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Abstract

Despite the increased risks of cancers and cardiovascular related diseases, tobacco smok-

ing continues to be prevalent in the population due largely in part to the addictive nature of

nicotine. Nicotine vaccines are an attractive alternative to the current smoking cessation

options but have yet to be successful enough in clinical trials to reach the market due to a

lack of neutralizing antibodies and inconsistent results. Using AFPL1 derived from the

Cuban meningococcal vaccine as an adjuvant, we have previously published promising

results with an intranasally administered nicotine vaccine. In order to examine the immuno-

genicity and safety of this vaccine in mice we set up a pilot trial administering the vaccine

either intranasally, intramuscularly or utilizing both routes simultaneously and evaluated

immune responses and clinical symptoms throughout the duration of the vaccination proto-

col and post-mortem. These data further demonstrate the ability of the AFPL1 nicotine con-

jugate vaccine to be a safe and potential candidate for clinical use.

Introduction

Over the last 30 years the use of tobacco in Canada has decreased by approximately 20% [1].

Despite this, tobacco use continues to be a major contributor to increased risks of cancer and

cardiovascular disease. Due to the addictive nature of nicotine, levels of success are moderate

at best for people attempting to quit smoking tobacco when using traditional smoking cessa-

tion products and pharmacotherapeutics [2]. Immunotherapeutics, such as an anti-nicotine

vaccine, present an interesting alternative to the current therapeutics that are available for

smoking cessation. In theory, an anti-nicotine vaccine would direct the immune system to rec-

ognize nicotine, a hapten, and produce nicotine-specific antibodies that would bind to nico-

tine in the blood and prevent it from crossing the blood-brain barrier. Previous conjugate

PLOS ONE | https://doi.org/10.1371/journal.pone.0221708 August 23, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fraleigh NL, Oliva R, Lewicky JD, Martel

AL, Acevedo R, Dagmar G-R, et al. (2019)

Assessing the immunogenicity and toxicity of the

AFPL1-conjugate nicotine vaccine using

heterologous and homologous vaccination routes.

PLoS ONE 14(8): e0221708. https://doi.org/

10.1371/journal.pone.0221708

Editor: Valerie A. Ferro, University of Strathclyde,

UNITED KINGDOM

Received: May 27, 2019

Accepted: August 13, 2019

Published: August 23, 2019

Copyright: © 2019 Fraleigh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by the

Canadian Institutes of Health Research (Project

Grant 148531) and the Northern Cancer

Foundation (2017-2019). The funders provided

support in the form of salaries for authors [RO,

NLF, JDL, ALM] but did not have any role in study

design, data collection and interpretation, or the

decision to submit the work for publication. There

http://orcid.org/0000-0001-8198-9161
http://orcid.org/0000-0002-9952-5311
https://doi.org/10.1371/journal.pone.0221708
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221708&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221708&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221708&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221708&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221708&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221708&domain=pdf&date_stamp=2019-08-23
https://doi.org/10.1371/journal.pone.0221708
https://doi.org/10.1371/journal.pone.0221708
http://creativecommons.org/licenses/by/4.0/


nicotine vaccines have been successful in preclinical evaluations but have provided limited suc-

cess in clinical trials [3–6]. While a subpopulation of those that took the vaccine were able to

respond due to high titers against nicotine [4], the overall consensus is that these vaccines,

while promising, need stronger delivery systems that more effectively activate the immune sys-

tem [5], which has led to the development of the next generation of nicotine vaccines in pre-

clinical testing [6–11]. In addition, the delivery of nicotine to the brain occurs within 7–10

seconds of cigarette smoke inhalation [12], such that systemic antibodies alone may not be fast

enough to neutralize absorbed nicotine and prevent it from reaching the brain. We believe

that a successful nicotine vaccine needs to be able to generate both mucosal and systemic

responses directed against nicotine.

With an intranasal (IN) administration strategy, the vaccine was delivered to the mucosal

surfaces of the respiratory system. The anti-nicotine antibodies induced by the vaccine would

theoretically be able to sequester nicotine using both systemic IgG, and mucosal IgA in the

respiratory tract. We have previously published a novel intranasally delivered conjugate-nico-

tine vaccine that utilized the adjuvant Finlay proteoliposome 1 (AFPL1) as the adjuvant por-

tion [13]. The vaccine demonstrated a significant ability to induce anti-nicotine antibodies

that were able to prevent nicotine from reaching the brain upon an in vivo challenge with

[H3]-nicotine [13]. [H3]-nicotine was found in equal amounts in the lung and the blood, likely

due in part to both mucosal and systemic antibodies induced by the IN route. This would sug-

gest value in having both mucosal and systemic antibodies, supplying two levels of protection

in the lung and blood. In keeping with the goal of generating more readily available antibodies

with a reduced number of vaccinations, we hypothesized that we could improve the ability of

the AFPL1-conjugate nicotine vaccine by adopting a heterologous simultaneous vaccination at

the priming event with two subsequent intranasal boosts. Heterologous simultaneous vaccina-

tion has been described using a variety of different routes and vaccines [14–17] with the focus

to induce a stronger antibody response, especially in the mucosa, using fewer vaccination

events [14].

