spike (Fig 1D). This minimal model successfully captures experimental data, where the

Fig 5. Second- and third-order cumulants can be described in terms of structural motifs that contribute to weight change. All motifs up to third order as they

arise from the cross-covariance Cij (top row and Eq 3), the auto-covariance Cii (middle row and Eq 4) (both Cij and Cii together represent the second-order cumulant)

or the third-order cumulant Kij (bottom row and Eq 5). The gray boxes indicate the ‘loop’ motifs. The novel motifs which follow from the triplet STDP rule are those

that include the path γ (second and third row).

https://doi.org/10.1371/journal.pcbi.1007835.g005
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pairing frequency of pre- and postsynaptic spikes was varied, equally well compared to a full

model that also uses triplets of spikes for depression [54].

Implementations of classical Hebbian learning, such as STDP, use joint pre- and postsynap-

tic activity to induce potentiation and depression, while neglecting other potential factors such

as heterosynaptic plasticity [81], or the location of synaptic inputs on the dendritic tree [82].

However, recent experimental studies have highlighted an important role of neuromodulators

in regulating plasticity across the brain [83–86], as they convey information about novelty or

reward. Indeed, neuromodulators such as dopamine, acetylcholine and noradrenaline, but

also brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA), can

predominantly act via two mechanisms: by reshaping the learning window for STDP or by reg-

ulating neuronal activity at the level of synaptic transmission [84, 86]. Therefore, we next

investigated how neuromodulation of synaptic plasticity affects recurrently connected net-

works considering that pairwise and triplet spike interactions determine plasticity. We assume

that the shape of the STDP function can be modulated via the modulation parameter η− which

preserves the overall level of depression by trading off the depression learning rate A− and the

depression time constant τ− (Methods; Fig 6A). Such a modification of the learning rule has

been observed in the lateral amygdala due to the action of dopamine via D2 receptors [85, 87],

or in rat visual cortex slices with the activation of both the noradrenaline pathway through β-

adrenergic receptors and the acetylcholine pathway through M1-muscarinic receptors [84, 86,

88]. A similar modulation parameter could similarly be included for potentiation.

To determine contributions to plasticity arising due to internal network correlations and

not just differences in neuronal firing rates [5], we consider the case in which the plasticity

rule is balanced, such that ~L2ð0Þ þ ri~L3ð0; 0Þ ¼ 0. We use this condition to calculate all motif

coefficients, Mα,β, that arise from the cross-covariance Cij (Eqs 47–56 in Methods). We con-

sider only motifs up to third-order in the evolution of the weights (Eq 2) since higher-than-

third-order motif contributions are negligible (S1 Fig). Thus, we no longer include the

branched path motifs of Eq 5 as they are higher-than-third-order motifs (Fig 4B–4D). This

leaves us with a handful of motifs which arise from the second-order cumulant (consisting

of the cross-covariance Cij and the auto-covariance Cii) and the third-order cumulant Kij

(Methods; Fig 5). This simplification allows us to study the spontaneous emergence of assem-

blies under the triplet STDP rule based on both the triplet rule contributions to the cross-

covariance Cij (Eq 3, Fig 5, top row) and the influence of the novel branching structures that

follow from the auto-covariance Cii (Eq 4, Fig 5, second row, including the loop motifs in the

gray boxes) and the third-order cumulant Kij (Eq 5, Fig 5, third row).

To systematically study how the dependence of these up to third-order motif coefficients

on the shape of the STDP rule affects connectivity structure in the network, we visualized the

connectivity matrices obtained by integrating the motif expansion up to third-order (Eqs 42–

46) numerically, using experimentally-fitted parameters for the triplet STDP rule and the

EPSC function (Table 1). Specifically, we investigated the emergence of global network struc-

tures, or assemblies, as a function of the modulation parameter η−. This parameter has a direct

influence on the motifs which follow from the cross-covariance Cij (Fig 5) and the LTD win-

dow in the minimal triplet STDP rule (see Eqs 49–58 and S2 Text). A key requirement for the

emergence of assemblies is the formation of bidirectional or reciprocal connections among

groups of neurons. We compare the reciprocal connections of the first-order motif contribu-

tions to gain intuition:

h _W STDP
ij i

ð1Þ
¼ rjWijM1;0 þ riWjiM0;1;

h _W STDP
ji i

ð1Þ
¼ riWjiM1;0 þ rjWijM0;1:

ð6Þ
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Fig 6. Spontaneous emergence of assemblies via modulation of the triplet STDP rule. A. The shape of the STDP function changes as a function of the

modulation parameter η−, which preserves the overall level of depression by trading off the depression learning rate and the depression time constant. B. Motif

coefficients as the modulation parameter η− increases. Points of interest given by the crossovers of the strength of particular motifs are indicated by a small arrow.

Inset: Amplified scale around zero. Motif coefficients including γ paths are not illustrated, since they are always constant and positive in η− and do not provide a

meaningful comparison to the other motifs. C. Top: Examples of connectivity matrices obtained with different values of η− at steady state. Unidirectional
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Since in the triplet STDP rule M1,0 > 0 (Fig 6B, red), the two bidirectional connections com-

pete if M0,1 < 0, and potentiate if M0,1 > 0. Therefore, the sign of the motif coefficient M0,1,

which depends on the contribution from the triplet STDP rule, determines the formation of

bidirectional connections. Indeed, increasing η− supports the formation of bidirectional con-

nections (Fig 6C) as the motif coefficient M0,1 changes sign (Fig 6B, blue, see inset). In con-

trast, as previously shown, the classical pair-based STDP rule is unable to support the

formation of assemblies and bidirectional connections due to its asymmetric shape [89, 90],

although under certain conditions (dominant potentiation) it can promote bidirectional con-

nections [51, 91]. Under the asymmetric pair-based STDP rule, M1,0> and M0,1 < 0 result in

competition between the two reciprocal connections. To autonomously generate self-con-

nected assemblies without structured network input requires a symmetric pair-based STDP

rule (which is not biologically motivated) and a sufficiently large synaptic latency [6]. In this

case, the prominence of the common input motif driven by the M1,1 motif coefficient over all

other motif coefficients in the network supports assembly formation [6].

Under the triplet STDP rule, small increases in η− increase the motif coefficient M1,1, result-

ing in the formation of bidirectional connections and assemblies, similarly to the symmetric

pair-based STDP rule. However, despite its asymmetric shape, the triplet STDP rule can

robustly generate bidirectional connections and assemblies even when the M1,1 motif coeffi-

cient has already saturated and other motif coefficients dominate (Fig 6C–6E), upon further

increases in η−. This is because higher-order structural motifs also contribute to the formation

of bidirectional connections and assemblies. To understand this, we consider the motif contri-

butions of feedforward motif coefficients—the motifs for which the α-path is longer than the

β-path, M1,0, M2,1, M2,0 and M3,0—and reciprocal motif coefficients, where the β-path is longer

than the α-path, M0,1, M1,2, M0,2 and M0,3. Given the asymmetry of triplet STDP, the feedfor-

ward motif coefficients are stronger. The reciprocal motifs, M0,1, M1,2, M0,2 and M0,3 play an

important role in the formation of bidirectional connections as they change sign from negative

to positive with increasing η− (Fig 6B). A positive contribution from all motifs supports the

connections are shown in black, bidirectional connections in orange. Matrices are reordered using the k-means clustering algorithm (see Methods). Bottom: Mean

fraction of unidirectional and bidirectional connections for 100 trials with different initial synaptic efficacies as a function of η−. Error bars represent the standard

error of the mean. D. Graphs of the connectivity matrices in C. E. Averaged connectivity matrices over 100 trials at steady state. Note that the tighter clusters

emerging near the edges of the matrices are the result of the clustering algorithm but do not affect the quantification of connectivity.

https://doi.org/10.1371/journal.pcbi.1007835.g006

Table 1. Parameter values for figures. ? denotes that values are provided in the figures.

Symbol Description Fig 6 Fig 7 Fig 8 Fig 9 Fig 10 Fig 11

N Number of neurons 48

μ External input firing rate 150 Hz

wmax Upper bound for each individual weight 0.17

Wmax Upper bound for total row/ column weight 0.85

A− Depression learning rate 0.01

τ− Depression time constant 33.7 ms [54]

τ+ Potentiation time constant 16.8 ms [54]

τy Second potentiation time constant 114 ms [54]

η− Depression modulation parameter ? 1 ?

τε First membrane time constant 5 ms

τι Second membrane time constant 5 ms ? 5 ms

ν Scaling parameter of learning rate 3.5 ×10−4

ψ Heterosynaptic competition scaling parameter 0.7

https://doi.org/10.1371/journal.pcbi.1007835.t001
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robust formation of bidirectional connections in the network as the competition between

reciprocal connections decreases. Together with the strong common input motif driven by the

M1,1 motif coefficient, this leads to the robust emergence of assemblies. In this scenario, η−
controls the competition between feedforward (Wji) and reciprocal connections (Wij), with

large η− enabling the potentiation of both. This is not possible under the classical asymmetric

pair-based STDP rule as previously discussed.

