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Abstract

Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency
regards the biological coherence of annotations, while completeness regards the extent and coverage of functional
characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and
completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems.
All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway
resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based
system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby
the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and
compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.
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Introduction

The ultimate goal of genome and metagenome analysis is the

biological interpretation of the genome sequences in terms of

biochemical capabilities of organisms and their niche-specific

adaptations including generation of testable hypotheses about their

physiological characteristics. This process entails associating genes

with functional roles which describe their enzymatic activities,

involvement in various macromolecular interactions and regula-

tory processes. These functional roles are interpreted in relation to

the functional context in which these genes operate and which can

be represented by pathways, ontologies or other types of functional

classifications. Several genome analysis resources, such as SEED

[1], MicrobesOnline [2], PATRIC [3], KEGG [4], and MetaCyc

[5] support biological interpretation of microbial genomes and/or

metagenomes by integrating diverse data ranging from nucleotide

and protein sequences to various catalogs of protein families and

functional roles, to databases of chemical compounds and

reactions. Most of these resources maintain computational

pipelines that assign functional roles to genes and infer the

presence of reactions and pathways. Some resources, such as

MicroScope [6], also support manual data curation by domain

experts. Due to the diversity of data models, annotation

procedures and curation techniques employed by these resources,

the results of analyzing the same genome or metagenome may

vary greatly between resources. Finding an explanation for these

discrepancies often represents a challenge for scientists due to the

use of resource-specific object identifiers (e.g., resource-specific

accession numbers for protein sequences) and semantic heteroge-

neity. Different mapping approaches implemented in PATRIC’s

(ID mapping based on genome coordinates) and M5NR database

(protein sequence-based mapping) [7] facilitate the comparison of

annotations provided by different resources, but do not address the

problem of semantic differences.

Effective interpretation of microbial genome and metagenome

data requires a consistent and complete view of biological data.

Consistency regards the ‘‘biological coherence’’ of functional

annotations. It is generally accepted that proteins with the ‘‘same’’

activity encoded by different genomes should be assigned to the

‘‘same’’ functional roles and associated with the ‘‘same’’ pathway.

However, due to the dynamic and multifaceted nature of protein

activity, which may be catalytic or structural, includes thermody-

namic and kinetic aspects, as well as various regulatory interac-

tions, the definition of the ‘‘same’’ protein activity is not

straightforward. Therefore a reductionist approach is usually

taken, whereby the ‘‘same’’ activity of the protein is defined as

participation in transformations that include the same compounds

(substrates, products, cofactors) or the same binding partners

(small compounds or macromolecules), while leaving aside most

regulatory, thermodynamic and kinetic aspects. Similar challenges

exist with the definition of the ‘‘same’’ pathway, which depends on

the larger context of an organism-specific metabolic network;

however, in practice this prerequisite is usually ignored. As a result,

the distinction between complete and incomplete pathways or

reversible pathways operating in different directions is often lost.
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Completeness regards the extent of functional characteriza-

tion of an organism based on its genome sequence, i.e., the

coverage of the ‘‘catalog’’ of all functional roles and pathways of

an organism with the genes identified in its genome. Note that

‘‘completeness of annotation’’ often refers to the number of genes

in a genome to which functional roles have been assigned. While

the two definitions are related, there is an important difference

concerning the precision of annotations. Although the goal of

functional annotation is to assign the gene to a specific enzymatic

reaction or macromolecular structure, in reality the genes are often

assigned to imprecise functional roles, such as an entire class of

enzymatic activities (e.g., ‘‘aminotransferase’’ or ‘‘short chain

dehydrogenase’’). Such genes will be included in assessing

annotation completeness defined as the number of genes assigned

to functional roles. However, in our definition of completeness,

such genes will be disregarded, as these imprecise functional roles

are unlikely to be part of the ‘‘function catalog’’ of any living

organism. Annotation completeness in terms of associating genes

with functions from an organism’s ‘‘function catalog’’ is represen-

tative of our real understanding of microbial biochemistry and

genetics, but is difficult to estimate since the content of such

a catalog is generally unknown. However, part of the functional

repertoire of an organism can be inferred from general biological

considerations, such as the necessity of housekeeping processes

including DNA replication, transcription and translation, whereas

another part can be deduced using metadata for genomes and

metagenomes.

Metadata describes the important details of microbe’s lifestyle

such as isolation site, habitat type, and physiological characteristics

(e.g., oxygen requirements, temperature range and salinity). In

addition, organism metadata often include experimentally ob-

served phenotypes. Phenotypes are required for taxonomic

characterization of an organism and can range from relatively

simple features such as the ability to produce certain enzymes (e.g.,

expression of catalase or beta-glucosidase activity) to more

complex characteristics, such as growth requirements (auxotrophy

for certain compounds) or the type of the energy metabolism

(aerobic respiration, anaerobic respiration, etc.). One of the most

powerful tools for assessing the completeness and consistency of

functional annotation is genome sequence-based phenotype
prediction whereby the phenotypic traits of an organism are

inferred based on the presence of certain metabolic reactions and

pathways and compared to experimentally observed phenotypes.