Although AFPL1 has been used as part of the meningococcal vaccine in Cuba for decades

and extensively researched [15, 18–24], it is still imperative that our nicotine vaccine be

assessed in preclinical trials for not only its potency and immunogenicity but also for toxicity

in both inbred and outbred rodent models [25]. This is especially true given that we are using

a non-traditional intranasal route of administration. As a continuation of our previously pub-

lished data, we evaluated whether there was toxicity associated with the AFPL1 conjugate nico-

tine vaccine in BALB/c mice and whether using a homologous or heterologous vaccination

strategy would generate the best systemic and mucosal immune responses. To that end, we

evaluated the vaccine delivered intramuscularly (IM) or IN as compared to combining the two

routes of administration for the priming event with subsequent IN boosts. We assessed the

immunogenicity of the vaccine both systemically and mucosally, determining whether the

antibodies were able to bind to nicotine in an in vivo challenge model. The toxicity of the vac-

cine as compared to the delivery system alone and a negative control (PBS) was determined by

measuring body weight, temperature, food and water consumption, in addition to local

inflammation at the site of injection for the IM administered vaccines. Mice were physically

monitored for conditions associated with stress and malaise including but not limited to physi-

cal symptoms such as changes in gait and posture and the condition of their fur. Post-mortem

we evaluated each of the organs and in particular the spleen for immunotoxicity. The results

demonstrate that the vaccine is most effective when delivered as part of the heterologous vacci-

nation strategy and is safe when administered either IM, IN or as part of the heterologous vac-

cination protocol.
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Material & methods

Animals and Husbandry

Female BALB/c mice were purchased from Charles River (QC, Canada) at an age of 6–8

weeks and were housed in Innocage1 mouse cages at the Animal Care Facility at Laurentian

University. Mice were provided specialized feed for rodents, and the water used was pro-

vided in Aquavive1 acidified mouse water bottles (250 mL volume). Both food and water

were available ad libitum. The animal room was maintained at a temperature of 21 ± 2 ˚C

and a relative humidity of 55 ± 5%. These parameters were recorded daily in addition to

maintaining 12 hour light and dark cycles. Mice were allowed to acclimatize to their sur-

roundings for one week prior to the commencement of the experimental protocol and were

randomly placed into groups of 5. All protocols were approved by the Animal Care Commit-

tee at Laurentian University and the Biosafety Committee at Health Sciences North Research

Institute.

Vaccines and vaccination protocol

The vaccine was prepared via the conjugation of 3’-aminomethylnicotine (Toronto Research

Chemicals Inc., 25 mg/mL in MeOH) and the AFPL1 component (Finlay Institute of Vac-

cines, 2–5 mg/mL in water based on protein content determined using Thermo Scientific

Pierce BCA Protein Assay) at pH 5–6 in the presence of EDC coupling reagent (Sigma

Aldrich, 10 equiv. based on nicotine hapten concentration) and a synthetic matrix peptide

developed in our lab [13] (maximizes the coupling efficacy of the nicotine hapten). During

the conjugation reaction, nicotine was quantified using UV absorption and TLC on silica gel

60 F254 with detection by Dragendorff reagent staining. The final conjugation product was

purified by dialysis in HEPES buffer with 0.01% Tween 80, and then lyophilized using differ-

ent freeze drying techniques. Particle size and zeta potential were characterized using a Mal-

ven Zetasizer ZS. The conjugate-nicotine vaccine (2–5 mg/mL based on nicotine

concentration) was stored at either 4˚C for one year (solution form) or at room temperature

(solid form).

Mice were immunized by one of three methods (Table 1): two single routes of administra-

tion included either IN or IM for a total of three immunizations per group, while the other vac-

cination group was administered a simultaneous combination of IN/IM as the first dose and

the remaining doses were administered IN until the three doses were completed. The vaccine

was administered once every three weeks at a dose of 10 μg per route, based on the nicotine

Table 1. Vaccine experimental design.

Group Route Animals, n n Euthanized at x Days After 3rd Dose

x = 21 x = 27
PBS IM 5 5 -

IN 5 5 -

IM/IN 5 5 -

Adjuvant

(AFPL1)

IM 4 - -

IN 5 - -

IM/IN 5 - 5

Vaccine IM 5 5 -

IN 5 5 -

IM/IN 10 5 5

https://doi.org/10.1371/journal.pone.0221708.t001
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concentration, in different volumes such that that the IN vaccination volume was 20 μL (10 μL

for each nare) and the IM vaccination volume was 100 μL (50 μL per leg). Sera was collected

by retro-orbital bleeds two weeks post-vaccination and mice were sacrificed at either 21

day after the final vaccination or 27 days after the final vaccination when challenged with

nicotine.

Clinical observations and symptoms

All observations started from the experimental zero time (T0), which was considered as the

same day as the first vaccination event. Animals were monitored daily with extra attention

being paid to the mice when their food, water, weight, leg muscle diameter and temperature

were being measured. Weight, food and water consumption were measured weekly (g or mL

or g/animal/day respectively) as measures of toxicity.

The body temperature of the mice was measured with a laser clinical thermometer

(Equate1, non-contact forehead thermometer, model # 10857) directed towards the right ear.

Body temperature was measured before each inoculation and 24 hours after. In the event of

observing an increase in temperature that would indicate a fever, the measurements would

have continued until the body temperature returned to normal.