In summary, we find that the spontaneous formation of self-connected assemblies depends

on the modulation parameter η−, which influences most of the motifs arising from the cross-

covariance Cij. Furthermore, self-connected assemblies can be formed under triplet STDP

even when motifs other than the common input motif M1,1 dominate. This occurs despite the

asymmetric shape of the triplet STDP rule, in contrast to pair-based STDP which requires a

symmetric shape to promote M1,1. Importantly, the dependence of assembly formation on the

specific form of the STDP window points towards an important role of neuromodulatory sig-

nals on formation of intrinsically generated assemblies.

Characterizing emergent assembly structures

To determine the conditions on the learning rule and EPSC properties for the emergence of

self-connected assemblies, it is convenient to represent the functional organization of the net-

work given a connectivity matrix as a mathematical graph. In our context, graphs are com-

posed of a set of nodes or neurons with pairs of them joined by edges or synaptic efficacies.

The resulting graphs can be described by standard metrics, whose dependence on the shape of

the learning rule and the EPSC function might yield insight into the emergent structures dur-

ing circuit organization driven by spontaneous activity. We focused on common quantities for

describing graph structure, including the clustering coefficient, the global efficiency and the

modularity [92, 93], used previously in experimental systems like the zebrafish tectum and the

mammalian cortex [25, 94].

The clustering coefficient quantifies the existence of densely interconnected groups of

nodes in the graph [95]. It represents a measure of segregation, based on counting the number

of connection triangles around a node (Methods). In this manner, it reflects the prevalence of

clustered connectivity around individual nodes by calculating the fraction of neighbors of that

particular node that are also neighbors of each other. As a result, the mean clustering coeffi-

cient of a network determines the prevalence of three-neuron-clusters in the network architec-

ture. We find that as the modulation parameter η− increases, the mean clustering coefficient

also increases until it reaches a plateau (Fig 7A). Ensuring that the motif coefficients M0,1 and

M1,2 are positive is sufficient for the formation of clusters beyond the critical value of η−� 5

(Fig 6B and 6C), where the clustering coefficient begins to increase (Fig 7A). The value of η− at

which the clustering coefficient saturates corresponds to the emergence of more robust assem-

blies where all the motif coefficients are positive (Fig 6B and 6C). Although strong bidirec-

tional connections are localized within clusters, connections from one cluster to some others

still exist globally. This is different to the clustering enabled by strong symmetric interactions

in which the motif M1,1 dominates, considered previously by a symmetric pair-based STDP

rule [6], where the clusters would be unconnected (i.e. isolated from each other) and the clus-

tering coefficient would be much higher.

Complementary to the clustering coefficient, the global efficiency is a measure of functional

integration, which determines how easily nodes can communicate between each other through

sequences of edges [96]. Consequently, the lengths of the paths estimate the potential for the

flow of information between nodes, with shorter paths denoting stronger capacity for integra-

tion. Then, global efficiency is defined as the average inverse shortest path length of the
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network (Methods). In comparison to the clustering coefficient, this quantity initially remains

approximately constant and then decreases until the point at which strong assemblies emerge

autonomously since network structure no longer varies with the parameter η− (Fig 7B). We

find that as for the clustering coefficient, the value of η− for which the motif coefficients M0,1

and M1,2 become positive (η−� 5) constitutes a landmark for the formation of assemblies,

after which global efficiency significantly decreases.

Finally, modularity is a graph theoretic measure that describes how strongly a network can

be divided into modules, by comparing the relative strengths of connections within and out-

side modules to the case when the network has randomly chosen weights [93, 97, 98]. Recently,

it was shown that even in models with rate-based dynamics, increasing modularity amplifies

the recurrent excitation within assemblies evoking spontaneous activation [48]. With increas-

ing η−, modularity increases until strong assemblies are formed in a similar fashion as the clus-

tering coefficient (Fig 7C). Interestingly, the critical value of η−� 5 where assemblies begin to

form robustly is consistent with experimental evidence of the shape of STDP where the time

constant for depression has been found to be approximately 5 times longer than for potentia-

tion [55, 99].

Contribution of the novel structural motifs under triplet STDP on

assembly formation

So far we demonstrated that the spontaneous emergence of assemblies via modulation of trip-

let STDP depends on the interaction of different motifs that primarily arise from the second-

order cross-covariance Cij (Figs 5 and 6), which is also present under pair-based STDP. How-

ever, whether the novel structural motifs that are unique to triplet STDP (Figs 2B and 3–5)

play a role remains unclear. We hypothesize that the ‘loop’ motifs, which do not appear for the

pair-based STDP rule (Fig 5; gray box) are important for assembly formation.

To investigate the implications of these novel ‘loop’ motifs, we compare the three graph

measures in four different scenarios: Using the motifs (1) only from the cross-covariance Cij
(Fig 5, top row); (2) from all cumulants (Cij, Cii and Kij) without the ‘loop’ terms (Fig 5 all

except the gray boxes in the second row); (3) from the cross-covariance plus the two additional

‘loop’ terms (Fig 5, top row plus the gray boxes in the second row); and (4) from all cumulants

(Fig 5, all). We find that cases (1) and (2) have worse performance in all three graph measures

compared to cases (3) and (4) (Fig 8). Adding the third-order cumulant Kij and the ‘non-loop’

terms from the second-order auto-covariance Cii (case 4) even worsens the graph measures.

We find that the third-order cumulant Kij alone has almost no influence on the spontaneous

Fig 7. Graph measures of the stable network configuration. A. Mean clustering coefficient versus the modulation parameter η−. B. Mean global

efficiency versus the modulation parameter η−. C. Mean modularity versus the modulation parameter η−. All results are calculated from 100 trials at

steady state connectivity. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g007
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emergence of assemblies (S2 Fig), since its contribution to the weight change is small, as

shown before [100]. We conclude that the additional ‘loop’ terms, which arise as novel struc-

tural motifs from the triplet STDP rule (Fig 5), have a significant contribution to spontaneous

assembly formation.

The triplet STDP rule and the EPSC together modulate network structure

The spontaneous emergence of assemblies discussed so far requires a relatively high value of

the STDP modulation parameter η−, raising the issue of biological plausibility. Although sev-

eral experimental studies on induction of STDP indeed find longer depression than potentia-

tion time constants [55, 99], we demonstrate an alternative mechanisms for the assembly

formation by regulating the synaptic transmission of action potentials between neurons

through the shape of the EPSC function. In this case, the strength of internally generated corre-

lations can be changed independently of the STDP functions, L2 and L3. We investigated how

the rise of the EPSC function modulated by delay of the spike transmission in the synapse, τι
(Fig 9A), shapes motif coefficients (Methods; Fig 9B).

The parameter τι has a prominent impact on plasticity in the network. Even small shifts in

the peak of the EPSC function by a few milliseconds have a strong impact on the cumulants of

different orders, as reflected in the values of the motif coefficients (Fig 9A and 9B). Different to

the modulation with the parameter η−, the parameter τι affects all motif coefficients. However,

the influence of τι on the auto-covariance Cii and the third-order cumulant Kij is negligible.

Therefore, although the main cumulant driving plasticity is the second-order cross-covariance

Fig 8. Spontaneous emergence of assemblies for four different motif combinations. Considering only motifs related to the cross-covariance Cij (blue), from all

cumulants (Cij, Cii and Kij) without the ‘loop’ terms (red), from the cross-covariance Cij plus the ‘loop’ terms (yellow) and from all cumulants (purple). A. Averaged

connectivity matrices over 100 trials at steady state for four different motif combinations and modulation parameter η− = 13. Matrices are reordered using the k-means

clustering algorithm (see Methods). B. Mean clustering coefficient versus the modulation parameter η−. C. Mean global efficiency versus the modulation parameter η−.

D. Mean modularity versus the modulation parameter η−. All results are calculated from 100 trials at steady state connectivity. Error bars represent the standard error of

the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g008
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Cij, which exists even under pair-based STDP (Fig 5), assemblies easily form under the triplet

STDP rule (Fig 9C). The common input motif M1,1 abruptly assumes dominance over all oth-

ers as τι increases (Fig 9B). However, we observed that the reciprocal motif coefficients M0,1,

M1,2, M0,2 and M0,3 remain negative for all values of τι, in contrast to when we modulated the

Fig 9. Spontaneous emergence of assemblies due to the modulation of synaptic transmission. A. Varying the time constant τι changes the shape of the EPSC

function, shifting its peak by a few milliseconds. B. Relative value of the motif coefficients as a function of τι. While the common input motif M1,1 rapidly assumes

dominance, the motif coefficient M1,2 crosses over in strength with the feedback motifs M0,1, M0,2 and M0,3. C. Averaged connectivity matrices over 100 trials at steady

state and different values of the time constant τι. Matrices are reordered using the k-means clustering algorithm (see Methods). D. Mean clustering coefficient versus

the time constant τι. E. Mean global efficiency versus the time constant τι. F. Mean modularity versus the the time constant τι. All results are calculated from 100 trials

at steady state connectivity. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g009
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STDP learning rule (Fig 6B). This tells us that assemblies in the network are spontaneously

formed in a different fashion (by promoting the potentiation of reciprocal connections in each

cluster due to the common input motif, M1,1) than when modulating the STDP rule through

η−. In fact, assemblies emerge for minor modulations in τι (Fig 9C).