Discrepancies between predicted and observed phenotypes may

require experimental verification of the predicted metabolic

capacity of certain genes and proteins, as well as their expression

levels and regulatory mechanisms.

Functional annotation procedures and pipelines for microbial

genomes have always strived to achieve the highest possible level of

annotation completeness and consistency. The exponential growth

in the number of sequenced genomes and metagenomes have

made this task daunting. Designing a largely automated compu-

tational functional annotation pipeline requires striking a fine

balance between very precise and very specific annotations

generated for a few model organisms, and the need to infer the

functions of genes in less studied organisms without committing

the fallacy of ‘‘over annotation.’’ The latter refers to the

computational inference of a very precise functional role in an

organism that does not have it, and is often considered even more

dangerous than ‘‘under annotation’’, the assignment of an

imprecise functional role to a gene when a more precise role

could be provided.

Best annotation practices established over the years include

assignment of predicted proteins to sequence similarity-based

protein families, such as COGs (Clusters of Orthologous Genes)

[8] and Pfams (protein families and domains) [9]. Such

assignments are usually performed by comparing protein

sequences to a consensus sequence of the family represented

by a Hidden Markov Model (HMM) or a Position-Specific

Scoring Matrix (PSSM). Often these assignments alone are

sufficient for generating very precise functional annotations for

genes with largely vertical inheritance (from parent to children)

and nearly non-existent duplication and neo-functionalization

events, such as ribosomal proteins or subunits or RNA

polymerase. In other cases assignments to COGs and Pfams

generate what can be considered imprecise functional assign-

ments, whereby a protein is assigned to a large enzymatic class

or a broad functional family, such as transmembrane subunits of

ABC transporters.

In most cases gene assignments to COGs and Pfams are

characterized by a high degree of consistency, since the assignment

method ensures detection of even remote sequence similarity

provided that functionally important amino acid residues are

conserved. However, the precision of COG- and Pfam-based

functional annotations is generally insufficient and results in low

degree of annotation completeness. In order to overcome this

limitation different genome analysis resources employ a variety of

manual curation procedures and computational pipelines in-

cluding TIGRfam protein families [10], KEGG Orthology terms

[4] and FIGfams [1]. In general, these annotation refinement tools

rely on a combination of orthology detection methods (such as

reciprocal best hits), sequence similarity thresholds, and analysis of

synteny to assign more specific functional roles to genes. Other

methods for annotation refinement are based on improved

orthology detection via reconstruction of phylogenetic trees for

protein families and their comparison to the species tree [11], [12],

or attempt to detect subfamilies with different specificity based on

the analysis of so-called Specificity Determining Positions (SDPs)

[13]. However these tools may perform very well on one or a few

protein families, while failing on others; it is not uncommon that

different methods produce conflicting functional assignments for

the same protein. Therefore careful identification of subfamilies,

which may involve a combination of diverse methods, such as

those described above, and manual curation of functional

annotations remains a gold standard in ensuring completeness

and consistency of the data.

IMG [14,15] belongs to the collection of microbial genome and

metagenome data management and analysis systems. IMG

supports microbial genome interpretation by integrating diverse

data from multiple sources including native annotations and native

pathway collections from SEED, KEGG and MetaCyc. IMG also

provides an extensive suite of tools that allow assessing the

consistency and completeness of functional annotations via

analysis of pathways and inferred phenotypes, as well as

identification of problematic genes and protein families that may

require manual curation. IMG has proved to be effective in

supporting microbial genome data analysis, as illustrated by the

science publications (e.g., see http://img.jgi.doe.gov/publication.

html) that relied on it. The tools and mechanisms provided by

IMG for improving the consistency and completeness of microbial

genome annotations are described in the following sections.

Methods

Functional Annotations
In many cases a discrepancy between the functional assignments

generated for the same gene by different resources indicates that

only one (or even none) of these conflicting functional assignments
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is correct. IMG helps the users to identify such genes and gene

families by integrating the data from different annotation sources.

IMG’s annotation process [16] attempts to assign every protein-

coding gene to three types of sequence-similarity based protein

classifications: COG, Pfam and TIGRfam, as well as the models

collected in the integrated database InterPro [17]. These protein

classifications have been generated using different approaches, and

protein families carry more or less extensive manually curated

functional descriptions; as a result, the information provided by

them is only partially redundant. A protein belonging to one COG

and one TIGRfam may have several Pfam assignments corre-

sponding to individual domains. For example, the E.coli rpo S

sigma factor has one COG and four Pfam domains, while E.coli

beta-glucosidase bglX has one COG and two Pfam domains. On

the other hand, the genes belonging to the same COG may be

assigned to different TIGRfams, since the latter classification has

been designed to capture equivalogs, i.e., homologous proteins

that have the same conserved function since their last common

ancestor.

