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Abstract

Background: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of
various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants
that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such
mutant, oxt6.

Methodology/Principal Findings: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes
the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a
larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth
and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated
constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin- related
domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was
not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on
polyadenylation in the mutant.

Conclusions/Significance: These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the
responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to
oxidative stress.
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Introduction

Plants encounter a broad range of challenges in the natural

environment. Adverse conditions brought about by excesses of

light or temperature, drought, salinity, atmospheric pollutants such

as ozone, or soil-borne pollutants such as heavy metals, can all

threaten plant health. Critical for their survival is the ability of

plants to perceive and rapidly respond to the stresses caused by

such ever-changing conditions. Characteristic responses to most of

these conditions are alterations in the cellular level of reactive

oxygen species (ROS) [1–3]. The ensuing oxidative stress

produced by severe increases in ROS can be deleterious to plants,

as ROS such as the superoxide radical, hydrogen peroxide, or the

hydroxyl radical are able to damage most cellular macromolecules

directly, and ultimately lead to cell death [2,4,5]. On the other

hand, ROS are produced continuously at basal levels as a

consequence of a wide range of common metabolic processes.

This, together with the transient increases in ROS concentrations

when subjected to unfavorable conditions, make ROS well suited

to be key regulatory molecules of plant responses to stress [1,3,6]

as well as more general signaling molecules for a variety of plant

processes such as stomatal closure, cell expansion, root gravitrop-

ism, and aspects of development [7,8].

The recognition of ROS signaling in several plant processes has

led to considerable interest in studying the expression of ROS

regulated genes. Exposure to ROS triggers a sizeable gene

expression program [9,10], including the activation of a set of

genes encoding a characteristic array of detoxifying enzymes [11–

13]. This increased gene expression probably involves one or more

signaling pathways, modulation of which results in changes in
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transcriptional activity of a variety of genes encoding detoxifying

enzymes. Components of several regulatory systems have been

implicated in responses to ROS. One of these are protein kinases

(MAPKs); ROS or treatments that increase ROS activate a

number of plant MAPKs, and ROS may act through activation of

an upstream kinase, OXI1 [14], which has recently been proposed

to also enable lipid-derived signals to be integrated via an oxidative

signaling module, PDK1-OXI1 [15]. Additionally, the transcrip-

tion factor, ZAT12, a C2H2-type zinc finger protein, has been

implicated in early steps in the response of Arabidopsis to ROS and

to abiotic stresses that are associated with ROS signaling [16,17].

Transcription of ZAT12 is itself upregulated in response to ROS,

as well as being required for the ROS-regulated expression of at

least one other stress-associated transcription factor, ZAT7,

another C2H2-type zinc finger protein [17]. ZAT12, in turn

appears to be regulated by HSF21, a redox-sensitive transcription

factor [18]. An additional ZAT family transcription factor,

ZAT10, has recently been shown to be involved in high-light

acclimation of leaves, a process also tied to ROS signaling [19,20].

Among the consequences of exposure to environmental stress

signals, including ROS, is a rapid elevation of intracellular calcium

levels [21–24]. These observations, along with the reported

calcium-dependent activation of the H2O2 detoxifying enzyme

catalase by calmodulin [25], suggest that calcium-mediated

signaling is important in response to ROS. The mechanisms by

which these systems cooperate or intersect, how their activities are

affected by other stress- and pathogen- related signaling pathways,

and how the initial stress state is sensed remain to be worked out.

To gain further understanding of the processes plants use to

perceive and respond to stress, we applied a genetic screen based

on a whole-seedling phenotype to isolate lines that exhibit

enhanced growth in the presence of conditions that elicit oxidative

stress. We present here the characterization of an Arabidopsis

mutant that tolerates oxidative stress, oxt6. The oxt6 mutation was

caused by a T-DNA insertion into a gene encoding a

polyadenylation factor subunit homolog, CPSF30. The properties

of this mutant are consistent with a model whereby stress signals

are linked to downstream stress tolerance responses that are

modulated by RNA processing.