These differences in assembly formation become apparent when we consider the mean clus-

tering coefficient, the global efficiency and the modularity as functions of τι (Fig 9D–9F): the

three measures reflect the connectivity matrices as M1,2 crosses the motif coefficients M0,1, M0,2

and M0,3, in the case when M1,1 is already large. When the motif coefficient M1,2 becomes more

negative than M0,3 (τι� 20 ms), bidirectional connections are strongly promoted and assemblies

robustly form. Even for τι> 20 ms, where the EPSC function does not change significantly (Fig

9A), one sees noticeable changes in the ‘tightness’ of the assemblies as observed in the averaged

connectivity matrices (Fig 9C). Interestingly, as M1,2 decreases below M0,2 (τι� 25 ms), the

value of the clustering coefficient (� 0.1) and the modularity (� 0.7) correspond to the values

where the clustering coefficient, the modularity, and the global efficiency saturate when modu-

lating the STDP function (compare Figs 7 and 9D–9F). This means that the network structure is

very similar (compare Fig 6E, right, with Fig 9C, second from left). Nevertheless, further increas-

ing τι leads to more refined assemblies (Fig 9C, third from left) when M1,2 <M0,2. However, for

τι≳ 35 ms where M1,2 <M0,1, the clustering coefficient slightly decreases (Fig 9D) suggesting

the existence of optimal regions in the parameter space of τι to obtain the ‘tightest’ assemblies.

Taken together, our analytical framework enables us to interpret changes in the motif coef-

ficients as changes in the connectivity structure in terms of the formation of self-organized

assemblies. Modifying either the shape of the learning rule, or the shape of the EPSC function,

can achieve this, however, with different consequences on the nature of the formed structures

as demonstrated by the graph theoretic measures.

Comparison with assemblies generated via external correlated input

Until now, we sought to understand the mechanisms that contribute to the autonomous emer-

gence of assemblies in neural circuits without any structured external input. Yet, the training

of assemblies and plasticity of recurrent connections has been more frequently studied when

these networks are driven by structured external input, both in simulations [49, 89] and analyt-

ically [42–45, 51]. Significant experimental evidence also exists for the emergence of functional

connectivity underlying feature selectivity in the visual cortex around the time of eye opening,

which is presumably influenced by structured visual input through the open eyes [14]. There-

fore, we wanted to compare the formation of assemblies without structured external input

under the triplet STDP rule to that with structured external input. To investigate spatiotempo-

ral input patterns in our framework, we studied the overall mean impact of an external pair-

wise correlated input. This was implemented by assuming that the driving signal, which could

for instance represent retinal input in the optic tectum or visual cortex, is correlated for a pair

of neurons in the network, so that the structure of the input is represented as common input

to that particular pair of neurons.

We write the covariance as a sum of the internal correlation and a novel term that conveys

the external structured activity as common input [40]:

~CðoÞ ¼ ~C intðoÞ þ
�
I � ~EðoÞW

�� 1

~EðoÞ~CextðoÞ~Eð� oÞ
�
I � ~Eð� oÞWT

�� 1

: ð7Þ

Here, Cint denotes the covariance matrix (see Eq 22) and Cext is the covariance matrix of the

external input. We model the input signal as a correlated pattern that promotes the joint activ-

ity of pairs of neurons that belong to a certain assembly.
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Using the standard parameters of the minimal triplet model (Table 1; Fig 9C, η− = 1) assem-

bly formation is difficult when the feedforward motif coefficients dominate (the motifs for

which the α-path is longer than the β-path). However, a significantly stronger external correla-

tion relative to internally generated network correlations can promote the common input

motif, M1,1, and support assembly formation. As a function of the external correlation matrix,

we quantify the structure of the resulting self-connected assemblies of neurons via the same

graph measures used previously (Fig 10). The tight assemblies observed for the modulation of

the STDP and the EPSC functions (Figs 6E and 9C) can now be formed for values of correla-

tion strength one order of magnitude smaller than the synaptic upper bound.

Disrupting the balance between potentiation and depression affects

assembly formation

We considered an STDP rule that is balanced in the total potentiation and depression, because

disrupting this balance by increasing some firing rater over others favors the particular circuit

motifs affected by those rates, as shown before [5, 45, 101]. When the balance is disrupted, the

firing rate contribution to plasticity from chance spike coincidences dominates over internal

correlations. When the zero-order term of the motif expansion (Eq 42) is non-zero, the mean

change in the synaptic efficacies has a term that only depends on the firing rates. In this case,

the firing rates of the pre- and postsynaptic neurons are the main drivers of network structure.

This means that the overall impact of motifs in the network is diminished [5]. We explored the

possible departures from balance through the inclusion of a perturbation parameter δ that can

be either positive or negative and we scaled this parameter in proportion to the learning rate

(Methods).

Therefore, to study the sensitivity of the emergence of network structure to perturbations

on the depression vs. potentiation balance we consider that the zero-order ‘rate’ motif is differ-

ent from zero. We find that departures from the balanced regime impact plasticity signifi-

cantly. In the case of a depression dominated imbalance, δ< 0, all connections depress no

matter the strength of the modulation through η−, even for small absolute value of δ = −0.0001.

In the case of potentiation, δ> 0, one might expect that all synaptic efficacies will just saturate;

however, due to heterosynaptic competition, some network structure still forms when δ is

small (Fig 11). If the perturbation is sufficiently strong, the autonomous emergence of

Fig 10. Emergence of assemblies in the presence of structured external input. A. Mean clustering coefficient versus the pairwise correlation

coefficient of the input pattern. The strength of the correlation was provided as ratios (0.01, 0.05, 0.125, 0.25, 0.375 and 0.5) of the possible maximum

weight of each individual synaptic connection wmax. B. Mean global efficiency versus the pairwise correlation coefficient of the input pattern. C. Mean

modularity versus the pairwise correlation coefficient of the input pattern. The rapid increase of the clustering coefficient and the modularity combined

with a decrease of the global efficiency is a feature of robust assembly formation. Sufficiently strong correlations in the external signal generate tight

assemblies. All results are calculated from 100 trials at steady state connectivity. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g010
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assemblies by increasing the parameter η− is disrupted. This is also evidenced when computing

the graph measures for the resulting network structures (Fig 11B–11D). In summary, we find

that considering an unbalanced STDP rule where either depression or potentiation dominates,

prevents the autonomous emergence of assemblies.

Discussion

We developed a self-consistent theoretical framework to study the impact of HOCs, specifi-

cally up to third order, on the plasticity of recurrent networks by using the triplet STDP rule.

We derived the dependence of the drift in synaptic efficacy on network structure, taking into

account contributions from structural motifs of different orders, and demonstrated the emer-

gence of global network structures i.e. assemblies, from these local motifs. Based on recent

work on the calculation of beyond second-order cumulants of mutually exciting Hawkes pro-

cesses [37, 102], we broke down the spike interactions (including pairs and triplets of spikes)

to include the influence of spikes from any source neuron in the network on the firing of the

pre- and postsynaptic neurons via paths of different length thus taking into account the full

network recurrence (Figs 2 and 4). We characterized structural motifs that arise from these

spike interactions, including novel motifs arising due to triplet STDP, and analyzed their

impact on the internal up to third-order correlation structure and plasticity in the network

through the motif coefficients (Figs 3 and 5). While linearization of neuronal dynamics was

required for this approach, it is a common technique used to approximate the dynamics of

more realistic biophysical neurons [5, 34]. We found that motif contributions to plasticity

Fig 11. Impact of perturbations in the balance of potentiation and depression of the triplet STDP rule. A. Averaged connectivity matrices over 100 trials at steady

state for the four different cases of the perturbation parameter δ and modulation parameter η− = 13. B. Mean clustering coefficient versus the modulation parameter η−.

C. Mean global efficiency versus the modulation parameter η−. We removed the cases δ = [0.01, 0.1] here since the global efficiency cannot be computed for weight

matrices where all entries are identical. D. Mean modularity versus the modulation parameter η−. All results are calculated from 100 trials at steady state connectivity.

Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g011
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from the second-order cross-covariance Cij support assembly formation under triplet STDP.

However, since these same motifs exist also under pair-based STDP, we wondered if the novel

motifs unique to triplet STDP are important for assembly formation. Indeed, we showed that

several novel motifs and specifically the ‘loop’ motifs, which emerge under the triplet STDP,

have an important contribution to the formation of assemblies (Fig 8).

We investigated the contribution of up to third-order structural motifs on assembly forma-

tion using an asymmetric minimal triplet STDP rule, in which depression is induced by pairs of

spikes and, conversely, potentiation is induced by triplets of spikes (Fig 1D). This rule has been

shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes,

has failed to capture; for instance, plasticity experiments in which the pairing frequency during

plasticity induction was varied [54, 55]. As such, the triplet STDP rule is sensitive to third-order

correlations, here referred to as HOCs. HOCs have not only been measured in the brain, but

also shown to play an important role in visual coding and representing experimental data [58,

59, 103, 104]. HOCs are ubiquitous in sensory stimuli, such as natural stimuli and speech signals

[105, 106]. These correlations have been previously utilized in learning rules, such as the BCM

rule, to extract the independent components or features in natural images resulting in simple

cell receptive fields as seen in V1 [105, 107–109]. Because of its mapping to the BCM rule [57],

we can interpret the triplet STDP rule as a method for performing similar computations.

