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Abstract: Background: High compliance in wearing a mask is a crucial factor for stopping the
transmission of COVID-19. Since the beginning of the pandemic, social media has been a key
communication channel for citizens. This study focused on analyzing content from Twitter related to
masks during the COVID-19 pandemic. Methods: Twitter data were collected using the keyword
“mask” from 27 June 2020 to 4 July 2020. The total number of tweets gathered were n = 452,430.
A systematic random sample of 1% (n = 4525) of tweets was analyzed using social network analysis.
NodeXL (Social Media Research Foundation, California, CA, USA) was used to identify users ranked
influential by betweenness centrality and was used to identify key hashtags and content. Results:
The overall shape of the network resembled a community network because there was a range of
users conversing amongst each other in different clusters. It was found that a range of accounts were
influential and/or mentioned within the network. These ranged from ordinary citizens, politicians,
and popular culture figures. The most common theme and popular hashtags to emerge from the
data encouraged the public to wear masks. Conclusion: Towards the end of June 2020, Twitter was
utilized by the public to encourage others to wear masks and discussions around masks included a
wide range of users.
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1. Introduction

Since emerging in China in December 2019, the beta coronavirus SARS-CoV-2 (named COVID-19)
has been expanding rapidly throughout the world [1]. On 30 January 2020, the World Health
Organisation (WHO) declared coronavirus COVID-19 to be a Public Health Emergency of International
Concern [2]. Thereafter, in March 2020, the WHO declared COVID-19 a pandemic due to the
identification of more than 118,000 cases in 114 countries [3]. Millions of people worldwide have been
infected, and hundreds of thousands of people have lost their lives due to COVID-19 [4].

Different regional approaches related to the use of face masks to mitigate the transmission
of COVID-19 have been developed. In East Asian countries, for example, wearing masks was
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ubiquitous and was performed as a hygienic habit due to past positive outcomes in 2003 during SARS.
On the contrary, in Europe and North America, the population was informed that masks were not
recommended for general use [5]. The WHO states that masks can be used either for protection of
healthy persons (worn to protect oneself when in contact with an infected individual) or for infection
control (worn by an infected individual to prevent onward transmission) [6]. Ma et al. showed that
N95 masks, medical masks, and even home-made masks could block at least 90% of the virus in
aerosols [7]. From the perspective of disease spread, at the population level, wearing masks by infected
individuals may be important in helping retain contagious droplets, aerosols, and particles that can
infect others and contaminate surfaces [5].

The WHO notes that health workers and caregivers in clinical areas must continuously wear
medical masks where there is known or suspected community transmission [3]. However, due to the
lack of robust evidence in clinical trials, the WHO’s recommendations about wearing masks by the
general population has been ambiguous. In its interim guidance issued on 5 June 2020, the WHO advises
that to effectively prevent COVID-19 transmission in areas of community transmission, governments
should encourage the public to wear masks.

Universal masking, as a public health intervention, would probably intercept the transmission
of COVID-19. This could especially be the case for asymptomatic infected individuals with high
viral load at the early stage of the disease (suggested to be around 40–80% by Javid et al. [5]) [8].
Therefore, community-wide mask usage irrespective of symptoms may reduce the infectivity of silent
asymptomatic individuals. Masks are helpful for source control of asymptomatic infectious persons
but also for protecting healthy people [9]. Universal masking may become the default solution in
high-risk areas with a large number of patients and without sufficient testing, where everyone can only
be seen as potentially infected [10].

High compliance in wearing a mask is a crucial factor for stopping transmission. This is similar to
vaccines: the more people that are vaccinated, the higher the benefit to the whole population, including
those who cannot be vaccinated, such as infants or immune-compromised people [11]. Moreover,
the gain is greater the earlier masks are adopted and when face masks are used to complement other
measures such as social distancing [12]. Hand hygiene is a discontinuous process and sometimes
difficult to practice in the community. However, wearing a mask is a continuous form of protection to
stop respiratory droplets to and from others [13]. Thus, controlling harms at the source by wearing
masks is at least as important as other mitigation actions such as handwashing. Universal masking
would also help in removing stigmatization that could discourage symptomatic patients to wear a
mask in many places, preventing any discrimination that might arise.