IMG also includes native annotations generated by other

resources, such as KO terms and FIGfams. Instead of a consensus-

based mechanism of functional inference, which is based on

multiple sequence alignment of the proteins assigned with the

same functional role and generation of the consensus sequence or

a model, these systems employ pairwise sequence similarity

between manually annotated seed sequences and candidate

proteins, which could be assigned to this functional role. Since

KO terms and FIGfams systems do not employ a consensus-based

approach, there is a possibility that proteins assigned to the same

functional role may belong to different sequence similarity-based

protein families. For instance, KEGG Orthology term K01183

(chitinase) includes genes from glycosyl hydrolase family 18 and

also those from NlpC/P60 family from Peptidase CA clan;

members of these two protein families have no sequence similarity

to each other. On the other hand, since both systems are based on

a seed set of genes with manual assignments performed using

additional refinement criteria, such as orthology detection and

synteny, they often provide finer granularity of functional

Figure 1. Correspondence between functional annotations in IMG using an example of ribosomal protein L1 and a combination of
Pfam, COG, TIGRfam, FIGfam, IMG term and KO term annotations. The same gene may be assigned to one or more functions according to
each classification system; COG, Pfam and KO make no distinction between the cytosolic and organelle forms of ribosomal protein L1, while FIGfams
include more than 10 synonymous annotations for proteins with different subcellular localization, taxonomic affiliation, and subsystem membership,
such as ‘‘LSU ribosomal protein L1’’, ‘‘LSU ribosomal protein L1p (L10Ae)’’ and ‘‘Ribosomal protein L1’’. The sets of proteins classified as ribosomal
protein L1 by each annotation system are represented by circles of different color; the size and extent of overlap between the circles reflect the
relationship between sets of proteins annotated by each protein classification system.
doi:10.1371/journal.pone.0054859.g001
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annotations than those generated by COGs and Pfams. Protein

assignments to KO terms and FIGfams are imported from the

corresponding resources using identifier- or protein sequence-

based mapping, and in the case of KEGG Orthology native

annotations are supplemented by additional assignments of IMG

proteins to KO terms using the methodology described in [16].

Combining functional annotations from different sources

provides an easy way to identify annotation discrepancies, as

illustrated in Figure 1. This figure shows the relationship between

gene sets annotated with the same functional role – that of

ribosomal protein L1 of large ribosomal subunit – by different

protein classifications and annotation resources. Whereas COG

and Pfam annotations generally agree and capture the majority of

the genes from this functional family, annotations generated by

TIGRfam, KEGG and SEED are less consistent and overlap only

partially. These discrepancies can be attributed to both the

selection of seed sequences and to different methodologies used to

pledge new sequences to these functional roles (consensus-based

approach vs. pairwise sequence similarity described above). In

addition the differences in sensitivity of Pfam and TIGRfam,

which employ the same model-based approach, can be ascribed to

the focus of the latter on targeted subfamily models describing

equivalog groups of genes resulting in rather stringent assignment

cutoffs. In cases of protein families with a large number of paralogs

and frequent events of gene duplication and gene loss, the

discrepancies between gene sets assigned to the same functional

role by different annotation resources are even more pronounced.

Sometimes they are due to annotation errors, but quite often they

are indicative of the presence of a subfamily with different

substrate specificity (or otherwise different function), which has not

been identified as such by any of the annotation resources.

IMG provides tools for further exploration of such subfamilies

via the analysis of the chromosomal synteny and phylogenetic

occurrence profiles [18,19]. An illustration of IMG tools developed

for assessment of the consistency of functional annotation is

Figure 2. IMG tools for analysis of the correspondence between KO Terms and other protein families in IMG. (i) The summary table
listing all KO terms and their correspondence to other protein families (COGs, Pfams, TIGRfams) based on the genes assigned to both; for instance, KO
term K00005 (glycerol dehydrogenase) corresponds to one COG, 2 Pfams and 0 TIGRfams, with 4 unique combinations of all 3 functional
assignments. (ii) Detailed lists of genes corresponding to unique combinations of functional assignments using an example of K00005; 4 unique
combinations of COG and Pfam for K00005 are shown with the counts of genes assigned to this particular combination, as well as the counts of
genes with this combination of COG and Pfam and different KO term assignment or no KO term assignment. In this case the majority of the genes
with K00005 term are assigned to COG0371 and pfam01761; however, many genes with the same COG and Pfam are assigned to other KO terms
indicating either the lack of consistency of KO term assignment or the broadness of the corresponding COG and Pfam, which may include multiple
paralogous proteins with different enzymatic activities.
doi:10.1371/journal.pone.0054859.g002
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provided below, using KO terms as an example. The suite of tools

includes the following:

1. The KO Term Distribution across Protein Families,
shown in Figure 2(i), lists for each KO term the number of

different COGs, Pfams, and TIGRfams it is associated with

across all the genes in IMG. The number of unique (COG,

Pfam, TIGRfam) combinations associated with each KO term

as part of an IMG gene annotation is also provided, whereby

the details for these combinations can be examined using the

Details of KO Term Distribution across Protein
Families page, as illustrated in Figure 2(ii). For a specific

(query) KO term, this page lists for each unique (COG, Pfam,

TIGRfam) combination:

N the number of genes associated with the query KO term and

this (COG, Pfam, TIGRfam) combination;

N the number of genes associated with this (COG, Pfam,

TIGRfam) combination and a KO term different from the

query KO term, including genes associated with multiple

KO terms and a query KO term as one of them;

N the number of genes associated with this (COG, Pfam,

TIGRfam) combination and a KO term different from the

query KO term, and not associated with the query KO

term;

N the number of genes associated with this (COG, Pfam,

TIGRfam) combination and not associated with a KO term.

2. The KO Term Distribution across Genomes and
Paralog Clusters, where Paralog Clusters in IMG are

determined using pairwise similarities between genes of the

same genome using USEARCH, and subsequently clustered

using the Markov Cluster Algorithm (MCL), lists for each

(query) KO term (Figure 3(i)):

N the number of genes associated with the query KO term;

N the number of genomes that have genes associated with the

query KO term;

Figure 3. KO term distribution across genomes and paralog clusters in IMG. (i) The summary table listing all KO terms with the number of
genes to which they were assigned and the number of genomes in which these genes were found, including the average number of genes with this
term per genome. The higher average number of genes with the term per genome and higher number of paralogs assigned with the same term can
be indicative of over-annotation. (ii) Detailed view of the paralogous genes assigned with the same KO term; as an example, 2 genes in
Saccharomyces cerevisiae genome are assigned with the term K00004, (R,R)-butanediol dehydrogenase. One of them appears to be an experimentally
verified (2R,3R)-2,3-butanediol dehydrogenase, while the other protein is a putative polyol dehydrogenase with unknown specificity.
doi:10.1371/journal.pone.0054859.g003
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N average number of genes associated with the query KO term per

genome; this metric helps identify KO terms that were

assigned to multiple genes in the same genome, either by

mistake or because these terms correspond to sequence

similarity-based families rather than function-based groups;

N the number of genes associated with the query KO term that

belong to paralog clusters; the list of these genes is provided

in a separate page, where one can examine the paralogs

annotated with the query KO term within each genome; this

metric indicates the likelihood of incorrect annotations due

to the presence of paralogs.

N the number of genes associated with the query KO term, and

that have a paralog annotated with the same KO term; the

list of these genes is provided in a separate page, as illustrated

in Figure 3(ii), where one can examine the paralogs

annotated with the query KO term within each genome;

this number helps identifying incorrectly annotated para-

logous genes.

N average % identity between the paralogs annotated with the

same KO term; in general, paralogs with high sequence

similarity tend to have the same function, whereas, low %

identity between paralogs is often a sign of significant

functional divergence.

IMG native functional terms were introduced with the goal

of addressing problems related to the consistency and complete-

ness of functional annotations in IMG. In contrast to other types of

functional annotations, IMG terms model the relationship

between the protein product of a gene and its mature, fully

functional form. Accordingly, three types of IMG terms have been

introduced: protein product, corresponding to the immediate trans-

lation product of the ribosome, modified protein, describing the cases

of covalent and non-covalent modification, such as proteolytic

cleavage or cofactor binding, and protein complex, capturing the

instances of protein-protein interaction. These terms are largely

self-explanatory and help describe the transformation of a gene

product into its functionally active form.

Consider an example of a multimeric enzymatic complex, such

as nitrogenase, which consists of several different subunits, each of

them carrying different cofactors. Oftentimes these subunits are

subject to proteolytic cleavage during secretion process; in

addition, maturation (e.g., cofactor binding) of one or more

Figure 4. IMG Pathway Definitions and Assertions. (i) IMG Pathway Details displays information on a specific IMG pathway including the
author and editing history, as well as the component reactions and functional roles. Assertion details for an IMG Pathway can be examined via (ii) the
list of genomes for which the pathway is asserted, and (iii) the number of genes in the genome assigned to the functional roles in the pathway.
Genomes can be compared in terms of IMG pathways using Function Profile analysis tool, with the result (iv) displaying counts of genes assigned
to functional roles in the pathway.
doi:10.1371/journal.pone.0054859.g004
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subunits in such complexes is not spontaneous, and requires

participation of accessory proteins. Furthermore, assembly of this

multimeric complex may depend on one or several chaperones,

which do not participate directly in biochemical transformation

catalyzed by the mature enzyme, but are required for its

conversion into a catalytically active form. Examples of such

enzymatic complexes are plentiful among oxidoreductases, and

also can be found in other enzyme classes. Without a proper data

model and accurate recording, inferring the presence of reactions

catalyzed by such enzymatic complexes is quite challenging; false

positive inferences are not uncommon, in most cases based on the

presence of a gene with similarity to just one subunit (not

necessarily a catalytic one). Although this model does not describe

all the circumstances surrounding the transformation of translation

products into their catalytically or physiologically active forms,

IMG does provide a mechanism for capturing the most common

scenarios and identification of the majority of the genes necessary

for the presence of various enzymatic activities including all

subunits, accessory proteins, as well as entire pathways necessary

for biosynthesis of cofactors (see, for instance, pathways for nitrate

reductase maturation).