Modulating either the STDP rule (Fig 6) or the EPSC function (Fig 9) enabled the spontane-

ous formation of self-connected assemblies without the need for externally patterned inputs

[49–51] or assuming a symmetric pair-based STDP rule [6]. We quantified the nature of the

emergent assemblies using three graph theoretic measures used to characterize spontaneous

assemblies in the tectum of zebrafish larvae [25]. Directly comparing the values of these mea-

sures between the experimental data and our model results is difficult given inhomogeneities

in the size of biological network assemblies and a multitude of mechanisms that shape their

formation during development. Yet, comparing how these measures change as a function of

the STDP rule or the EPSC kernel in our model could offer insights into how modulating plas-

ticity and synaptic transmission affect network structure through spontaneous activity under

minimal assumptions (Fig 7). Interestingly, the final assemblies formed by modulating the

EPSC function were more consistent across networks with different initial connectivity than

the assemblies generated through the modification of the STDP function. This could be seen

by the ‘tighter’ structures in the average connectivity matrices (Figs 6E and 9C), and the higher

values of graph measures (Figs 6 and 9D–9F). The ultimate connectivity structure was deter-

mined by the relative strength of motifs which were regulated differently by each modulatory

mechanism. In particular, modifying the EPSC function reinforced the influence of the com-

mon input motif (driven by the motif coefficient M1,1) over all others (Fig 9B). In comparison,

the modulation of the STDP rule by extending the time constant for depression over potentia-

tion reduced the competition between reciprocal connections by maintaining a strong feedfor-

ward drive (driven by the feedforward motif coefficients M1,0, M2,1, M2,0 and M3,0) and

making the corresponding reciprocal motif coefficients (M0,1, M1,2, M0,2 and M0,3) positive.

Therefore, assembly formation was driven by the strengthening of reciprocal connections,

even though the M1,1 coefficient was still strong (Fig 6B). Although experimental evidence

exists for a longer time constant for depression over potentiation in STDP [55, 99], the much

longer values of the STDP modulation parameter η− needed for our results raise the question

of whether this mechanism is biologically plausible. This might make the modulation of the

EPSC function under triplet STDP more suitable for explaining the autonomous emergence of

self-connected assemblies. It is probably the case that both mechanisms are used in biological

circuits. Studying the effects of neuromodulation, which can alter the shape of STDP or the

synaptic transmission function, on the plasticity of connections in many brain regions is
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possible with recent advances in experimental techniques [84–86]. Understanding the conse-

quences of changing the properties of the underlying plasticity mechanisms on network

dynamics can further elucidate the process of learning and memory storage in recurrent net-

works found everywhere in the brain [84–86].

Applying external correlated input led to the emergence of self-organized assemblies (Fig

10) that were similar to the assemblies from changing the EPSC function. Consequently, we

propose that the mechanisms that promote the formation of assemblies can be diverse in dif-

ferent circuits depending on the nature of the plasticity rules, synaptic transmission (EPSC

function) or the structure of external input that dominate in these circuits.

Our framework enabled us to derive global connectivity structures that emerge in recurrent

networks such as assemblies, which have been abundantly observed in experimental data. Con-

nectivity matrices of large recurrent networks are generally difficult to assay experimentally,

requiring multiple cells to be patched simultaneously [110], although recent developments in

the field of connectomics offer potential for these matrices to be obtained in the future [111,

112]. However, a good experimental determinate of assemblies may be derived from functional

interactions among neurons, inferred from physiological experiments that simultaneously

record the activity of a large number of neurons. While it is clear that neuronal activity exhibits

structure in response to sensory input, assemblies are present even during spontaneous activity

and have similar spatial organization [21, 25, 26]. This has suggested that these self-organized

assemblies are biologically relevant for the processing of information in these networks and for

the representation of sensory stimulus attributes [21]. In the rodent visual cortex, a given stim-

ulus, of the form of a natural scene or an orientated grating, consistently activates a specific

assembly [21]. On the behavioral scale, recent experiments suggest that functional circuit con-

nectivity may be intrinsically adapted to respond preferentially to stimuli of biological rele-

vance for the survival of the animal, such as catching prey or avoiding predators [24, 27].

Our analytical approach offers a precise description of how synaptic plasticity shapes connec-

tivity in recurrent networks driven by spontaneous activity (though we also considered the role

of structured external input). Such spontaneous activity is especially common during early post-

natal development, where it activates neural networks before the onset of sensory experience

and the maturation of sensory organs. In the rodent visual system, for instance, eye opening

only occurs during the second postnatal week of development [113]. Prior to this, spontaneous

patterns of activity propagate throughout the entire visual system, including the retina, thalamus

and cortex [114], which are known to instruct different aspects of circuit organization [115].

Interestingly, during very early postnatal development of somatosensory cortex in rodents

(postnatal day 4), spontaneous activity exhibits a highly correlated state consisting of cell assem-

blies where multiple neurons show correlated activity [116]. By the second postnatal week this

spontaneous activity transitions to a much more decorrelated state that lacks a clear spatial

structure. A similar sparsification of spontaneous activity during development is also observed

in the visual cortex, though lacking the spatial structure observed in the somatosensory cortex

[117]. Since these two studies argue that over development functional connectivity becomes

more desynchronized, this framework is more consistent with our analysis of the depression

window of the STDP rule becoming smaller over development (Fig 6). This broadening of the

depression window in early development is consistent with a previously described burst-tim-

ing-dependent plasticity where the temporal integration of activity occurs over much longer

timescales on the order of several hundred milliseconds than in adulthood [115, 118, 119].

Assembly formation has been the goal of many other previous works, typically instructed

by externally structured input in recurrent network models with balanced excitation and inhi-

bition [42–47]. These assemblies exhibit attractor dynamics which have been argued to serve

as the substrate of different computations, such as predictive coding through the spontaneous
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retrieval of evoked response patterns [49, 50, 120]. We investigated the generation of assem-

blies through triplet STDP driven by higher-order correlations generated internally in the net-

work. Other works have also studied the emergence of non-random structure in the absence of

structured external input [5, 6, 48]; our work takes a similar approach of incorporating the full

recurrence in the network through the expansion into structural motifs as [6]. As it becomes

evident from these studies, the investigation of STDP in recurrent networks for unsupervised

learning involves a lot of parameters and additional mechanisms (including short-term plastic-

ity, heterosynaptic plasticity and inhibitory plasticity) which make the identification of general

rules difficult. Nevertheless, the precise theoretical description of triplet STDP in recurrent

networks provided by our framework highlights a set of novel motifs absent in the case of pair-

based STDP that promote assembly formation, in the process highlighting an important role

of HOCs in the generation of global network structure from local motifs.

Methods

Network dynamics

The time dependent activity of a neuron i is given by a stochastic realization of an inhomoge-

neous Poisson process [70], with expectation value

liðtÞ ¼ mi þ
XN

k¼1

Wik½E � Sk�ðtÞ; ð8Þ

where μi is the external input firing rate, W is the synaptic weight matrix, S(t) is the spike train

and E(t) is the EPSC function, which we assume to be identical for all N neurons. Then, the

product WE(t) is referred to as the interaction kernel. The operator ‘�’ corresponds to the

convolution operation. In all plasticity simulations, the connectivity weight matrix is divided

into an excitatory and an inhibitory component, such that the effective connectivity matrix is

calculated as Weff = W −Winh. The inhibitory weight matrix Winh is updated to balance the

excitatory (see section ‘Additional plasticity mechanisms besides STDP’). For simplicity in

notation, we refer to Weff as W in the manuscript.

Averaged synaptic efficacy dynamics for pair-based and triplet STDP rules

Plasticity of the connectivity matrix W is determined by pair-based and triplet STDP rules. We

assume ‘all-to-all’ interactions between spikes, where each postsynaptic spike interacts with

every previous pre- and postsynaptic spike and vice-versa [52, 121–123].

Plasticity due to the pair-based STDP can be expressed as:

_W pair STDP
ij ðtÞ ¼

Z1

� 1

SiðtÞSjðt � t1ÞL2ðt1Þdt1 ð9Þ

and plasticity due to the triplet STDP rule as:

_W triplet STDP
ij ðtÞ ¼

ZZ1

� 1

SiðtÞSjðt � t1ÞSiðt � t2ÞL3;yðt1; t2Þdt1 dt2

þ

ZZ1

� 1

SjðtÞSiðt � t1ÞSjðt � t3ÞL3;xð� t1; � t3Þdt1 dt3

ð10Þ

L2 corresponds to the pair-based STDP rule and L3 to the triplet STDP rule. The additional
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subscripts x and y denote that the triplets which contribute to plasticity are two pre- and one

postsynaptic spikes and one pre- and two postsynaptic spikes, respectively. τ1 is the time differ-

ence between the spikes of the pre- and the postsynaptic neuron. τ2 is the time difference

between two postsynaptic spikes and τ3 is the time difference between two presynaptic spikes

(Fig 1B). It should be highlighted that this derivation is independent of the specific shape of

the STDP functions.