However, various authors have justified not wearing masks for different reasons. One of the key
reasons is that there is limited evidence supported by clinical trials on the effectiveness of masks [14].
Secondly, it is claimed that prevention depends on an individual’s behaviour and compliance, which has
been shown to be inconsistent or inappropriate in trials, for example, people may repeatedly touch
their mask [6]. It is also claimed that wearing a mask might make people feel safe and hence reduce
adherence to other nonpharmaceutical measures such as hand washing and social distancing [5].
Moreover, at one stage it was also argued that because of the shortage of masks, the public should not
wear them because healthcare workers would need them more and that the public buying masks could
lead to major supply chain problems along with an increase in prices [15].

In this context, the aim of this study was to look at potential for Twitter to highlight public views
towards universal masking. Social media is a useful platform for raising awareness of various issues
and Twitter is a valuable platform for listening to public views and opinions on a range of topics in
real-time. Moreover, from a public health standpoint, it is important to develop an understanding of
the drivers of the discussion around masks and to gain insight into key topics of discussion.

More specifically, the research questions of this study were as follows:

1. What was the overall network shape of the discussion on Twitter?
2. What were the key hashtags?
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3. Who were the most influential users?
4. Who were the most mentioned users?
5. What were the key themes of discussion that were taking place?

2. Methods

2.1. Tweet Sampling

Twitter data were collected using the keyword “mask” from 27 June 2020 21:21:21 to 4 July 2020
19:50:40 to provide coverage of about a week of data in a period when this topic was highly present in
social media. The total number of tweets which were gathered (worldwide) were n = 452,430. By using
the keyword “mask”, tweets including words such as “masks” or “#mask” were also retrieved and
included. A systematic random sample of 1% (n = 4525) of the tweets was extracted and analyzed
using social network analysis, as described in the next section.

2.2. Social Network Analysis

The software NodeXL (Social Media Research Foundation, California, CA, USA) was used to
conduct a social network analysis of the data [16]. In understanding the network graph, the results of
this study build upon previous research [17,18], which has highlighted that Twitter topics may follow
six network shapes and structures [19]: broadcast networks, polarized crowds, brand clusters, tight
crowds, community clusters, and support networks. In the network graph provided in Figure 1, circles
represent individual Twitter users and the lines between them represent connections such as mention
and reply. The network graph was laid out using the Harel–Koren Fast Multiscale layout algorithm
which is built into NodeXL. NodeXL uses the Search Application Processing Interface (API). Influential
users were identified using NodeXL and were anonymized by providing a description of the account
in line with previous research [18]. A specific subanalysis was performed for tweets that originated
solely from the USA. Regional information was extracted as follows: a total of n = 13,265 tweets were
extracted where users had included “USA” in their user bios and a 5% sample of tweets was extracted
and analyzed in NodeXL. Individual users and/or organisations that were deemed to be not sufficiently
in the “public domain” were anonymized.
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3. Results

3.1. Top 10 Hashtags Used

Table 1 below provides an overview of the most used hashtags during this time, showing that
“wearamask” (n = 34) and “maskssavelives” (n = 11) appeared among the most used hashtags.

Table 1. Top 10 hashtags.

Rank Top Hashtags in Tweet in Entire Graph Entire Graph Count

1 covid19 50

2 wearamask 34

3 kidlitformasks 23

4 mask 18

5 maskssavelives 15

6 マスク (Japanese for “mask”) 13

7 haikyuu 11

8 hq 11

9 ビール (Japanese for “beer”) 10

10 andhrapradesh 9

The hashtag “kidlitformasks” referred to authors of children’s books who used this hashtag to
highlight the importance of wearing masks. Twitter users also shared images from a Japanese manga
series “haikyuu” and at the same time encouraged others to wear a mask using the “#haikyuu” and
‘hq’ hashtags, and these appeared as the 7th and 8th most popular hashtags that were used. As the
discussion during this time was global in nature, there also appeared to be relevant hashtags from
around the world such as “マスク” which refers to “mask” in Japanese. The word “ビール” also
appeared, which is the Japanese word for “beer”. This was because users conversed about a humorous
mask invention which allows a user to store beer inside the mask which can be consumed. The hashtag
“andhrapradesh” appeared as a popular hashtag as this referred to a state in the south-eastern coastal
region of India and news reports were shared at this time related to reports about the death of a young
person who was allegedly “beaten to death” by police for not wearing a mask.