Initial assignment of genes to IMG terms is done manually.

Each IMG term is functionally coherent and is not required to

contain sequences that share similarity. Subsequently the IMG

terms are propagated using strict sequence similarity thresholds

[16] and are inspected by expert curators. IMG terms are further

connected to entities describing transformations of various

metabolites and macromolecules called IMG reactions and

IMG pathways, as described below.

Figure 5. Phenotype Prediction Rules in IMG are defined as AND-OR rules based on IMG pathway assertions. Phenotype rules range
from complex, such as (i) the rule for predicting ‘‘Growth on cellulose via cellobiose’’ which involves multiple IMG pathways, to very simple, such as (ii)
the rule for predicting ‘‘L-histidine prototroph’’ which involves one IMG pathway.
doi:10.1371/journal.pone.0054859.g005

Table 1. NOT (3-valued logic).

IMG Pathway assertion Evaluation result

Asserted False

Not Asserted True

Unknown Unknown

doi:10.1371/journal.pone.0054859.t001

Improving Microbial Genome Annotations

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e54859



Pathway Annotations
IMG integrates pathway information from multiple sources

including KEGG Pathway Maps and Modules, BioCyc/MetaCyc

pathways, MPW pathways [20], SEED subsystems, and IMG

native pathways. These resources describe metabolic transforma-

tions catalyzed by proteins as well as some other reaction types,

such as protein-protein interactions. These resources provide

a good representation of core microbial processes and, to some

extent, of the variable part of microbial metabolism, thus helping

to establish the context in which proteins encoded by the genome

are expected to function.

Although most pathway collections include the same set of core

biosynthetic pathways commonly found in living organisms (e.g.,

glycolysis, amino acid and nucleotide biosynthesis), different

resources focus on different aspects of biochemical reactions and

different facets of metabolism. Furthermore, due to the in-

consistency of data models and pathway recording procedures,

mapping of identical or similar biochemical transformations

between different pathway resources is far from straightforward.

These challenges provide the motivation for integrating diverse

pathway information into IMG with the goal of supporting

manual exploration of genomes in the context of pathway data.

The All Pathways Search tool allows identifying KEGG,

MetaCyc and MPW pathways using EC and/or keyword matches,

and thus serves as a starting point for comparing various pathways

in IMG.

The native IMG pathways have been developed to address

weaknesses of data models found in other pathway resources, such

as inconsistent representation of protein complexes as reaction

catalysts and alternative implementations of reaction catalysts. An

IMG pathway is defined as a set of sequential generalized

transformations (IMG reactions) connecting two branching points

in the metabolic network or in the network of other types of

reactions. In addition to the traditional metabolic reactions

recording biochemical transformations of simple molecules, IMG

reactions may describe transformations of complex polymers (e.g.,

cellulose breakdown into shorter chains), protein-protein interac-

tions and even topological changes (e.g., unwinding of double-

stranded DNA).

In order to simplify pathway recording, alternative transforma-

tions of the same metabolites (e.g., decomposition of hydrogen

peroxide by peroxidases with different cofactor specificities) are

allowed to be merged into one IMG reaction, provided that the

directionality of transformation is the same. Each IMG reaction is

associated with one or more IMG terms, which can participate in

the reaction as catalysts, or as substrates and products (e.g.,

proteolytic cleavage of an inactive precursor producing a mature

enzyme). During the genome annotation process, genes in the

genome are assigned to IMG terms using a standard operating

functional procedure [16]. Briefly, a gene is assigned to an IMG

term if it has at least five homologs in the IMG database with

.50% identity and at least two of these five homologs have an

IMG term assigned, and the alignment length of the pairwise

comparison should be .70% of the length of both the query and

target proteins. These automated assignment criteria were de-

veloped to minimize the possibility of false positive assignments

(over-annotation).

An IMG reaction is considered to be present in an organism if

the latter has the genes assigned to all IMG terms that are

necessary for the reaction to proceed. In the case of IMG reactions

including alternative transformations, only one of the alternatives

needs to be present; on the other hand, if an IMG reaction is

catalyzed by a protein complex, the presence of all subunits is

required. The same rules apply not only to the traditional

metabolic reactions, but also to protein-protein interactions and

topological transformations. For instance, the reaction of ‘‘Rep-

licative DNA helicase loading’’ has two alternative implementa-

tions: helicase loading through ring-breaking or ring-making

mechanism. Only one of these alternatives needs to be present

in order to consider this IMG reaction to be present in an

organism.