Assuming slow learning in comparison to neuronal dynamics and that pairs and triplets of

spikes between the pre- and postsynaptic neurons are relevant to plasticity [54, 57], the mean

evolution of the synaptic efficacies due to STDP is given by

h _W STDP
ij ðtÞi ¼

Z1

� 1

hSiðtÞSjðt � t1ÞiL2ðt1Þdt1 þ

ZZ1

� 1

hSiðtÞSjðt � t1ÞSiðt � t2ÞiL3;yðt1; t2Þdt1 dt2

þ

ZZ1

� 1

hSjðtÞSiðt � t1ÞSjðt � t3ÞiL3;xð� t1; � t3Þdt1 dt3

ð11Þ

where h�i denotes averaging over different realizations of the Poisson neuronal dynamics for

different connectivity.

We define the mean rates of the pre- (j) and postsynaptic neuron (i) as rj and ri. We con-

sider both to be stationary at equilibrium. The second-order correlation between the pre- and

postsynaptic neurons with time delay τ1 is hSi(t)Sj(t − τ1)i and we define the covariance matrix

(second-order cumulant) C (Fig 1B) as

Cijðt1Þ ¼ hSiðtÞSjðt � t1Þi � rirj: ð12Þ

Note that [6, 37] use a different convention for signs.

The third-order correlation between the triplet of spikes ‘post-pre-post’ with time delays

between the pre and one post τ1 and between the two post τ2 is hSi(t)Sj(t − τ1)Si(t − τ2)i and we

define the third-order cumulant as [57]

Kijðt1; t2Þ ¼ hSiðtÞSjðt � t1ÞSiðt � t2Þi � riðCijðt1Þ þ Cijðt2 � t1ÞÞ � rjCiiðt2Þ � r2
i rj: ð13Þ

Analogously, for the ‘pre-post-pre’ third-order correlation hSj(t)Si(t − τ1)Sj(t − τ3)i, we can

define the third-order cumulant

Kijðt1; t3Þ ¼ hSjðtÞSiðt � t1ÞSjðt � t3Þi � rjðCijðt1Þ þ Cijðt3 � t1ÞÞ � riCjjðt3Þ � rir2
j : ð14Þ

With these definitions, Eq 11 becomes Eq 1 of the main text.

Calculation of cumulants

The definition of cumulants in the Fourier space is imperative for the derivation of our results.

Assuming stationarity, the expected firing rate (i.e. the first order cumulant) vector r = hλ(t)i
no longer depends on time and can be written as

r ¼
�
I � ~Eð0ÞW

�� 1

μ; ð15Þ

where ~Eð0Þ ¼ F ½EðtÞ�jt¼0 denotes the Fourier transform of the EPSC function evaluated at
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zero. For all the calculations, we define the Fourier transform as

F ½f ðtÞ� ¼ ~f ðoÞ ¼
Z1

� 1

f ðtÞe� jotdt: ð16Þ

The second-order cumulant, consisting of the cross- and auto-covariance, can be calculated

in the time domain as [37, 102]

Cijðt1Þ ¼
XN

k¼1

rk

Z 1

� 1

RikðuÞRjkðu � t1Þdu; ð17Þ

where RðtÞ ¼
P

n�0

G�nðtÞ is defined as a ‘convolution power series’ [37, 102] of the interaction

kernel G(t) = WE(t), with

G�nðtÞ ¼

IdðtÞ; if n ¼ 0

Rt

� 1

G�ðn� 1Þðt � sÞGðsÞds ¼
Rt

� 1

ðWEðt � sÞÞ�ðn� 1ÞWEðsÞds; if n � 1:

8
><

>:
ð18Þ

Since W does not depend on the integration domain, the convolution in the operation �n is cal-

culated on E, while for W it becomes a power operation. Formally, the computation of each

element Rmn(t) consists of calculating the probability of a spike from neuron m at time t given

that neuron n fired at time 0. Therefore, in Eq 17 we write the covariance for the spike trains

of neurons i and j as the probability of a pair of spikes in neurons i and j at a time lag τ1 given

that neuron k fired, where k can be any neuron in the network. This representation provides a

convenient formalism for representing causality of spiking events in our model. Then, consid-

ering the definition of ‘path lengths’ α and β from the source neuron k to the postsynaptic neu-

ron i and the presynaptic neuron j (Fig 2A), we can rewrite Eq 17 as

Cijðt1Þ ¼
X

a;b

Z 1

� 1

E�aðuÞE�bðu � t1Þdu
XN

k¼1

rkðW
aÞikðW

bÞjk: ð19Þ

Here, E�κ denotes a series of convolutions of the EPSC function

E�kðtÞ ¼ EðtÞ � EðtÞ � . . . � EðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k terms

:
ð20Þ

For the auto-covariance Cii for path lengths α and γ from the source neuron k to the postsyn-

aptic neuron i (Fig 2B), we analogously obtain

Ciiðt2Þ ¼
X

a;g

Z 1

� 1

E�aðuÞE�gðu � t2Þdu
XN

k¼1

rkðW
aÞikðW

gÞik: ð21Þ

Since each R function consists of the convolution of the EPSC functions, then its Fourier trans-

form is the product of the Fourier transforms of each of those functions, which simplifies cal-

culations. Therefore, the cross-covariance Cij in the frequency domain (i.e. the Fourier

transform of Eq 17) is given by (detailed derivation in S1 Text)

~CijðoÞ ¼
XN

k¼1

rk~RikðoÞ
~Rjkð� oÞ; ð22Þ
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and, finally we obtain the expression

~CijðoÞ ¼
X

a;b

~EaðoÞ ~Ebð� oÞ
XN

k¼1

rkðW
aÞikðW

bÞjk: ð23Þ

It should be noted that Eq 23 was also derived in previous works using a different approach

[6, 70]. However, for the third-order cumulant Kij (Fig 4) that same approach is not possible.

Therefore, it is convenient to write Kij in the time domain in terms of the previously defined R
[37, 102] as

Kijðt1; t2Þ ¼
XN

k¼1

rk

Z 1

� 1

RikðuÞRjkðu � t1ÞRikðu � t2Þdu

þ
XN

k;l¼1

rk

ZZ1

� 1

RikðuÞRjlðv � t1ÞRilðv � t2ÞClkðv � uÞdv du

þ
XN

k;l¼1

rk

ZZ1

� 1

Rjkðu � t1ÞRilðvÞRilðv � t2ÞClkðv � uÞdv du

þ
XN

k;l¼1

rk

ZZ1

� 1

Rikðu � t2ÞRilðvÞRjlðv � t1ÞClkðv � uÞdv du;

ð24Þ

where additionally

ΨðtÞ ¼ RðtÞ � I dðtÞ ¼
X

n�1

G�nðtÞ: ð25Þ

In Eq 24,Clk(v − u) is the probability density of the event that a spike from neuron k at a time

v − u = 0 causes a neuron l (different from neuron k) to emit a spike at a time v − u 6¼ 0, after

at least one synaptic connection. The function C is necessary in Eq 24 to take into account the

branching structures in the calculation of Kij (Fig 4B–4D). In addition to α, β and γ, z is the

path length from the source neuron k to the neuron l where the synaptic connection path

branches out and is equal to or larger than one. Then, replacing both the R and C functions by

their corresponding definitions in terms of the connectivity matrix W and EPSC function E(t)
yields

Kijðt1; t2Þ ¼
X

a;b;g

Z1

� 1

E�aðuÞE�bðu � t1ÞE
�gðu � t2Þdu

XN

k¼1

rkðW
aÞikðW

gÞikðW
bÞjk

þ
X

a;b;g

X

z�1

ZZ1

� 1

E�aðuÞE�bðv � t1ÞE
�gðv � t2ÞE

�zðv � uÞdv du
XN

k;l

rkðW
aÞikðW

bÞjlðW
gÞilðW

zÞlk

þ
X

a;b;g

X

z�1

ZZ1

� 1

E�bðu � t1ÞE
�aðvÞE�gðv � t2ÞE

�zðv � uÞdv du
XN

k;l

rkðW
bÞjkðW

aÞilðW
gÞilðW

zÞlk

þ
X

a;b;g

X

z�1

ZZ1

� 1

E�gðu � t2ÞE
�aðvÞE�bðv � t1ÞE

�zðv � uÞdv du
XN

k;l

rkðW
gÞikðW

aÞilðW
bÞjlðW

zÞlk:

ð26Þ
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As with the second-order cumulant, we can calculate the Fourier transform of the third-order

cumulant Kij from Eq 24 as (detailed derivation in S1 Text)

~Kijðo1;o2Þ ¼
XN

k¼1

rk~Rikðo1 þ o2Þ
~Rjkð� o1Þ

~Rikð� o2Þ

þ
XN

k;l¼1

rk~Rikðo1 þ o2Þ
~Rjlð� o1Þ

~Rilð� o2Þ
~C lkðo1 þ o2Þ

þ
XN

k;l¼1

rk~Rilðo1 þ o2Þ
~Rjkð� o1Þ

~Rilð� o2Þ
~C lkð� o1Þ

þ
XN

k;l¼1

rk~Rilðo1 þ o2Þ
~Rjlð� o1Þ

~Rikð� o2Þ
~C lkð� o2Þ:

ð27Þ

Finally, we obtain the third-order cumulant Kij in the Fourier domain in terms of the connec-

tivity matrix W, the EPSC function E(t), and the path lengths α, β, γ and z as

Kijðo1;o2Þ ¼
X

a;b;g

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
XN

k¼1

rkðW
aÞikðW

gÞikðW
bÞjk

þ
X

a;b;g

X

z�1

~Eaþzðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
XN

k;l¼1

rkðW
zÞlkðW

aÞikðW
bÞjlðW

gÞil

þ
X

a;b;g

X

z�1

~Eaðo1 þ o2Þ
~Ebþzð� o1Þ

~Egð� o2Þ
XN

k;l¼1

rkðW
zÞlkðW

aÞilðW
bÞjkðW

gÞil

þ
X

a;b;g

X

z�1

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egþzð� o2Þ
XN

k;l¼1

rkðW
zÞlkðW

aÞilðW
bÞjlðW

gÞik:

ð28Þ

Calculation of motif coefficients

Extending the work of [6], who artificially tuned the values of motif coefficients to investigate

the consequences on the network structures, we derive them analytically as a function of the

STDP rule and the EPSC function. To obtain the expression for the motif coefficients neces-

sary for Eqs 3, 4 and 5, we first need to insert Eqs 23 and 28, i.e. the definitions of the second-

and third-order cumulants in the frequency domain, in Eq 2. Then, it can easily be seen that it

is possible to separate the part that depends on the products of the connectivity matrix W from

the rest. This way we define the motif coefficients as the integral of the products of the Fourier

transforms of the STDP functions and the EPSC functions, considering the appropriate path

lengths α, β, γ and z (Fig 3B and 3D). In particular, for the motif coefficients in Eq 3 we derive

Mpair
a;b ¼

Z1

� 1

~Eaðo1Þ
~Ebð� o1Þ

~L2ð� o1Þdo1: ð29Þ

and

Mtrip
a;b ¼

ZZ1

� 1

�
~Eaðo1Þ

~Ebð� o1Þ dðo2Þ þ
~Eaðo2Þ

~Ebð� o2Þ dðo1 þ o2Þ
�

~L3ð� o1; � o2Þdo1 do2: ð30Þ
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We note that this definition combines motif coefficients where α is the index corresponding to

paths to the postsynaptic neuron, regardless of which of the two postsynaptic spike of the spike

triplet it refers to (Fig 1C). For the motif coefficient in Eq 4 we derive

Mtrip
a;g
¼

ZZ1

� 1

~Eaðo2Þ
~Egð� o2Þ

~L3ð� o1; � o2Þ dðo1Þdo1 do2: ð31Þ

Lastly, for the ‘straight’ triplet motif (Fig 4A) in Eq 5 we get:

Mtrip
a;b;g ¼

ZZ1

� 1

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
~L3ð� o1; � o2Þ do1 do2 ð32Þ

while for the ‘branching’ motifs (Fig 4B–4D) in Eq 5:

Mtrip
ða;zÞ;b;g ¼

ZZ1

� 1

~Eaþzðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
~L3ð� o1; � o2Þ do1 do2; ð33Þ

Mtrip
a;ðb;zÞ;g ¼

ZZ1

� 1

~Eaðo1 þ o2Þ
~Ebþzð� o1Þ

~Egð� o2Þ
~L3ð� o1; � o2Þ do1 do2; ð34Þ

and

Mtrip
a;b;ðg;zÞ ¼

ZZ1

� 1

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egþzð� o2Þ
~L3ð� o1; � o2Þ do1 do2: ð35Þ

These expressions give us a concise representation of how the spiking activity interacts with

network structure to impact plasticity.

Synaptic dynamics

To calculate the values for the motif coefficients in Eqs 29–35, we define the EPSC function

E(t) as

EðtÞ ¼

( tεþti
t2ε

e
� t
tε 1 � e

� t
ti

� �
if t � 0

0 if t < 0:

ð36Þ

This function depends on two time constants τε and τι that define the onset and decay of the

increase in the membrane potential with each spike. In particular, when τι! 0 the current is

instantaneous and decays exponentially. The function is normalized to have an integral equal

to 1, so that on average the number of postsynaptic spikes with the arrival of a presynaptic

spike scales with the same order of magnitude as the synaptic efficacy. Its Fourier transform is

~EðoÞ ¼ 1þ
ti
tε

� �
1 � jtεo
1þ t2

εo
2
�
ti
tε

1 � j tεti
tεþti

o

1þ
tεti
tεþti

� �2

o2

: ð37Þ

With respect to the choice of STDP function, we consider the minimal triplet STDP rule

[54, 57] that consists of the pair-based STDP function for depression and of a triplet STDP
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function for potentiation (Fig 1C). Furthermore, we introduce a ‘modulation parameter’ η− to

model the reshaping of the depression window of the STDP function via modulatory effects.

The depression window of the STDP function can be written as

L2ðt1Þ ¼

(
�

A�
Z�
e

t1
Z� t� if t1 < 0

0 otherwise;
ð38Þ

where τ1 = tpost − tpre denotes the time difference between a post- and a presynaptic spike, A−

is the depression learning rate, τ− is the depression time constant and η− is the depression

modulation parameter. The potentiation window of the STDP function depends on the timing

of spike triplets (tpre, tpost, t0post)

L3ðt1; t2Þ ¼

(
Aþe

�
t1
tþe�

t2
ty if t1 � 0; t2 � 0

0 otherwise;
ð39Þ

where again τ1 = tpost − tpre denotes the time difference between a post- and a presynaptic

spike and t2 ¼ tpost � t0post is the time difference between the two postsynaptic spikes; A+ is the

potentiation learning rate, τ+ is the potentiation time constant and τy is the second potentia-

tion time constant.

While the ‘A’ parameters scale the amplitude of weight changes, the ‘τ’ coefficients deter-

mine how synchronous pre- and post-synaptic spikes must be to drive plasticity. The η−
parameter enables the modification of the shape of the STDP function. This additional param-

eter does not affect the total depression and potentiation in the rule and one can easily recover

the ‘standard’ expressions for η−! 1.

The Fourier transforms for these two functions are

~L2ðo1Þ ¼ � A� t�
1þ jZ� t� o1

1þ Z2
�
t2
�
o2

1

; ð40Þ

and

~L3ðo1;o2Þ ¼ Aþtþty
1 � jtþo1

1þ t2
þ
o2

1

1 � jtyo2

1þ t2
yo

2
2

: ð41Þ

Motif expansion up to third-order

After including Eqs 3, 4 and 5 into Eq 2, we can rewrite it in terms of the order of interactions

in which they contribute to the averaged synaptic modification:

h _Wiji ¼ h
_Wiji

ð0Þ
þ h _Wiji

ð1Þ
þ h _Wiji

ð2Þ
þ h _Wiji

ð3Þ
þ . . . ð42Þ

Assuming non-zero mean rates, no self-excitation (i.e. Wii = 0) and that terms of order higher

than three can be disregarded in comparison to lower order ones, the terms of Eq 42 are

h _Wiji
ð0Þ
¼ rirjM0

ð43Þ

for the zeroth-order contributions,

h _Wiji
ð1Þ
¼ rjWijM1;0 þ riWjiM0;1

ð44Þ

PLOS COMPUTATIONAL BIOLOGY Autonomous emergence of connectivity assemblies via spike triplet interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007835 May 8, 2020 31 / 44

https://doi.org/10.1371/journal.pcbi.1007835


for the first-order contributions,

h _Wiji
ð2Þ
¼
X

k6¼i;j

rkWikWjkM1;1 þ rjðW
2ÞijM2;0 þ riðW

2ÞjiM0;2

þ
X

k6¼i;j

riWikWkirjM
trip
a¼2;g¼0 þ

X

k6¼i;j

rkW
2

ikrjM
trip
a¼1;g¼1

þrjW2
ijM

trip
a¼1;b¼0;g¼1;

ð45Þ

for the second-order contributions, and finally

h _Wiji
ð3Þ
¼
X

k6¼i;j

rkðW
2ÞikWjkM2;1 þ

X

k6¼i;j

rkWikðW
2ÞjkM1;2 þ rjðW

3ÞijM3;0

þriðW
3ÞjiM0;3 þ

X

k6¼i;j

rkðW
2ÞikWikrjðM

trip
a¼2;g¼1 þMtrip

a¼1;g¼2Þ

þr2
j ðW

3ÞiiM
trip
a¼3;g¼0 þ

X

k6¼i;j

rkW
2

ikWjkM
trip
a¼1;b¼1;g¼1

ð46Þ

for the third-order contributions. Examples and illustrations of these motifs are given in Figs 3

and 5. For conciseness, we grouped motif coefficients arising from the pair-based STDP rule

and from the triplet STDP rule that shared values of α and β and relabeled them as