The evaluation of the muscle diameter was performed as previously described for rats [25]

with a digital caliper (Mastercraft, Electronic Caliper with digital display, 6”, 150 mm) by mea-

suring the diameter of the inoculated limb before the IM vaccination. Briefly, the mouse was

restrained and the measurement of muscle diameter was taken at the center of the musculature

of the thigh region. Leaving the teeth of the caliper on the inner and external side of the mus-

cle, the caliper was closed without putting pressure on the leg. This was done before each IM

injection and 24 hours after to assess local inflammation.

Euthanasia, blood collection and bronchoalveolar lavages

Mice were sacrificed under excess isoflurane followed by a cardiac puncture and cutting the

diaphragm either 21 or 27 days after the final vaccination. Blood was collected by a cardiac

puncture and placed in sera tubes which were spun at 10 000 rpm for 5 minutes. Sera was ali-

quoted and frozen for later analysis. A bronchoalveolar lavage (BAL) was performed by cannu-

lating the trachea, instilling 0.5 mL of PBS into the lung and aspirating it back. The samples

were pelleted to generate cell-free BAL for ELISA analysis.

Anatomopathological studies and organ weights

The anatomopathological studies for necropsy (macroscopic evaluation) were performed

immediately after euthanasia. All organs and sites of vaccine administration were examined

macroscopically. Solid or parenchymal organs (brain, heart, lungs, spleen, liver and kidneys)

and thymus were removed and weights were recorded. They are expressed as relative weight

(RW), and were calculated by the following equation:

RW ¼ ðOW x 100Þ= EEW ð1Þ

where OW is the organ weight, and EEW is the animal end weight on the day of euthanasia.

Immunotoxicological evaluation

Systemic inflammation was assessed by using the ImagJ software [26] and measuring the total

area of each of the spleens of the animals by groups. The results obtained were compared

between all of the vaccinated groups.
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Immunological evaluation

Sera and BAL were analyzed by an indirect ELISA as previously described [13]. Biotinylated

goat anti-mouse IgG and IgA were used as secondary antibodies to detect the nicotine-specific

systemic and mucosal antibodies found in the sera and BAL. The plates were incubation with p-

Nitrophenyl phosphate (pNPP,�97%, Sigma Aldrich) and the reaction was stopped with 3N

NaOH after 30 minutes. The plates were read at an OD of 405 nm with a subtraction of 490 nm.

In vivo intranasal nicotine challenge

On day 27 after the final vaccination, mice were anaesthetized with isoflurane before instilling

intranasally a 0.03 mg/kg dose of nicotine (solution of neutralized (-)-nicotine hydrogen tar-

trate salt (�98%, Sigma Aldrich) in PBS, 10 μL per nare) which is the equivalent of 1–2 ciga-

rettes [27]. The mouse was kept under isoflurane for 5 minutes before sacrificing using a

cardiac puncture to remove 700 μL of blood and cutting the diaphragm while under excess iso-

flurane. Post-mortem BALs were collected for ELISAs that were immediately performed after

collecting the samples. Samples were compared to similar samples collected from the non-nic-

otine challenged mice that were euthanized one week prior.

Statistical analysis

Statistical analyses were performed using Graph Pad Prism 5. Multiwise group analyses were

performed using either a nonparametric ANOVA with a Kruskal-Wallis and a Dunn’s post-

hoc test or an ANOVA with a Tukey HSD. Data were considered significant when p� 0.05.

Results

Toxicity assessments

We vaccinated mice using our previously published conjugate AFPL1 nicotine vaccine using

different administration routes to assess toxicity at the end of the vaccination protocol. No

mortality or abnormal clinical signs were noted during the study. All of the female BALB/c

mice increased their body weight during the 63 days of the study (Fig 1A). The weight increase

curves of the mice were similar to those observed for this species and in line with the growth

curves available from Charles River. However, a statistical difference was observed at day zero

(before receiving the vaccine) and day 49 for the group receiving the IN nicotine vaccine as

compared to the control groups but were back on par with their control a week later.

We also evaluated the amount of food (Fig 1B) and water (Fig 1C) consumed by the mice

over the span of the vaccination protocol. Both followed the same trends between each group

for the routes of administration while the mice continued to gain weight.

The normal physiological body temperature range reported for mice is 36.5 to 38.0 ˚C [28,

29]. The mice in this study had no increase in body temperature that could be considered a

fever (Fig 1D). This lack of fever was reported in all groups including the mice that were vacci-

nated with the heterologous simultaneous vaccination protocol. The average temperature of

the mice before each dose was 35.6 ± 0.6 ˚C and 24 hours later was 35.7 ± 0.6 ˚C, which was

lower than normal and was consistent throughout the study. This may have been due to a set-

ting on the thermometer or ambient room conditions and not reflective of the mice being in

distress. There was a significant increase in temperature 24 hours after the first IM adjuvant

dose as compared to the other routes of administration (p� 0.05), although it was not clini-

cally relevant as it did not rise above 38 ˚C.