Similar to IMG reactions, the presence of IMG pathways in an

organism can be inferred based on the presence of IMG reactions:

if this requirement is fulfilled, the presence of IMG pathway in an

organism is asserted. In addition to the automated pathway

assertion using the set of rules described above, domain experts

can manually assert an IMG pathway even in the absence of a full

complement of genes necessary for all IMG reactions or mark the

pathway ‘‘absent’’ even in the presence of some genes. These

manual options are especially useful for the analysis of incomplete

genome sequences and reduced genomes of intracellular sym-

bionts and pathogens.

Since IMG pathways serve as building blocks for IMG

phenotypes (see below), two additional status values exist for

Table 2. OR (3-valued logic).

Evaluation result Pathway 2: Asserted Pathway 2: Not Asserted Pathway2: Unknown

Pathway 1: Asserted True True True

Pathway 1: Not Asserted True False Unknown

Pathway 1: Unknown True Unknown Unknown

doi:10.1371/journal.pone.0054859.t002

Table 3. AND (3-valued logic).

Evaluation result Pathway 2: Asserted Pathway 2: Not Asserted Pathway2: Unknown

Pathway 1: Asserted True False Unknown

Pathway 1: Not Asserted False False False

Pathway 1: Unknown Unknown False Unknown

doi:10.1371/journal.pone.0054859.t003
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IMG pathway assertion. IMG pathways without a full comple-

ment of the genes that were not asserted manually can have the

status of ‘‘unknown’’ or ‘‘not asserted’’. The status ‘‘unknown’’ is

assigned to an IMG pathway, in which IMG terms without gene

assignments have ‘‘candidate genes’’. The latter are defined as

those with bi-directional best BLASTp hits (BBH) to the genes in

other genomes that are assigned to the corresponding IMG term.

Such a candidate gene can be associated with an IMG term if at

least two of its top 5 BBH genes are assigned this term, sequence

overlapping is over 70%, and at least one of these BBH genes has

percent identity greater than 25%. In most cases ‘‘candidate

genes’’ are not assigned to the corresponding IMG term because of

the alignment between the ‘‘candidate gene’’ and its homologs

assigned with the term does not satisfy rather stringent criteria for

automated IMG term assignment. Such genes can be manually

inspected by the domain experts and manually assigned to the

IMG term; however, even in the absence of such assignment, it is

important to distinguish between the genomes with and without

candidate genes. The presence of ‘‘candidate genes’’ is considered

sufficient evidence that the pathway in which the corresponding

IMG term participates may be present in an organism resulting in

an assertion status of ‘‘unknown’’. In contrast, the status ‘‘not

asserted’’ is assigned to an IMG pathway when no ‘‘candidate

genes’’ can be found. This 3-value logic implemented in IMG

pathway inference distinguishes IMG pathways from other

pathway resources, which consider only 2 status values, ‘‘present’’

and ‘‘absent.’’ It helps to minimize false positive and false negative

inferences by distinguishing ‘‘asserted’’ pathways, which have a full

complement of genes and therefore highly likely to be present in

an organism, from those that may be present (assertion status of

‘‘unknown’’) and those that are unlikely to be present (assertion

status of ‘‘not asserted’’).

For example, 6-phosphogluconate synthesis via gluconate

pathway (P339) is specified as a sequence of 3 reaction steps. The

first step is glucose dehydrogenase or glucose oxidase, which can

be defined as any one of the following four alternative IMG

reactions:

N R977: D-glucose+NADP+, =.D-glucono-1,5-lactone+-
NADPH+H+

Figure 6. Examining phenotype prediction results in IMG. (i) All organisms that are predicted to be aerobic can be examined using
a phylogenetic tree display; by clicking on ‘‘(?)’’, (ii) users can examine the evidence of phenotype prediction of each organism.
doi:10.1371/journal.pone.0054859.g006
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N R978: D-glucose+NAD+, =.D-glucono-1,5-lactone+-
NADH+H+

N R979: D-glucose+O2,=. D-glucono-1,5-lactone+H2O2

N R980: D-Glucose+Ubiquinone,=.D-Glucono-1,5-lacto-

ne+Ubiquinol

Note that although these reactions utilize different coenzymes

(NADP+, NAD+, etc.), they all convert D-glucose into D-glucono-

1,5-lactone with the same anomeric specificity towards beta-D-

glucose; therefore these reactions will be included into the same

pathway as alternative implementations of conversion of beta-D-

glucose to D-glucono-1,5-lactone.