Results

Isolation of an Arabidopsis oxidative stress-tolerant
mutant, Oxt6

To isolate mutants of Arabidopsis thaliana that possess enhanced

tolerance to oxidative stress, a genetic screen based on a whole

seedling phenotype was developed. This screen employed 3-

amino-1, 2, 4-triazole (AT), a catalase inhibitor that elevates

intracellular H2O2 in cultured Arabidopsis cells [26]. Since addition

of AT to cells also leads to increased glutathione levels [26], and

since higher glutathione concentrations are expected to ameliorate

the increased H2O2 levels caused by AT treatment, buthionine

S,R-sulfoximine (BSO), an inhibitor of glutathione synthesis [27],

was also included to insure the stress-inducing conditions. A range

of AT and BSO concentrations were tested to find a combination

that caused uniform growth inhibition without killing the plants.

AT and BSO at 2.0 mM and 400 mM, respectively, resulted in a

uniform inhibition of root growth when roots penetrated the agar

medium, but did not result in immediate death of wild-type

seedlings (Sukrong et al., unpublished data). These conditions were

used to screen for mutants that displayed longer primary roots

after growth under the imposed stress.

In a population of ,10,000 independent T-DNA mutagenized

Arabidopsis lines, 326 gave root lengths at least 130% longer than

wild type and 35 of this group showed heritability for elongated

roots. These 35 lines were examined for tolerance to methyl

viologen (MV). MV generates ROS via the production of

superoxide radicals primarily at photosystem I, a mechanism

distinct from AT and BSO; mutants resistant to both AT+BSO

and MV are expected to be affected in general responses to ROS,

as opposed to pathways specific for either metabolism related to

these chemicals or to the specific oxidative species involved.

Several lines, designated oxt for oxidative stress tolerant, displayed

reduced sensitivity to AT and BSO as well as to MV. One such

line, oxt6, was selected for further study.

Genetic analysis was conducted by backcrossing oxt6 to the wild

type and scoring the resulting F1 progeny for either tolerance to

AT plus BSO, or for the distinctive dwarf phenotype seen in the

mutant plants when grown in soil (see below). All F1 heterozygotes

exhibited wild-type phenotypes under both stress and soil-grown

conditions. Selfed F2 progeny of individuals from these backcrosses

showed a segregation ratio close to 3:1 (447 long roots:140 short

roots, x2 = 0.4; P.0.05) for tolerance to MV, indicating that oxt6 is

a recessive mutation that confers tolerance to oxidative stress. PCR

analysis confirmed that T-DNA was present in all MV-tolerant

plants. MV-sensitive individuals that arose from the same

backcross segregated for the presence of the T-DNA in a ratio

of 68:30, close to an expected 2:1 ratio (x2 = 0.33, P.0.05),

indicating that oxt6 contained a single T-DNA insertion that was

very likely linked to the mutant phenotype.

Oxidative stress tolerance in the oxt6 mutant
Oxt6 plants were somewhat smaller than wild type when grown

under non-stress conditions in both MS agar medium (Figure 1A

and 2B) and soil (Figure 3A). The relative growth rate of wild type

calculated from day 8 to day 14 was 0.323 mg21d21 while the oxt6

relative growth rate over this same interval was 0.213 mg21d21,

indicating that the wild type grew 1.5-times faster than oxt6 at

earlier stages. After 14 days however, the wild-type and oxt6

growth rates were similar, such that the oxt6 rosette leaves attained

a mean diameter of about 0.7 times that of the wild-type rosette

before bolting. The oxt6 mutant also exhibited a modest delay in

development under non-stress conditions in long day lengths, as

reflected by the number of leaves within the rosette at the time of

bolting. Prior to bolting, wild-type rosettes had 11.960.8 leaves,

while rosettes on oxt6 mutant plants had 13.860.6 leaves (n = 10

plants each; 6SE).

After 14 days of growth on agar media, untreated oxt6 mutants

had root lengths that were about 85% of the wild type (Figure 1B).

In contrast, the root lengths of oxt6 plants grown in the presence of

MV or AT+BSO were 150%–250% of the treated control plants

(Figure 1B). In terms of the inhibition of root growth, the MV and

AT+BSO treatments inhibited wild-type root growth by between

70% and 90%, respectively, while the same treatments reduced

oxt6 root growth by 40%–60% (Figure 1B). After 14 days of

growth on agar plates, AT+BSO-treated oxt6 plants accumulated

about 95% of the aerial dry mass as did untreated oxt6 plants,

while MV-treated oxt6 plants accumulated about 90% of the aerial

dry mass that untreated oxt6 plants did (Figure 1C). In contrast, the

growth of wild-type plants was inhibited by about 45% and 70%,

respectively, by these treatments (Figure 1C).