In order to assess the inflammation induced by the vaccine administered intramuscularly,

the muscle diameter of the legs was measured before and after receiving the IM vaccination.
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Fig 1. Clinical observations of mice vaccinated with the nicotine vaccine candidate via homologous and heterologous routes. A) Mice were weighed throughout

the vaccination protocol. Each value represents the average ± SEM of all animals in each group. � p� 0.05 as compared to PBS group at same time point. B) & C) Food

and water consumption were monitored throughout the vaccination protocol. Each value represents consumption relative to all animals in the groups. D) Corporal

temperatures of the mice were measured before and 24 hours after each vaccination. Each value represents the average ± SEM of all animals in each group. � p� 0.05

as compared to the pre-vaccination measurement.

https://doi.org/10.1371/journal.pone.0221708.g001
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No significant differences were observed between the groups (Table 2) 24 hours after each

dose. However, animals vaccinated by the IM route showed a tendency to have a larger muscle

diameter than the AFPL1 and PBS groups after the third dose (Table 2).

Macroscopic studies performed on all organs and systems for each of the mice studied did

not show any lesions suggesting acute or chronic toxicity. Administration sites showed no per-

ceptible local changes. Regarding the relative organ weights (Table 3), no significant differ-

ences were observed for any organ between the vaccination groups, regardless of the

administration route. A joint analysis of the relative weights of the organs, as well as the body

weights of the animals in the study, led us to conclude that these variables were not affected by

the route or the vaccine itself. The spleens were further analyzed to determine whether chronic

systemic inflammation was present. The macroscopic morphometric evaluation of the spleen

diameter for each of the animals of the different groups did not show significant differences in

the total areas of this organ (Table 4). This evaluation gives us a preliminary view of possible

immunotoxicological effects, given that neither the relative weight of the spleens, nor the total

area of this organ evaluated by macroscopic morphometry showed statistical differences.

Immunological evaluations

Sera was collected after the first, second and third vaccination to assess systemic anti-nicotine

IgG responses (only the second and third bleeds are shown). By the second vaccination there

Table 2. Muscle diameter measurements of mice vaccinated with the nicotine vaccine candidate via homologous and heterologous routes. The muscle diameters of

both hind legs were measure for each mouse before and 24 hours after each vaccination. Each value represents the average ± SEM of both legs for all animals in each

group.

Dose #1 Dose #2 Dose #3

0 Hours 24 Hours 0 Hours 24 Hours 0 Hours 24 Hours
PBS IM 4.11 ± 0.07 4.25 ± 0.08 4.08 ± 0.05 4.13 ± 0.03 4.07 ± 0.03 4.06 ± 0.01

IM/IN 4.12 ± 0.05 4.13 ± 0.03 - - - -

Adjuvant IM 4.21 ± 0.06 4.27 ± 0.04 4.13 ± 0.03 4.08 ± 0.03 4.07 ± 0.03 4.06 ± 0.02

IM/IN 4.15 ± 0.03 4.15 ± 0.03 - - - -

Vaccine IM 4.20 ± 0.05 4.23 ± 0.04 4.08 ± 0.01 4.10 ± 0.02 4.05 ± 0.02 4.13 ± 0.08

IM/IN 4.23 ± 0.03 4.17 ± 0.02 - - - -

https://doi.org/10.1371/journal.pone.0221708.t002

Table 3. Relative organ weights (%) of mice vaccinated with candidate nicotine vaccine. Each value represents the average ± SD of the 5 animals in the groups.

Group Relative Organ Weights (%)

Brain Thymus Heart Left Lung Right Lung Liver Spleen Left Kidney Right Kidney

p = 0.3125 p = 0.8125 p = 0.4375 p = 0.6250 p = 0.6845 p = 0.8125 p = 0.0625 p = 0.6250 p = 0.4375
IM PBS 2.144±0.04 0.157±0.02 0.386±0.01 0.354±0.08 0.501±0.06 4.456±0.21 0.451±0.03 0.525±0.03 0.531±0.04

IM Vaccine 2.206±0.12 0.182±0.03 0.448±0.03 0.408±0.06 0.509±0.10 4.688±0.28 0.425±0.03 0.608±0.03 0.598±0.02

p = 0.0625 p = 0.8125 p = 0.1875 p = 0.4375 p = 0.4375 p = 0.6250 p = 0.1875 p = 0.0625 p = 0.0625
IN PBS 1.957±0.07 0.178±0.03 0.445±0.02 0.410±0.04 0.686±0.11 4.695±0.14 0.437±0.03 0.574±0.03 0.591±0.03

IN Vaccine 2.114±0.04 0.168±0.03 0.483±0.04 0.441±0.05 0.571±0.12 4.797±0.20 0.470±0.02 0.624±0.01 0.649±0.03

p = 0.8125 p = 0.0579 p = 0.6250 p = 0.6250 p = 0.1250 p = 0.6250 p = 0.3125 p = 0.4375 p = 0.3125
IM/IN PBS 2.088±0.14 0.146±0.01 0.423±0.02 0.411±0.03 0.516±0.02 4.607±0.24 0.449±0.03 0.581±0.01 0.568±0.02

IM/IN Vaccine 2.029±0.10 0.174±0.01 0.441±0.03 0.395±0.06 0.600±0.06 4.754±0.20 0.473±0.03 0.613±0.06 0.616±0.04

p = 0.4375 p = 1.0000 p = 0.1250 p = 0.0625 p = 0.8125 p = 0.0625 p = 0.2785 p = 0.3125 p = 0.3125
IM/IN Adjuvant 1.991±0.12 0.165±0.03 0.432±0.03 0.327±0.03 0.526±0.11 4.397±0.16 0.418±0.01 0.559±0.02 0.563±0.03