The second step is gluconolactonase, which can be defined by

the following IMG reaction:

N R981: D-Glucono-1,5-lactone+H2O,=.D-Gluconic acid

The third step is gluconate kinase, which can be defined by the

following IMG reaction:

N R982: ATP+D-Gluconic acid,=.ADP +6-Phospho-D-gluco-

nate

Using a rule-based representation, we have:

(R977 or R978 or R979 or R980) and R981 and R982 2.P339.
Figure 4(i) shows the IMG pathway definition of 6-phosphoglu-

conate synthesis via gluconate pathway. This pathway is asserted

for Agrobacterium vitis S4, because this finished genome has all the

required reactions, as illustrated in Figures 4(ii) and 4(iii). The

same pathway has the status ‘‘not asserted’’ for draft genomes of

Rhizobium etli Brasil 5 and Rhizobium etli GR56, because these

fragmented genomes do not have genes for some of the required

reactions.

Results

IMG terms, reactions and pathways help address problems

related to the consistency and completeness of functional and

pathway annotations in IMG. Thus, IMG provides users with

different ways of reviewing pathway assertions:

Figure 7. Metadata search and display in IMG. (i) Metadata search with condition ‘‘aerobe with mesophile temperature range’’ returns (ii) a list
of genomes that satisfy this condition; following the genome name hyperlink (iii) users can further examine organism detail and associated metadata
information.
doi:10.1371/journal.pone.0054859.g007
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1. Users can select a pathway to view IMG Pathway Details, as
illustrated in Figure 4(i). In addition to the summary of IMG

reactions included in the pathway, this page displays a list of all

or user-selected genomes and the status of pathway assertion in

the genome of interest, as illustrated in Figure 4(ii). By clicking

on Pathway Assertion status (asserted, not asserted or unknown),

users navigate to the IMG Pathway Assertion Details
page, which shows assignments of genes to the corresponding

IMG terms and IMG reactions, as illustrated in Figure 4(iii).

2. Users can explore the assertion status for multiple IMG

pathways using the Function Profile tool. After IMG

pathways and genomes of interest are selected, this tool will

display an IMG Pathways by Genomes matrix as

illustrated in Figure 4(iv), with each cell in the matrix showing

the number of genes in a genome associated with the

corresponding IMG pathway.

Pathways can be best understood in context of other pathways

within the organism. For example, if an organism degrades

cellulose to cellobiose outside the cell, it can only utilize cellulose as

carbon source if it also has a transport pathway for uptake of

cellobiose and, within the cell, a metabolic pathway to gain energy

from cellobiose. If all steps are present, then the organism will have

the phenotype of cellulose utilization with cellobiose as an

intermediate. Phenotypes correspond directly to biological traits

that can be measured in an experiment, and thus provide

a powerful mechanism for further assessing the coherence of

functional and pathways annotations.

IMG pathways provide the context needed for predicting

phenotypes within the IMG system. For example, for the transport

step in the cellulose utilization via cellobiose there are two known

possibilities: cellobiose can be taken up by an ABC transporter or

by the phosphotransferase system. Within the cell, cellobiose can

either be converted to glucose and glucose 6-phosphate, glucose

and glucose 1-phosphate, or two molecules of glucose. So the

phenotype of cellulose utilization can be specified in IMG using

the following set of logical rules reflecting different combination

of pathways, as illustrated in Figure 5(i):

1. Cellulose degradation to cellobiose AND ATP-dependent

cellobiose uptake AND Cellobiose hydrolysis; or

2. Cellulose degradation to cellobiose AND ATP-dependent

cellobiose uptake AND Cellobiose conversion to glucose and

glucose 1-phosphate; or

3. Cellulose degradation to cellobiose AND ATP-dependent

cellobiose uptake AND Cellobiose phosphorylation via beta-

glucoside kinase AND Cellobiose 6-phosphate conversion to

glucose and glucose 6-phosphate; or

4. Cellulose degradation to cellobiose AND Cellobiose uptake via

phosphotransferase system AND Cellobiose 6-phosphate

conversion to glucose and glucose 6-phosphate.

Following this approach we have developed a system for

recording IMG phenotype definitions and inferring organism

phenotypes based on these rules and pathway assertion status. In

general, IMG phenotype definitions consist of IMG pathway status

values connected by logical operators AND, OR and NOT. The

simplest IMG phenotype definition consists of one IMG pathway

status value without operators. Consider the example of histidine

biosynthesis, for which only one pathway is known. In this case the

phenotype of L-histidine prototrophy (i.e., organism’s ability to

synthesize histidine) can be recorded simply as the presence of

the corresponding pathway (IMG pathway 162), as illustrated in

Figure 5(ii). In contrast, the phenotype of L-histidine auxotrophy (i.e.,

organism’s inability to synthesize histidine) is recorded as NOT

(IMG pathway 162). Given the 3-value status of IMG pathways

(‘‘asserted’’, ‘‘unknown’’, ‘‘not asserted’’), evaluation of the statement

NOT (IMG pathway 162) is performed as shown in Table 1 [21].