3.2. Overview of Network Structure

Figure 1 is a social network graph of the discussion taking place during this time. The largest
group (group 1) is an isolates group which contained users who sent tweets that did not contain
mentions. Overall, the group resembled a community network shape because there were many groups
of users conversing about this topic. NodeXL clustered users into different groups based on mentions.
A community cluster indicated that many users were talking to each other across several groups.
It was also interesting to see influential users (indicated by larger circles) scattered around the network,
which indicated that the topic brought in a wide range of influential actors.

3.3. Top 10 Users Ranked by Betweeness Centrality

Table 2 highlights Twitter users that were influential during this time. The users in the network
were ranked by betweenness centrality, which is a measure of centrality. These users would have acted
as important bridges within the network. The follower’s column refers to the amount of followers
each user has. Many of the influential nodes within the network derived from ordinary citizens who
became important bridges in the network. A number of popular culture figures also appeared among
the most influential users within the network.



Int. J. Environ. Res. Public Health 2020, 17, 8235 5 of 9

Table 2. Top 10 users ranked by betweenness centrality.

Rank Account Type Followers

1 Citizen 301
2 Citizen 2434
3 Citizen 3160
4 Citizen 206
5 Professor 4602
6 Citizen 2601
7 Citizen 17
8 Citizen 1002
9 Rex Chapman also known as Ice-T (American rapper) 1,786,850
10 Rex Chapman (former basketball player) 1,004,702

3.4. Top 10 Users Most Mentioned

Table 3 provides an overview of users that were most mentioned during this time which ranged
from political figures, organizational accounts, and popular culture related accounts. Certain users
may not have tweeted about masks but were mentioned frequently by other users. Examining the
influential users from this time highlighted that the discussion had been focused in and around the
United States. However, it must be noted that not all account mentions may have been relevant to
medical masks, as the band Slipknot are known to wear non-medical masks.

Table 3. Top 10 users most mentioned.

Rank Account Type Followers

1 Donald Trump (current president of the
United States) 83.8 Million

2 Joe Biden (former Vice President of the
United States) 7.1 Million

3 Account Belonging to an Organization 23.1 Thousand

4 Bangtan Boys, a seven-member South
Korean boy band 27.2 Million

5 Mike Pence (Vice President of the
United States) 9.3 Million

6 Sarah Silverman (USA based comedian) 12.4 Million
7 Official Twitter account of YouTube 72.1 Million
8 Account Belonging to an Organisation 2.2 Thousand
9 Citizen 20.1 Thousand

10 Slipknot (an American heavy metal
band from Des Moines) 2.1 Million

3.5. Content Analysis

NodeXL was used to identify the most frequently occurring co-words, as shown in Table 4.
These co-related keywords provided insight into the types of discussions that may have been taking
place on Twitter. Word pairs containing mentions of Twitter user handles were removed. This occurred
on three occasions in group 3.
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Table 4. Identifying content across clusters.

NodeXL Group Frequent Word Pairs

1

‘Wear, mask’
‘wearing, mask’

‘face, mask’
‘f***ing, mask’
‘wear, f***ing*’
‘mask, public’
‘stay, home’

2

‘s**t*, mask,’
‘oh, s**t*’

‘mask, really’
‘really, thing’

‘Wearing, mask’
‘convince, y’all’
‘y’all, wearing’

‘Mask, hurt’
‘hurt, dog’

‘dog, finally’

3

‘Wear, mask’
‘breathing, problem’

‘problem, lol’
‘Lol, wear’

‘mask, karen’
‘f***ing*, hard’
‘Hard, wear’

4

‘Someone, ugly’
‘ugly, personally’
‘personally, mind’
‘Mind, wearing’
‘wearing, mask’
‘mask, covers’
‘Covers, half’

‘half, face’
‘wear, mask’

‘breathing, problem’

5
‘Wear, mask’

‘see, someone’
‘wearing, mask’

* asterisk placed by authors in expletives.