Cellular ion leakage in leaf explants can be used as a means to

quantify damage induced by oxidative stress, and thereby provide

an assessment of stress tolerance independent of growth charac-

teristics. Untreated wild-type and oxt6 plants showed a similar (low)

degree of ion leakage, assessed as the conductivity of the medium

in which the leaf explants were incubated (Fig. 1D). After 6 hr in

the presence of MV, ion leakage in the mutant was some 48% of
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that seen in the wild-type (Fig. 1D), indicative of a significant

reduction in MV-induced cellular damage. After 12 hours, ion

leakage in the mutant was some 70% of that seen in the wild-type

(Figure 1D). This experiment demonstrates a considerable

protection against the damaging effects of MV in the mutant.

Reactive oxygen signaling is associated with numerous biotic

and abiotic stresses. Because of these interrelationships, it is

possible that the tolerance to chemically-induced oxidative stress

exhibited by the oxt6 mutant is due to other changes in responses

to stresses that may include constitutive conditioning of plants to

tolerate ROS. Alternatively, tolerance to ROS may manifest itself

as changes in responses to stresses (such as elevated or low

temperatures) that are accompanied by production of ROS. To

test this, the responses of the mutant to high temperature

treatment (Figure 2A) and to growth at high and low temperatures

(Figure 2B) were examined. As shown, the responses of the oxt6

mutant to these treatments were very similar to those of its wild-

type parent. Thus, the oxt6 mutant does not display a general or

global alteration in responses to abiotic stress, but rather a more

limited change in the susceptibility just to ROS elicited, for

example, with MV.

Molecular characterization and complementation of the
oxt6 mutant

Using PCR primers specific for the modified T-DNA used to

mutagenize the Arabidopsis population, the genomic position of the

oxt6 mutation was found to lie 147 bp downstream of the

translation initiation codon within the first exon of a gene,

At1g30460, located on Arabidopsis chromosome 1 (Figure 3B). This

gene encodes two mRNAs (Figure 4A) and, as shown in a previous

study, two polypeptides, owing to alternative poly(A) site use [28].

The smaller of these is similar to yeast and mammalian

polyadenylation factor subunits (Yth1p and the 30 kD subunit of

cleavage and polyadenylation specificity factor, or CPSF30,

respectively; [28]), while the larger polypeptide consists of the

CFSP30-related domain fused to a second domain that is related

to a mammalian splicing factor-related protein (YT521-B; [29].

The oxt6 mutant lacks both polypeptides, as shown in previous

Figure 1. Phenotypes of the oxt6 mutant. (A) Images of wild-type and oxt6 plants growing on MS+1% sucrose agar medium only [non-stress
(NS)] and under stress conditions induced by 2.0 mM aminotriazole +0.4 mM buthionine sulfoximine (AT+BSO) and 50 nM methyl viologen (MV). (B)
and (C). Effects of AT+BSO and MV treatments on root length (B) and dry mass accumulation (C) in the wild type and oxt6 mutants. Dry weight data
are plotted as a percentage of the accumulation of each line under non-stressed conditions. (D) Reduced cell damage in isolated leaf discs in the
presence of methyl viologen as measured by ion leakage. Leaf discs were incubated in 2.0 mM methyl viologen at 22uC at 80 mmol m22 s21 and ion
leakage determined as described in Materials and Methods. (B) through (D), white bars, wild type, gray bars, oxt6.
doi:10.1371/journal.pone.0002410.g001
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work [28], as well as their encoding mRNAs (Figure 4A;). The

OXT6 gene appears to be expressed in all tissues, judging from the

results of RT/PCR analysis (Figure 4B) and from perusal of public

domain microarray data (Figure 4C) (Supporting table S5). The

latter analysis shows that expression of the At1g30460 gene varies

at most by about 4-fold over the range of samples analyzed, with

the highest expression in the shoot apex and lowest in stamens.

Interestingly, the smaller but not larger of the two OXT6-encoded

mRNAs was transiently up-regulated by exposure to MV

(Figure 4D).

To better understand the contributions of the two mRNAs to

the oxt6 phenotype, genomic sequences extending from ca.

2000 bp upstream of the initiation codon of the OXT6 coding

region(s) to 500 bp downstream of the termination codon of the

smaller mRNA were introduced into the oxt6 mutant. The

resulting plants (oxt6/CPSF30) did not display the dwarf

phenotype that was apparent in the oxt6 mutant (Figure 3A).