Based on this evaluation an organism will be assigned the IMG

phenotype of L-histidine auxotroph if IMG pathway 162 has the

status ‘‘not asserted’’, whereas an organism in which the status of

IMG pathway 162 is ‘‘asserted’’ will be assigned the IMG

phenotype L-histidine prototroph. Both phenotype predictions can

be readily tested by attempting to grow an organism on a medium

with and without L-histidine: while L-histidine prototrophs will

successfully grow on both media, L-histidine auxotrophs should

fail to grow in the absence of externally provided histidine. For

IMG phenotypes consisting of two pathway status values

connected by operators OR or AND, evaluations are performed

as shown in Tables 2 and 3.

More complex phenotypes can be recorded using multiple

pathway status values connected by multiple AND, OR and NOT

operators, whereby the result of each operation is evaluated as

described above. For example, in order to be a phenylalanine

prototroph an organism must synthesize chorismate and then

synthesize phenylalanine from chorismate. For both of these steps,

there are two possible pathways, so the phenotype L-phenylalanine

prototroph is an AND-rule that can be recorded using IMG pathway

identifiers as: (IMG pathway 146 OR IMG pathway 519) AND

(IMG pathway 272 OR IMG pathway 147). Another example of

a complex phenotype is L-lysine prototrophy, which requires the

presence of at least 1 out of 6 possible biosynthetic pathways, and

can be recorded as (IMG pathway 169 OR IMG pathway 170 OR

IMG pathway 0171 OR IMG pathway 199 OR IMG pathway

333 OR IMG pathway 465). On the other hand, the phenotype of

L-lysine auxotrophy is recorded as (NOT IMG pathway 169) AND

(NOT IMG pathway 170) AND (NOT IMG pathway 0171) AND

(NOT IMG pathway 199) AND (NOT IMG pathway 333) AND

(NOT IMG pathway 465).

IMG users can view all genomes with predicted phenotype in

a table or phylogenetic tree hierarchical display. Viewing

phenotype prediction using a hierarchical display has the

advantage of showing the distribution of phenotypes in genetically

related organisms. There are two hierarchical display options. The

first display option only shows organisms with the predicted

phenotype, which is more compact and easier to view, as

illustrated in Figure 6(i). The second display option shows all

organisms; genomes with predicted phenotypes are selected and

shown with the phenotype label. This hierarchical display allows

users to compare closely related organisms with and without the

predicted phenotype. In both display modes, users can click on the

question mark (?) to see phenotype prediction evaluation. For

example, Figure 6(ii) shows the result of phenotype evaluation for

Acaryochloris marina MBIC 11017, which has been predicted to be

aerobic because ‘‘Plastuquinol oxidation with oxygen’’ (IMG

Pathway 00770) is present in the organism.

Discussion

The IMG tools and mechanisms presented in this paper allow

scientists to review and improve the consistency and completeness

of functional and pathways annotations in the integrated context

of all publicly available microbial genomes. Functional and

pathways annotations across all genomes can be examined in

order to detect problematic (missing or inconsistent) annotations.

IMG native functional terms and pathways are used to address

annotation problems and provide the context needed for

predicting phenotypes. Functional and pathways annotations are
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further validated by comparing predicted phenotypes to experi-

mentally verified phenotypic traits of organisms.

Phenotypic traits of sequenced organisms are available in

resources such as GOLD [22]. Genome metadata from GOLD is

incorporated into IMG and can be used for reviewing predicted

phenotypes. For example, one could find all aerobic, symbiotic

organism with mesophile temperature range using IMG’s

Genome Search by Metadata tool, as illustrated in

Figure 7(i), where the search involves metadata categories Oxygen

Requirement and Temperature Range. Such searches return list

of genomes, as illustrated in Figure 7(ii). For each genome, the

Organism Details page lists all the associated metadata, as

illustrated in Figure 7(iii). In the example shown in Figure 7(iii)

metadata from GOLD confirms that this organism is indeed with

oxygen requirement: aerobic.

In order to facilitate the comparison of metadata from GOLD

and IMG phenotype predictions, each IMG phenotype rule is

associated with a category (which corresponds to a GOLD attribute)

and a category value (which corresponds to a GOLD attribute value).

For example, the ‘‘Aerobe’’ phenotype rule belongs to category

‘‘Oxygen Requirement.’’ Several categories of IMG Phenotypes

have been defined so far, with only metabolism and oxygen

requirement have been populated with phenotype rules. The most

recent release of the IMG system includes 65 phenotype rules, with

the number of such rules continuously extended.

It is worth noting that resources such as SEED employ

stoichiometric modeling and flux balance analysis for predicting

phenotype [23]. However a rule-based approach for phenotype

prediction such as that followed in IMG has the advantage of

allowing phenotype inferences based on partial genome sequences,

such as those generated by single cell genomics [24] or

metagenome binning.
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