The most frequent co-related keywords were “wear” and “mask” to form the sentence “wear
a mask” and, in some cases, also involved an expletive. There were also tweets related to humor.
There were also co-occurring words such as “stay” and “home”. Other co-occurring words which
appeared across the clusters included “breathing” and “problem”, which revolved around the debate
of whether face masks should be mandatory as they may lead to breathing problems. In regard to this
debate, Twitter users provided evidence to highlight that face masks did not cause breathing problems,
whereas other users highlighted the potential for masks to cause breathing issues.

3.6. Regional Analysis of the USA

In this part of the analysis, tweets were extracted to only focus on the USA. Data were filtered by
users who noted in their bios that they were from the USA.
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Top Word Pairs

Table 5 provides an overview of the 5 most popular words that were used from users from
the USA.

Table 5. Top 5 word pairs. Filtered by USA.

Rank Word Pair

1 ‘wear, mask’

2 ‘wearing, mask’

3 ‘mask, public’

4 ‘face, mask’

5 ‘breathing, problem’

The most frequent words used together included “wear mask”, “wearing mask”, “mask, public”,
“face, mask”, and “breathing problem”. The first two co-words appeared to be encouraging the use
of face masks and the third and fourth most used co-words appeared to be centred around general
discussions around the use of masks. The fifth most used co-word appeared to relate to discussions
around whether masks could cause breathing problems. Overall, there appeared to be overlaps
between phrases and words used in tweets when filtering specifically for the USA, compared to
analyzing tweets overall. Furthermore, content such as top hashtags and users appeared to be similar
to that of the results of the analysis overall.

4. Discussion

The overall shape of the network resembled a community as there were a range of users
conversing amongst each other in different clusters. When examining the most frequently used
hashtags, it appeared that the most popular hashtags encouraged mask wearing among the public.
It was found that a range of accounts were influential and/or mentioned, ranging from ordinary citizens,
politicians, and popular culture figures. The discussion had been politicized by some users on Twitter,
which led to politicians appearing as influential users within the network. Japanese hashtags also
appeared within the network, which highlights the global nature of the discussions around this issue.
It is important to note that some of the accounts such as the official Twitter account of YouTube might
not have tweeted using the word ‘mask’, however, users may have shared content which contained
the word ‘mask’ and also used the mention “@YouTube”. The most common theme to emerge was
the encouragement for the public to wear masks and discussions around this. Other themes were
related to jokes and discussions related to whether face masks were safe for those who may have
breathing problems. Our study also examined Twitter data emerging solely from the United States,
which demonstrated that there was overlap in content. This could have occurred because the Twitter
has the most active users in the United States.

It must be noted that Twitter discussions are constantly evolving and potentially alter on a weekly
basis. A limitation of our study is that it focused specifically on the Twitter network from 27 June
to the 4 July, hence our findings may not be applicable to other time periods. Future research could
seek to expand time periods and examine Twitter discussions based on other locations. A further
limitation is that with the 1% random sample we extracted, generic keyword and 7-day approach,
we have captured some tweets coming from “temporary” discussions (for instance, beer and mask
related humor in Japan). If the study had examined a longer time period, i.e., 6 months, and taken a
0.005% sample, the study would have been able to perform a much wider analysis (the masks and
beer humor would not have been captured and/or captured on a lesser scale). At the same time,
however, the approach adopted in this study had a better chance of capturing other issues such as
conspiracy theories and/or short-lived time-based discussions. Future research could combine both



Int. J. Environ. Res. Public Health 2020, 17, 8235 8 of 9

approaches in the analysis. Further research could also seek to conduct a sentiment analysis of the data.
A wider limitation related to research on Twitter is the potential of ‘off-topic’ discussions surrounding a
particular keyword or hashtag to take place. Future research could seek to eliminate irrelevant content
prior to analyzing data. Twitter data can be used to study a wide range of public health topics and was
recently used to study views into personal health records [20], which utilises a similar methodology
to this present study. Other research has also examined disclosure of patient information [21] and
COVID-19 conspiracies [22]. Future research could also seek to examine the role of influential accounts
during this time.