IM/IN Vaccine 1.929±0.04 0.165±0.03 0.446±0.02 0.349±0.05 0.530±0.08 4.850±0.09 0.0445±0.04 0.592±0.04 0.604±0.03

https://doi.org/10.1371/journal.pone.0221708.t003
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is already a clear difference between the amount of antibodies being produced by the heterolo-

gous and the homologous vaccination protocols. Multiple consecutive IM vaccinations yielded

the stronger systemic responses by the third bleed (Fig 2A) while the heterologous vaccination

protocol was stronger than the homologous IN protocol but not significantly different from

the homologous IM vaccine group. There is also very little background OD from the sera of

the negative control groups, demonstrating that the indirect ELISA protocol and antibodies

produced by the vaccine are specifically directed against nicotine. Because we had vaccinated

the mice using a mucosal route (IN), we evaluated the relative anti-nicotine response in the

BALs from mice vaccinated by each route. Both the IN and the IM/IN vaccinated mice were

able to produce anti-nicotine IgA in the lung which was significantly higher than the IM vacci-

nated group (Fig 2B). There was no significant difference in IgA response between the IN and

the IM/IN groups. Similar levels of anti-nicotine IgG were found in all vaccinated groups but

was only significantly higher than the control for the mice that were heterologously vaccinated

(Fig 2C).

To demonstrate that the antibodies generated by the vaccine could bind to nicotine, we per-

formed an in vivo IN nicotine challenge. The heterologous vaccination groups were challenged

intranasally with 0.03 mg/kg nicotine and sacrificed after 5 minutes to determine systemic (Fig

3A) and mucosal (Fig 3B and 3C) levels of anti-nicotine antibodies as compared to their non-

challenged counterparts. The indirect ELISA would act as a competitive ELISA as the antibod-

ies bound to nicotine would not have the ability to also bind to the plate. As compared to the

non-challenged groups the level of anti-nicotine IgG decreased in the sera but remained rela-

tively high in the lungs, with about 50% of both anti-nicotine IgA and IgG lost upon challenge.

Discussion

Nicotine addiction remains a global health concern and the current smoking cessation prod-

ucts available have limitations for long term success. A nicotine vaccine is an attractive alterna-

tive but needs to be safe for the consumer while still being able to induce high levels of

nicotine-specific antibodies. We have previously demonstrated that an intranasally delivered

AFPL1-conjugate nicotine vaccine was able to induce significant levels of anti-nicotine anti-

bodies that are able to block nicotine from crossing the blood brain barrier in [H3]-nicotine

challenges [13]. Here we attempted to use simultaneous heterologous and homologous vacci-

nation protocols to assess the immune responses generated by the different routes and the

potential toxic effects of repeated administration of our conjugate nicotine vaccine. This

repeated dose protocol not only maximizes the antibody production but also allows us to

Table 4. Morphometric evaluation of total macroscopic area of spleens of mice vaccinated with candidate nicotine vaccine. Values represent the average ± SD of the

5 animals in the groups.

Route Area (cm2) Perimeter (cm)

Average Min Max Average Min Max
IN—PBS 0.700 ± 0.048 0.653 0.768 3.896 ± 0.157 3.721 4.129

IN—Vaccine 0.705 ± 0.044 0.654 0.766 3.827 ± 0.174 3.629 4.055

IM—PBS 0.737 ± 0.048 0.684 0.809 3.912 ± 0.254 3.664 4.339

IM—Vaccine 0.671 ± 0.025 0.636 0.689 3.849 ± 0.103 3.735 3.946

IM/IN—PBS 0.689 ± 0.050 0.625 0.758 3.863 ± 0.202 3.632 4.092

IM/IN—Vaccine 0.727 ± 0.082 0.642 0.833 3.939 ± 0.303 3.592 4.066

IM/IN—Adjuvant 0.712 ± 0.054 0.648 0.794 3.926 ± 0.216 3.810 4.263

IM/IN—Vaccine 0.712 ± 0.052 0.666 0.770 3.793 ± 0.105 3.652 3.906

https://doi.org/10.1371/journal.pone.0221708.t004
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Fig 2. Anti-nicotine antibody responses in BALB/c mice vaccinated either by homologous or heterologous routes. Mice were vaccinated on days 0, 21, and 42

using the homologous (IM or IN) or heterologous (IM/IN) routes with either the controls or the nicotine vaccine. A) Sera IgG levels. On day 28 and 49 the mice were

bled by retro-orbital bleed and sera was analyzed by an indirect ELISA for levels of anti-nicotine IgG. Sera was diluted 1:2400 and data are represented as ±SEM with

4–10 mice per group/bleed. Statistical significance for bleed 2 was determined by a Kruskal-Wallis test with a Dunn’s multiwise comparison, �p� 0.05 and ��p� 0.01

as compared to the respective IN vaccine group. Statistical significance for bleed 3 was determined by an ANOVA with a Tukey HSD, ###p� 0.001 as compared to the

respective IN vaccine group. Bronchoalveolar lavages were collected at the end of the experimental protocol and B) levels of anti-nicotine IgA and C) IgG were

determined by an indirect ELISA. Data are represented as ±SEM of each group of 4–5 mice. Statistical significant for B) and C) was determined by a Kruskal-Wallis

test with a Dunn’s multiwise comparison, &&p� 0.01 as compared to the IM vaccine group and %p� 0.05 as compared to respective control.