M0 ¼
~L2ð0Þ þ ri~L3ð0; 0Þ; ð47Þ

M1;0 ¼ riM
trip
a¼1;b¼0; ð48Þ

M0;1 ¼ Mpair
a¼0;b¼1 þ riM

trip
a¼0;b¼1; ð49Þ

M2;0 ¼ riM
trip
a¼2;b¼0; ð50Þ

M0;2 ¼ Mpair
a¼0;b¼2 þ riM

trip
a¼0;b¼2; ð51Þ

M1;1 ¼ Mpair
a¼1;b¼1 þ riM

trip
a¼1;b¼1; ð52Þ

M3;0 ¼ riM
trip
a¼3;b¼0; ð53Þ

M0;3 ¼ Mpair
a¼0;b¼3 þ riM

trip
a¼0;b¼3; ð54Þ

M2;1 ¼ Mpair
a¼2;b¼1 þ riM

trip
a¼2;b¼1; ð55Þ

M1;2 ¼ Mpair
a¼1;b¼2 þ riM

trip
a¼1;b¼2: ð56Þ

Using the defined functions for the EPSC (Eq 37) and STDP functions (Eqs 40 and 41) we

calculated the motif coefficients in Eqs 29–32, and consequently Eqs 47–56. Note, we excluded

the higher-than-third-order motif coefficients in Eqs 33–35. The truncated approximation of

motifs up to third-order is valid, since the difference of the weight change from the full contri-

bution and the weight change from up to third-order motif truncation is very small (S1 Fig).
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These quantities represent the strength of contributions of each particular combination of

paths from the source neuron to the pre- and postsynaptic neurons involved in the synaptic

connection. In principle, also the motifs Mα=0,γ=2 and Mα=0,γ=3 from the auto-covariance and

the motifs Mα=2,β=0,γ=1 and Mα=1,β=0,γ=2 from the third-order cumulant would need to be con-

sidered, however we find that the contribution of these motifs is zero and therefore we did not

include them in our analysis. Since we assume a learning rule balanced in potentiation and

depression,

M0 ¼ 0; ð57Þ

and thus

� A� t� þ riAþtþty ¼ 0; ð58Þ

which is independent of the modulation parameter η−, this allows us to rewrite these motifs so

that they are independent of the mean firing rate of the postsynaptic neuron. Since the firing

rate ri is not fixed, it should be noted that this assumption implies that the amplitude of the

LTP window A+ adjusts to balance the learning rule, similar to metaplasticity [57]. However,

we verify that the firing rates in the system are relatively stable over the time of the simulation

(S5 Fig) and therefore A+ does not vary much. We analyze the evolution of these quantities in

the main text, because they involve only α and β paths and remain constant throughout the

numerical integration, in contrast to the motif coefficients in Eqs 45 and 46 which involve

both α and γ paths, and which have an additional rate dependence. The expressions for the

motif coefficients defined by Eqs 47–56 in terms of the EPSC and STDP functions’ parameters

are given in S2 Text.

Perturbation of the zero-order motif

We consider a small perturbation δ to the zero-order (or rate) motif

M0 ¼ �d: ð59Þ

A minus sign indicates that the balance is tilted towards depression and, conversely, a plus

sign conveys a potentiation-dominated regime. Then, given the minimal triplet STDP rule, we

obtain that

� A� t� þ riAþtþty ¼ �d: ð60Þ

Since the firing rate contribution to plasticity is now different from zero, chance spike coinci-

dences impact the averaged evolution of the synaptic efficacies as follows

h _Wiji ¼ rirjð�dÞ þ � � � ð61Þ

In this new scenario, the motif coefficients calculated from the triplet rule (equations given in

S2 Text) now scale with (A− τ− ± δ). All weights depress to zero for δ< 0 because we impose a

lower bound on the weights at 0, and do not include any growth terms independent of synaptic

potentiation.

Additional plasticity mechanisms besides STDP

Although we did not formally model inhibitory plasticity, we assume that the overall effect of

the inhibitory population on the synaptic efficacies among excitatory neurons is to balance

the network activity. Thus, the sum of inhibitory synapses into each neuron is dynamically

adjusted to match the sum of the excitatory synaptic efficacies, such that each element of the
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inhibitory connectivity matrix is equal to the average of the excitatory input as

W inh ¼

winh
1

..

.

winh
N

2

6
6
6
6
4

3

7
7
7
7
5
½1 � � � 1� � Dinh ð62Þ

where

winh
l ¼

1

N � 1

X

k

Wlk ð63Þ

is the value of each row element and

Dinh ¼

winh
1
� � � 0

0 . .
.

0

0 � � � winh
N

2

6
6
6
6
4

3

7
7
7
7
5

ð64Þ

is a diagonal matrix to take into account there is no self-connectivity. Then, the effective con-

nectivity weight matrix is calculated as Weff = W −Winh. The inhibitory connections are fast

and updated in each integration step. As mentioned earlier, we refer to Weff as W in the manu-

script. It should be noted that deviations from this perfect balance between excitation and inhi-

bition, modeled with an inhibitory multiplicative factor δinh which scales the overall inhibitory

inputs to deviate from a perfect balance, do not affect the emergence of network structure (S4

Fig). Furthermore, we find that the formation of network structure does somewhat depend

on the input rate μi but not on heterogeneity in the input firing rates (S3 Fig). The input rates

effectively determine the mean firing rates of the network throughout the whole simulation

(S5 Fig).

We also implement heterosynaptic competition based on previous work [6, 80] as an addi-

tional mechanism for the plasticity dynamics to restrict the maximum number of strong con-

nections a neuron can make, and thus keep the spectral radius of the connectivity matrix

lower than one. The total synaptic input and output of each neuron is limited: the sum of the

inbound (afferent) connections to each postsynaptic neuron i and the sum of outbound (effer-

ent) excitatory synaptic efficacies from each presynaptic neuron j have an upper bound Wmax.

The plasticity due to heterosynaptic competition can be written as

h _W hc
ij i ¼

�
Wmax �

X

k

Wki

�
H
�X

k

Wki � Wmax

�
þ
�
Wmax �

X

k

Wjk

�
H
�X

k

Wjk � Wmax

�
; ð65Þ

where H is the Heaviside function. Imposing an upper bound wmax for each synaptic efficacy

restricts the possible number of connections a neuron can make to
Wmax
wmax

. Therefore, the average

amount of plasticity is the sum of the change due to STDP based on Eq 2 and heterosynaptic

competition based on Eq 65.

h _Wiji ¼ n
�
h _W STDP

ij i þ ch
_W hc

ij i
�
: ð66Þ

Here, the learning rate scale ν ensures that the synaptic efficacy increments in each integration

step are small. The relative contribution of heterosynaptic competition to overall plasticity is

determined by the heterosynaptic competition term ψ. The values for these parameters can be

PLOS COMPUTATIONAL BIOLOGY Autonomous emergence of connectivity assemblies via spike triplet interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007835 May 8, 2020 34 / 44

https://doi.org/10.1371/journal.pcbi.1007835


found in Table 1. The values for the parameters in the Supplementary Figures can be found in

Table 2.

Numerical integration of connectivity matrices

To generate the different connectivity matrices in each Figure, we integrate Eq 2 numerically.

The plasticity dynamics are implemented using the Euler method with an adaptive time step.

The maximal amount that a weight can change in each integration step is 0.00035. Although

the weight evolution is deterministic and determined by the plasticity parameters (Table 1),

final connectivity matrices depend on initial connectivity matrices. The initial connection

weights are chosen independently from a uniform distribution between 0 and Wmax/N ×
0.001, and each one of these initial conditions corresponds to a different “trial”. The numerical

integration for each initial condition is continued until the network connectivity achieves a

steady state (no longer changes).

Averaged ordered connectivity matrices

The connectivity matrices resulting from integrating Eq 2 numerically are ordered to reflect

the graph structure of the network [6] (Fig 6C). K-means classification groups neurons that

share similar connectivity using a squared Euclidean distance. We then reorder the connectiv-

ity matrix based on the groups identified by the k-means clustering. Since the structures stud-

ied depend on initial conditions, despite the deterministic nature of our approach, we average

the rearranged synaptic efficacy matrix over many trials with different (but random and weak)

initial connectivity to obtain the most likely connectivity (Figs 6E and 9C). Assemblies on the

edges of the connectivity matrices have sharper edges due to an artifact created by the ordering

algorithm, but this does not affect results.

Network analysis

We calculated graph theoretic measures for directed networks using algorithms of the Brain

Connectivity Toolbox [124] from http://www.brain-connectivity-toolbox.net. All graph mea-

sures were calculated at the steady state and increased during a simulation as network organi-

zation improved.

Table 2. Parameter values for supplementary figures. ? denotes that values are provided in the figures.