5. Conclusions

Overall, it was found that the shape of the network resembled a community as there were a range
of users conversing amongst each other in different clusters. It was found that a range of accounts were
influential and/or mentioned ranging from ordinary citizens, politicians, and popular culture figures.
The most common theme and popular hashtags to emerge from the data encouraged the public to
wear masks. Public health authorities and influential accounts could continue to utilize social media
platforms to encourage users to wear masks.

Author Contributions: Conceptualization, W.A.; data curation, W.A.; supervision, J.V.-A. and F.L.S.;
writing—original draft, W.A., F.L.S. and P.A.M.-S.; writing—review and editing, W.A., J.V.-A., F.L.S. and P.A.M.-S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al.
A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [CrossRef]
[PubMed]

2. Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health
Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg.
2020, 76, 71–76. [CrossRef]

3. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available
online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-
briefing-on-covid-19---11-march-2020 (accessed on 15 July 2020).

4. World Health Organization. Coronavirus Disease (COVID-19). Situation Report-176; Publisher: Geneva,
Country, 2020; Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/
20200714-covid-19-sitrep-176.pdf?sfvrsn=d01ce263_2 (accessed on 5 November 2020).

5. Javid, B.; Weekes, M.P.; Matheson, N.J. Covid-19: Should the public wear face masks? BMJ 2020, 369, m1442.
[CrossRef]

6. Advice on the Use of Masks in the Community, during Home Care and in Healthcare
Settings in the Context of the Novel Coronavirus (COVID-19) Outbreak. Available online:
https://www.who.int/publications-detail-redirect/advice-on-the-use-of-masks-in-the-community-during-
home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak
(accessed on 15 July 2020).

7. Ma, Q.; Shan, H.; Zhang, H.; Li, G.; Yang, R.; Chen, J. Potential utilities of mask-wearing and instant hand
hygiene for fighting SARS-CoV-2. J. Med. Virol. 2020, 92, 1567–1571. [CrossRef]

8. Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during
the COVID-19 outbreak. Lancet 2020, 395, 945–947. [CrossRef]

9. Cheng, K.K.; Lam, T.H.; Leung, C.C. Wearing face masks in the community during the COVID-19 pandemic:
Altruism and solidarity. Lancet 2020. [CrossRef]

10. Zhou, Z.-G.; Yue, D.-S.; Mu, C.-L.; Zhang, L. Mask is the possible key for self-isolation in COVID-19 pandemic.
J. Med. Virol. 2020, 92, 1745–1746. [CrossRef]

http://dx.doi.org/10.1038/s41586-020-2008-3
http://www.ncbi.nlm.nih.gov/pubmed/32015508
http://dx.doi.org/10.1016/j.ijsu.2020.02.034
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200714-covid-19-sitrep-176.pdf?sfvrsn=d01ce263_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200714-covid-19-sitrep-176.pdf?sfvrsn=d01ce263_2
http://dx.doi.org/10.1136/bmj.m1442
https://www.who.int/publications-detail-redirect/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak
https://www.who.int/publications-detail-redirect/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak
http://dx.doi.org/10.1002/jmv.25805
http://dx.doi.org/10.1016/S0140-6736(20)30547-X
http://dx.doi.org/10.1016/S0140-6736(20)30918-1
http://dx.doi.org/10.1002/jmv.25846


Int. J. Environ. Res. Public Health 2020, 17, 8235 9 of 9

11. Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.; von Delft, A.; Price, A.;
Fridman, L.; Tang, L.; et al. Face Masks Against COVID-19: An Evidence Review. Preprints 2020, 2020040203.
[CrossRef]

12. Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To mask
or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19
pandemic. Infect. Dis. Model. 2020, 5, 293–308. [CrossRef]

13. Cheng, V.C.-C.; Wong, S.-C.; Chuang, V.W.-M.; So, S.Y.-C.; Chen, J.H.-K.; Sridhar, S.; To, K.K.-W.; Chan, J.F.-W.;
Hung, I.F.-N.; Ho, P.-L.; et al. The role of community-wide wearing of face mask for control of coronavirus
disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J. Infect. 2020, 81, 107–114. [CrossRef]