https://doi.org/10.1371/journal.pone.0221708.g002

Fig 3. Levels of systemic and mucosal anti-nicotine antibodies before and after challenge. Mice vaccinated using the heterologous vaccination strategy were

challenged with 0.03 mg/kg nicotine (solution of neutralized (-)-nicotine hydrogen tartrate salt in PBS) intranasally and 5 minutes later were sacrificed. Sera and BALs

were collected and immediately analyzed by an indirect ELISA alongside similar samples from non-challenged mice. A) levels of anti-nicotine IgG in the sera of

control and vaccinated mice, B) levels of anti-nicotine IgG and C) IgA in the BALs of control and vaccinated mice before and after the nicotine challenge.

https://doi.org/10.1371/journal.pone.0221708.g003
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determine whether there are potential adverse side effects associated with the vaccine or the

delivery system.

The mice were vaccinated either using the heterologous vaccination protocol with both IN

and IM routes during the initial immunization event and two subsequent IN doses 3 weeks

apart, or a homologous vaccination protocol comprising of either three IN or IM inoculations

once every three weeks. All routes of administration generated anti-nicotine antibodies by the

second bleed which increased after the final vaccination. While the homologous routes alone

each show promise by inducing strong systemic (IM) or suitable systemic with the advantage

of mucosally induced antibodies (IN); by adopting the heterologous strategy we get the com-

bined advantages of both the strong systemic antibodies as seen with the IM alone and the

mucosally derived antibodies that are induced from the IN administration, yielding the best

results. Upon first glance this is not obvious when evaluating the sera alone; as expected the

IM route and the heterologous IM/IN route generated significant levels of anti-nicotine IgG as

compared to the IN group with no significant differences between the IM and IM/IN route.

However, the IM vaccine was not able to induce mucosal anti-nicotine IgA in the BAL unlike

both the IN and IM/IN routes. In addition, the variability in the mucosal responses is

decreased with the heterologous administration route, and results in significant levels of IgA

and IgG in the lungs, that which was not the case for either of the homologous routes. The

additive effect from combining the IM and IN routes suggests that the IgG in the lung of the

heterologously vaccinated mice was both mucosally derived and leaking from the systemic

into the mucosa as it is known to be able to cross into the mucosal tissues [30]. It is not possible

to directly compare results between research groups, given that the indirect ELISA protocols

utilize different coatings, concentrations and methods. However, when comparing to other

nicotine vaccines, the new nicotine vaccine system is able to generate both mucosal and sys-

temic responses directed against nicotine.

To demonstrate that the anti-nicotine antibodies generated were able to neutralize nicotine,

half of the heterologously IM/IN vaccinated mice were challenged IN in vivo with nicotine

after the final vaccination. Indirect ELISAs were performed immediately post-mortem using

the sera and the BALs collected from the control and vaccine groups in order to ensure that

the nicotine-antibody complex was not compromised. As expected, the mice vaccinated with

the nicotine vaccine were able to bind some of the nicotine in vivo which resulted in decreased

levels of detection in the ELISA for antibodies in the sera and in the lung. Antibodies in the

lung are readily available for first contact with nicotine, which may have reduced the burden

of the antibodies in the sera to bind and neutralize nicotine during challenge. This information

supports our hypothesis that the lung is an important target for a nicotine vaccine design.

Clinically, the mice from all of the groups displayed appropriate gains in weight, no

anorexia or changes in food and water consumption over the period of the vaccination proto-

col. Body weight has been commonly considered in a wide range of toxicological studies as a

sensitive and general indicator of the toxicity of xenobiotics [31–34]. The mice were weighed

before the study began and were in the range of 16–20 g, and averaged 17.97 ± 0.93 g. We did

notice that the IN group was significantly smaller at day 0 than the other groups of mice. These

results were not due to the vaccine itself but just random chance of smaller mice being placed

in one group or another since this time point for weight was prior to any vaccination events.

The IN vaccine group’s weight was also significantly lower at day 49 but a week later was on

par with the other groups. We do not believe this is a cause for concern as the other mice in

the IM/IN vaccine group (n = 10) received the same IN doses and showed no differences at

any time point as compared to the control groups. In addition, the average weight of each of

the groups is within the range reported for the growth curve for the species by Charles River.

Efficacy and safety of a mucosal nicotine vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0221708 August 23, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0221708


The evaluation of body temperature and local inflammation at the injection site for the IM

route are parameters considered predictive for clinical trials [31]. In addition, these are evalu-

ated in clinical trials of reactogenicity of vaccines [34], and this vaccine candidate can be con-

sidered of low reactogenicity. When a fever (>38 ˚C) is induced by some vaccines by

intramuscular injection it is registered within the first 24 hours [35]. We measured the temper-

ature of the mice before and after each vaccination to determine whether a fever was induced.

There were significant differences recorded in regards to the IM vaccinated group, however

this would lack clinical significance since the temperatures were still below the threshold for a

fever. IM vaccines can have a longer time frame between vaccinations and the boosts are gen-

erally four weeks for more apart. However, here the change in temperature was not due to the

shortened interval in between the vaccination dates as the heterologous vaccine group, which

contained an initial IM dose, did not demonstrate an increase in basal temperature.