Symbol Description S1 Fig S2 Fig S3 Fig S4 Fig S5 Fig

N Number of neurons 12 48

μ External input firing rate 150 Hz ? 150 Hz ?

wmax Upper bound for each individual weight 0.17

Wmax Upper bound for total row/ column weight 0.85

A− Depression learning rate 0.01

τ− Depression time constant 33.7 ms [54]

τ+ Potentiation time constant 16.8 ms [54]

τy Second potentiation time constant 114 ms [54]

η− Depression modulation parameter 13 ? 13

τε First membrane time constant 5 ms

τι Second membrane time constant 5 ms

ν Scaling parameter of learning rate 3.5 ×10−4

ψ Heterosynaptic competition scaling parameter 0.7

https://doi.org/10.1371/journal.pcbi.1007835.t002
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Clustering coefficient. For each connectivity matrix we computed the clustering coeffi-

cient [95]. For node i, this is

Ci ¼
number of complete triplets
number of all possible triplets

: ð67Þ

The number of complete triplets is obtained from the product of the corresponding edges of

the node (from the adjancency matrix), and the total number of triplets depends on network

size. Then, the average of the clustering coefficients of all the vertices N is given by [92]

�C ¼
1

N

XN

i¼1

Ci: ð68Þ

Global efficiency. The efficiency in the communication between nodes i and j can be

defined to be inversely proportional to the shortest distance. The average efficiency of a net-

work is calculated as [96]

E ¼
1

NðN � 1Þ

X

i6¼j

1

dði; jÞ ð69Þ

where N denotes the nodes in the network and d(i, j) is the length of the shortest path between

a node i and a different node j. As an alternative to the average path length, the global effi-

ciency of a network is defined as

Eglob ¼
E

Eðfull networkÞ ð70Þ

where the efficiency is scaled by an ideal graph where all the possible edges exist (i.e. full net-

work). The difference between these measures is that the first measure quantifies the efficiency

in a network where only one packet of information is being moved through it and the global

measure quantifies the efficiency where all the vertices are exchanging packets of information

with each other [96].

Modularity. The modularity Q of a connectivity matrix is a measure of the strength of its

division into clusters or modules. Formally, modularity can be calculated as [93]

Q ¼
1

2m

X

vw

Avw �
kvkw
2m

� �
svsw þ 1

2
ð71Þ

where A is the adjancency matrix of the graph, k is the node degree, v and w are the nodes’

indices and s is a variable that determines if the node belongs to a community or not. Modular-

ity is the non-randomly distributed proportion of the edges that belong to the given cluster in

a graph. It is positive if the number of edges within groups exceeds the number expected at

random and depends on the chosen method for community detection.

The first algorithm we used for community detection, referred to as ‘spectral clustering’

algorithm, is based on the fact that modularity of a network is closely related to the structure

of the eigenvalue spectrum of its weight matrix [93, 125, 126], high modularity means more

strongly embedded communities. This is reflected in the spectra of the connectivity matrices

as the separation of eigenvalues into a group with most eigenvalues and another of outliers, the

number of which is often used to estimate the number of communities present in the network

[93, 125, 126].
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The second algorithm, called the Louvain method [98, 124] is a greedy optimization

method. First, smaller cliques are found by optimizing modularity locally on all nodes, then

each small-sized community is grouped into one node and the first step is repeated. The com-

plete modularity is then calculated by maximizing this value over all the divisions of the net-

work into clusters [98, 124]. We did not find any relevant differences between the Louvain

method [98] and the spectral clustering algorithm [93, 125, 126], which were used to define

community structure (see Fig 7C).

Supporting information

S1 Fig. The truncated weight change including motifs up to third-order provides a good

match for the full weight change including motifs of all orders. The total weight change is

calculated either by including motifs up to third-order, or using the full contribution of all

motifs based on the integral of Eq 2 (main text) in Fourier space. Each dot represents the

respective weight change calculated with the truncated (abscissa) and the full version (ordi-

nate) starting with a random set of initial connectivity weights. The axis are normalized to the

maximum weight change. Parameters used are the ones used in the manuscript, except for

N = 12 (to speed up calculations) and η− = 13.

(TIF)

S2 Fig. Spontaneous emergence of assemblies does not depend on the third-order cumu-

lant. Considering only (up to third order) motifs related to the second-order cross-covariance

Cij (blue) leads to generally worse graph measures compared to the case when adding motifs

from the second-order auto-covariance Cii (red) and the case where all motifs are considered

(yellow). A. Mean clustering coefficient versus the modulation parameter η−. B. Mean global

efficiency versus the modulation parameter η−. C. Mean modularity versus the modulation

parameter η−. All results are calculated from 100 trials at steady state connectivity. Error bars

represent the standard error of the mean.

(TIF)

S3 Fig. Network structure at steady state is sensitive to the external input firing rate, but

not to heterogeneities in the input firing rates. A. Mean clustering coefficient, mean global

efficiency and modularity versus the external input firing rate. Assembly formation breaks

down for very large input firing rates. B. Mean clustering coefficient, mean global efficiency

and modularity versus the standard deviation of firing rate distribution, σ, to introduce hetero-

geneity in the external input firing rates. Varying σ preserves assembly formation as can be

seen from the different graph measures. The mean external input rate was chosen to be 150

Hz. The modulation parameter used is η− = 13 and all other parameters are taken as in the

main text. Note that the abscissa is logarithmic.

(TIF)

S4 Fig. Departures from the balance of excitation and inhibition do not effect assembly

formation. Mean clustering coefficient, mean global efficiency and modularity versus the

inhibitory multiplicative factor δinh = {0.5, 0.8, 1.2, 1.5}, which scales the overall inhibitory

matrix (see Methods). Increasing or decreasing δinh does not disrupt assembly formation as

can be seen from the comparison of the different graph measures. The modulation parameter

used is η− = 13 and all other parameters are taken as in the main text.

(TIF)

S5 Fig. The network converges to steady firing rates during ongoing plasticity. The differ-

ent curves indicate different external input firing rates and in each case the network converges
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to the same rate as the external input firing rate. The modulation parameter used is η− = 13

and all other parameters are taken as in the main text.

(TIF)

S1 Text. Fourier transform of the second- and third-order cumulants.

(PDF)

S2 Text. Calculation of motif coefficients up to third-order.

(PDF)
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13. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. Functional specificity of local

synaptic connections in neocortical networks. Nature. 2011; 473(7345):87–91. https://doi.org/10.

1038/nature09880 PMID: 21478872

14. Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, Mrsic-Flogel TD. The emergence of func-

tional microcircuits in visual cortex. Nature. 2013; 496(7443):96–100. https://doi.org/10.1038/

nature12015 PMID: 23552948

15. Holtmaat A, Caroni P. Functional and structural underpinnings of neuronal assembly formation in

learning. Nat Neurosci. 2016; 19(12):1553–1562. https://doi.org/10.1038/nn.4418 PMID: 27749830

16. Yoshimura Y, Dantzker JLM, Callaway EM. Excitatory cortical neurons form fine-scale functional net-

works. Nature. 2005; 433(7028):868–873. https://doi.org/10.1038/nature03252 PMID: 15729343

17. Kampa BM, Letzkus JJ, Stuart GJ. Cortical feed-forward networks for binding different streams of sensory

information. Nat Neurosci. 2006; 9(12):1472–1473. https://doi.org/10.1038/nn1798 PMID: 17099707

18. Miner D, Triesch J. Plasticity-driven self-organization under topological constraints accounts for non-

random features of cortical synaptic wiring. PLoS Comput Bio. 2016; 12(2):e1004759.

19. Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN, Ko H, Hofer SB, Mrsic-Flogel TD. Functional

organization of excitatory synaptic strength in primary visual cortex. Nature. 2015; 518(7539):399–

403. https://doi.org/10.1038/nature14182 PMID: 25652823

20. Lee WC, Bonin V, Reed M, Graham BJ, Hood G, Glattfelder K, Reid RC. Anatomy and function of an

excitatory network in the visual cortex. Nature. 2016; 532(7599):370–374. https://doi.org/10.1038/

nature17192 PMID: 27018655

21. Miller JK, Ayzenshtat I, Carrillo-Reid L, Yuste R. Visual stimuli recruit intrinsically generated cortical

ensembles. Proc Natl Acad Sci USA. 2014; 111(38):E4053–E4061. https://doi.org/10.1073/pnas.

1406077111 PMID: 25201983

22. Kruskal PB, Li L, MacLean JN. Circuit reactivation dynamically regulates synaptic plasticity in neocor-

tex. Nat Commun. 2013; 4:2474.

23. Gebhardt C, Baier H, Del Bene F. Direction selectivity in the visual system of the zebrafish larva. Front

Neural Circuits. 2013; 7:111. https://doi.org/10.3389/fncir.2013.00111 PMID: 23785314
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103. Luczak A, Barthó P, Marguet SL, Buzsaki G, Harris KD. Sequential structure of neocortical spontane-

ous activity in vivo. Proc Natl Acad Sci USA. 2007; 104(1):347–352. https://doi.org/10.1073/pnas.

0605643104 PMID: 17185420

104. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP. Spatio-temporal

correlations and visual signalling in a complete neuronal population. Nature. 2008; 454(7207):995–

999. https://doi.org/10.1038/nature07140 PMID: 18650810

105. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse

code for natural images. Nature. 1996; 381(6583):607–609. https://doi.org/10.1038/381607a0 PMID:

8637596

106. Simoncelli EP, Olhausen BA. Natural Image Statistics and Neural Representation. Annu Rev Neu-

rosci. 2001; 24:1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.1193 PMID: 11520932

107. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolu-

tion. Neural Comp. 1995; 7(6):1129–1159.

108. Intrator N, Cooper LN. Objective function formulation of the BCM theory of visual cortical plasticity: Sta-

tistical connections, stability conditions. Neural Networks. 1992; 5(1):3–17.

109. Blais BS, Intrator N, Shouval H, Cooper L. Receptive field formation in natural scene environments.

Comparison of single-cell learning rules. Neural Comp. 1998; 10(7):1797–1813.
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