14. Xiao, J.; Shiu, E.Y.C.; Gao, H.; Wong, J.Y.; Fong, M.W.; Ryu, S.; Cowling, B.J. Nonpharmaceutical Measures
for Pandemic Influenza in Nonhealthcare Settings—Personal Protective and Environmental Measures.
Emerg. Infect. Dis. 2020, 26, 967–975. [CrossRef] [PubMed]

15. Greenhalgh, T.; Schmid, M.B.; Czypionka, T.; Bassler, D.; Gruer, L. Face masks for the public during the
covid-19 crisis. BMJ 2020, 369, m1435. [CrossRef] [PubMed]

16. Ahmed, W.; Lugovic, S. Social media analytics: Analysis and visualisation of news diffusion using NodeXL.
Online Inf. Rev. 2019, 43, 149–160. [CrossRef]

17. Ahmed, W.; Marin-Gomez, X.; Vidal-Alaball, J. Contextualising the 2019 E-Cigarette Health Scare: Insights
from Twitter. Int. J. Environ. Res. Public Health 2020, 17, 2236. [CrossRef] [PubMed]

18. Ahmed, W.; Vidal-Alaball, J.; Downing, J.; Seguí, F.L. COVID-19 and the 5G Conspiracy Theory: Social
Network Analysis of Twitter Data. J. Med. Internet Res. 2020, 22, e19458. [CrossRef] [PubMed]

19. White, D.R.; Borgatti, S.P. Betweenness centrality measures for directed graphs. Soc. Networks 1994, 16,
335–346. [CrossRef]

20. Pang, P.C.-I.; McKay, D.; Chang, S.; Chen, Q.; Zhang, X.; Cui, L. Privacy concerns of the Australian My
Health Record: Implications for other large-scale opt-out personal health records. Inf. Process. Manag. 2020,
57, 102364. [CrossRef]

21. Ahmed, W.; Jagsi, R.; Gutheil, T.G.; Katz, M.S. Public Disclosure on Social Media of Identifiable Patient
Information by Health Professionals: Content Analysis of Twitter Data. J. Med. Internet Res. 2020, 22, e19746.
[CrossRef] [PubMed]

22. Ahmed, W.; Seguí, F.L.; Vidal-Alaball, J.; Katz, M.S. COVID-19 and the “Film Your Hospital” Conspiracy
Theory: Social Network Analysis of Twitter Data (Preprint). J. Med. Internet Res. 2020, 22, 22374. [CrossRef]
[PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.20944/preprints202004.0203.v1
http://dx.doi.org/10.1016/j.idm.2020.04.001
http://dx.doi.org/10.1016/j.jinf.2020.04.024
http://dx.doi.org/10.3201/eid2605.190994
http://www.ncbi.nlm.nih.gov/pubmed/32027586
http://dx.doi.org/10.1136/bmj.m1435
http://www.ncbi.nlm.nih.gov/pubmed/32273267
http://dx.doi.org/10.1108/OIR-03-2018-0093
http://dx.doi.org/10.3390/ijerph17072236
http://www.ncbi.nlm.nih.gov/pubmed/32225020
http://dx.doi.org/10.2196/19458
http://www.ncbi.nlm.nih.gov/pubmed/32352383
http://dx.doi.org/10.1016/0378-8733(94)90015-9
http://dx.doi.org/10.1016/j.ipm.2020.102364
http://dx.doi.org/10.2196/19746
http://www.ncbi.nlm.nih.gov/pubmed/32870160
http://dx.doi.org/10.2196/22374
http://www.ncbi.nlm.nih.gov/pubmed/32936771
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Tweet Sampling 
	Social Network Analysis 

	Results 
	Top 10 Hashtags Used 
	Overview of Network Structure 
	Top 10 Users Ranked by Betweeness Centrality 
	Top 10 Users Most Mentioned 
	Content Analysis 
	Regional Analysis of the USA 

	Discussion 
	Conclusions 
	References