An important measure of whether a vaccine delivery system or the vaccine itself could be

toxic is to systemically assess the immunotoxicity and the condition of the organs at a macro-

scopic level. This is especially relevant when delivering a vaccine IN as the nasal passages of

rodents contain an olfactory bulb that can allow for endotoxins to have direct access the CNS

resulting in systemic inflammation [36]. AFPL1 from the Finlay Institute is able to activate

cells of the immune system through TLR2, 4- and 9, with TLR4 activation being due to trace

amounts of LPS present in the proteoliposome extraction from N. meningitidis [15]. Toxicity

associated with IN administration is usually seen behaviorally and would have yielded differ-

ences in food and water consumption [37] and eventual anorexia, which was not seen with our

vaccine. There were no significant differences between the control groups and the vaccinated

groups with respect to the weights of the lungs suggesting that there is no obvious lung changes

because of the vaccine. This would need to be confirmed later with histopathological analyses

of the organs. Systemic toxicity and immunotoxicity was assessed using the weights of the

organs and area of the spleens, respectively, for each of the vaccination groups and administra-

tion routes used. No significant differences were observed for any of the groups or routes

assessed in this study suggesting that the vaccine does not induce systemic toxicity or

immunotoxicity.

Together, the data suggests that not only is the nicotine AFPL1 conjugate a good candidate

as a nicotine vaccine based on our previous data in regards to its ability to block nicotine from

crossing the blood brain barrier, but it is also non-toxic in a female BALB/c model. Addition-

ally, we can significantly ameliorate the amount of both systemic and mucosal antibodies

directed against nicotine by using the heterologous vaccination strategy which induces the

same amount of systemic antibodies as compared to the traditional IM route while at the same

time being able to produce the same or better mucosal anti-nicotine antibody response when

compared to the IN route. Under the conditions of the study and the established criteria, the

AFPL1-conjugate nicotine vaccine is immunogenic and potentially non-toxic.

Author Contributions

Conceptualization: Nya L. Fraleigh, Reynaldo Oliva, Reinaldo Acevedo, Hoang-Thanh Le.

Data curation: Nya L. Fraleigh, Reynaldo Oliva, Jordan D. Lewicky.

Formal analysis: Nya L. Fraleigh, Reynaldo Oliva.

Funding acquisition: Hoang-Thanh Le.

Investigation: Nya L. Fraleigh, Reynaldo Oliva, Jordan D. Lewicky, Hoang-Thanh Le.

Methodology: Nya L. Fraleigh, Reynaldo Oliva, Hoang-Thanh Le.

Efficacy and safety of a mucosal nicotine vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0221708 August 23, 2019 11 / 14

https://doi.org/10.1371/journal.pone.0221708


Project administration: Hoang-Thanh Le.

Resources: Reinaldo Acevedo, Garcı́a-Rivera Dagmar, Hoang-Thanh Le.

Supervision: Garcı́a-Rivera Dagmar, Hoang-Thanh Le.

Validation: Nya L. Fraleigh, Reynaldo Oliva, Hoang-Thanh Le.

Visualization: Nya L. Fraleigh, Reynaldo Oliva, Jordan D. Lewicky.

Writing – original draft: Nya L. Fraleigh, Reynaldo Oliva, Jordan D. Lewicky, Alexandrine L.

Martel, Reinaldo Acevedo, Garcı́a-Rivera Dagmar, Hoang-Thanh Le.

Writing – review & editing: Nya L. Fraleigh, Reynaldo Oliva, Jordan D. Lewicky, Alexandrine

L. Martel, Reinaldo Acevedo, Garcı́a-Rivera Dagmar, Hoang-Thanh Le.

References

1. Canadian Tobacco Use Monitoring Survey. 2013. https://www.canada.ca/en/health-canada/services/

publications/healthy-living/canadian-tobacco-use-monitoring-survey-ctums-2012.html

2. Moreno AY, Janda KD. Immunopharmacotherapy: vaccination strategies as a treatment for drug abuse

and dependence. Pharmacol Biochem Behav. 2009; 92(2): 199–205. https://doi.org/10.1016/j.pbb.

2009.01.015 PMID: 19350728

3. Hatsukami DK, Rennard S, Jorenby D, Fiore M, Koopmeiners J, de Vos A, Hormith, et al. Safety and

immunogenicity of a nicotine conjugate vaccine in current smokers. Clin Pharmacol Ther. 2005; 78(5):

456–67. https://doi.org/10.1016/j.clpt.2005.08.007 PMID: 16321612

4. Vanschayck O. Nicotine vaccination—does it have a future? Addiction. 2014; 109(8): 1223–5. https://

doi.org/10.1111/add.12569 PMID: 24894565

5. Pentel PR, LeSage MG. New directions in nicotine design and use. Adv Pharmacol. 2014; 69: 553–

580. https://doi.org/10.1016/B978-0-12-420118-7.00014-7 PMID: 24484987

6. Hoogsteder PHJ, Kotz D, van Spiegel PI, Viechtbauer W, van Schayck OC. Efficacy of the nicotine vac-

cine 3’-AmNic-rEPA (NicVAX) co-administered with varenicline and counselling for smoking cessation:

a randomized placebo-controlled trial. Addiction. 2014; 109(8): 1252–59. https://doi.org/10.1111/add.

12573 PMID: 24894625

7. Thorn JM, Bhattacharya K, Crutcher R, Sperry J, Isele C, Kelly B, et al. The effect of physiochemical

modification on the function of antibodies induced by anti-nicotine in mice. Vaccines. 2017; 5: E11.

https://doi.org/10.3390/vaccines5020011 PMID: 28513561

8. Zhao Z, Harris B, Hu Y, Harmon T, Pentel PR, Ehrich M, et al. Rational incorporation of molecular adju-

vants into a hybrid nanoparticle-based nicotine vaccine for immunotherapy against nicotine addiction.

Biomaterials. 2018; 155: 165–75. https://doi.org/10.1016/j.biomaterials.2017.11.021 PMID: 29179132

9. Hu Y, Smith D, Frazier E, Hoerle R, Zhang C. The next-generation nicotine vaccine: a novel and potent

hybrid nanoparticle based nicotine vaccine. Biomaterials. 2016; 106: 228–39. https://doi.org/10.1016/j.

biomaterials.2016.08.028 PMID: 27569868

10. McCluskie MJ, Thorn J, Gervais DP, Stead DR, Zhang N, Benoit M, et al. Anti-nicotine vaccines: com-

parison of adjuvanted CRM197 and Qb-VLP conjugate formulations for immunogenicity and function in

non-human primates. Int Immunopharamacol 2015; 29(2): 663–71. https://doi.org/10.1016/j.intimp.

2015.09.012 PMID: 26404190

11. Zeigler DF, Roque R, Clegg CH. Optimization of a multivalent peptide vaccine for nicotine addiction.

Vaccine 2019; 37; 1584–90. https://doi.org/10.1016/j.vaccine.2019.02.003 PMID: 30772068

12. Quinn DI, Wodak A, Day RO. Pharmacokinetic and pharmacodynamics principles of illicit drug use and

treatment of illicit drug users. Clin. Pharmacokinet. 1997; 33: 344–400. https://doi.org/10.2165/

00003088-199733050-00003 PMID: 9391747

13. Fraleigh NL, Boudreau J, Bhardwaj N, Eng NF, Murad Y, Lafrenie R, et al. Evaluating the immunogenic-

ity of an intranasal vaccine against nicotine in mice using the Adjuvant Finlay Proteoliposome (AFPL1).

Heliyon. 2016; 2(8): e00147. https://doi.org/10.1016/j.heliyon.2016.e00147 PMID: 27622215

14. Wern JE, Sorensen MR, Olsen AW, Andersen P, Follmann F. Simultaneous subcutaneous and intrana-

sal administration of a CAF01-adjuvanted Chlamydia vaccine elicits elevated IgA and protective Th1/

Th17 responses in the genital tract. Front Immunol. 2017; 8: 569. https://doi.org/10.3389/fimmu.2017.

00569 PMID: 28567043

Efficacy and safety of a mucosal nicotine vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0221708 August 23, 2019 12 / 14

https://www.canada.ca/en/health-canada/services/publications/healthy-living/canadian-tobacco-use-monitoring-survey-ctums-2012.html
https://www.canada.ca/en/health-canada/services/publications/healthy-living/canadian-tobacco-use-monitoring-survey-ctums-2012.html
https://doi.org/10.1016/j.pbb.2009.01.015
https://doi.org/10.1016/j.pbb.2009.01.015
http://www.ncbi.nlm.nih.gov/pubmed/19350728
https://doi.org/10.1016/j.clpt.2005.08.007
http://www.ncbi.nlm.nih.gov/pubmed/16321612
https://doi.org/10.1111/add.12569
https://doi.org/10.1111/add.12569
http://www.ncbi.nlm.nih.gov/pubmed/24894565
https://doi.org/10.1016/B978-0-12-420118-7.00014-7
http://www.ncbi.nlm.nih.gov/pubmed/24484987
https://doi.org/10.1111/add.12573
https://doi.org/10.1111/add.12573
http://www.ncbi.nlm.nih.gov/pubmed/24894625
https://doi.org/10.3390/vaccines5020011
http://www.ncbi.nlm.nih.gov/pubmed/28513561
https://doi.org/10.1016/j.biomaterials.2017.11.021
http://www.ncbi.nlm.nih.gov/pubmed/29179132
https://doi.org/10.1016/j.biomaterials.2016.08.028
https://doi.org/10.1016/j.biomaterials.2016.08.028
http://www.ncbi.nlm.nih.gov/pubmed/27569868
https://doi.org/10.1016/j.intimp.2015.09.012
https://doi.org/10.1016/j.intimp.2015.09.012
http://www.ncbi.nlm.nih.gov/pubmed/26404190
https://doi.org/10.1016/j.vaccine.2019.02.003
http://www.ncbi.nlm.nih.gov/pubmed/30772068
https://doi.org/10.2165/00003088-199733050-00003
https://doi.org/10.2165/00003088-199733050-00003
http://www.ncbi.nlm.nih.gov/pubmed/9391747
https://doi.org/10.1016/j.heliyon.2016.e00147
http://www.ncbi.nlm.nih.gov/pubmed/27622215
https://doi.org/10.3389/fimmu.2017.00569
https://doi.org/10.3389/fimmu.2017.00569
http://www.ncbi.nlm.nih.gov/pubmed/28567043
https://doi.org/10.1371/journal.pone.0221708
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