Moreover, they were restored in terms of their sensitivity to

oxidative stresses. Thus, oxt6/CPSF30 plants showed the same 70–

90% reduction in root growth in the presence of AT+BSO (not

shown) or MV than the wild-type plants did (Figure 3C). Dry mass

accumulation in oxt6/AtCPSF30 was likewise reduced by some

60% by these treatments (not shown). These data indicate that the

smaller of the two OXT6-derived mRNAs, and the AtCPSF30

protein, is sufficient to restore a wild-type stress-sensitive

phenotype to the oxt6 mutant.

Transcriptional profiling – ROS-related genes that are
altered in a CPSF30-dependent fashion

To better understand the link between AtCPSF30 and the oxt

phenotype, transcriptional profiling using the Affymetrix ATH1

Genome Array was conducted. For this, genes whose expression

correlated with the ROS-tolerant phenotype were identified; thus,

genes whose expression was significantly different in the oxt6

mutant compared with both the wild-type and complemented

plants, but whose expression was not accordingly different when

the wild-type and complemented plants were compared, were

identified. This exercise yielded 353 probes whose expression

correlated with the stress-tolerant phenotype. Because of some

ambiguity in the probe-gene correspondence, this set of 353

probes identified 362 genes (Supporting Table S1). A number of

enzyme classes participate in the control of reactive oxygen

species; these include ascorbate peroxidases, catalases, superoxide

dismutases, glutathione-S-transferases, peroxiredoxins, glutaredox-

ins, and thioredoxins [3,12,13,30,31]. Among the set of 362 genes

identified in the transcriptional profiling, only two of these classes

were substantially represented (Table 1). Specifically, the expres-

sion of nine genes encoding proteins containing either glutar-

edoxin- or thioredoxin- related domains were up-regulated by two

or more fold in the mutant compared with the wild-type or with

the complemented lines.

The result obtained from identifying genes whose expression is

significantly correlated with the ROS-tolerant phenotype was

corroborated by a gene-by-gene analysis of expression in the

various lines (Supporting Table S4). Thus, 20 (of 59) thioredoxin-

related genes and 12 (of 23) glutaredoxin-related genes showed

variation of expression that correlated with ROS tolerance

(consisting of elevated expression in the mutant compared with

either the wild-type or complemented plants, and little difference

or elevated expression in the wild-type compared with the

complemented plants). Of the set of 26 genes encoding detoxifying

activities (ascorbate reductases and peroxidases, catalases, super-

oxide dismutases, and peroxiredoxins), only one (FSD2, corre-

sponding to At5g51100) had an expression profile that correlated

with ROS tolerance (Supporting Table S2).

Other reports describing transcription profiling of stress

responses in Arabidopsis have been published, and experiments of

time courses of the responses of Arabidopsis to numerous stresses are

available in public microarray data repositories. To assess the

relationships between these treatments and the phenotype of the

oxt6 mutant, the lists of genes most responsive in other studies were

compared with the AtCPSF30-specific genes identified in this

study. As indicated in Figure 5, four, three, and eight genes,

respectively, were shared between the AtCPSF30-specific list and

the lists of genes most responsive to elevated hydrogen peroxide,

superoxide, and singlet oxygen species, respectively [11]. In

Figure 2. Responses of the oxt6 mutant to high and low temperature. (A) Responses of plants to elevated temperatures. Young seedlings
were exposed to 40uC for a brief period of time and hypocotyls elongation measured after returning the plants to room temperature (see Methods).
(B) Seven-d-old plants were grown on MS+sucrose medium at 22uC and then grown at the indicated temperatures for14 days, when the dry mass
accumulation was determined. Samples in both plots are as indicated in the legend in the insets.
doi:10.1371/journal.pone.0002410.g002
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addition, the set of genes that changed in an AtCPSF30-dependent

manner contained 31 members (or 8.6%) that also were strongly-

induced by heat shock [32] (Supporting Table S2, S7). These

comparisons do not lend strong support to the hypothesis that the

oxt6 mutant affects gene sets that also are responsive to ROS, but

they do indicate a very modest commonality between heat shock

and the effects of the oxt6 mutation. The commonality seen with

heat shock genes, however, is not manifest as increased tolerance

of elevated temperatures (Figure 2A, B).

Altered poly(A) site choice in the oxt6 mutant
Several lines of evidence indicate that AtCPSF30 is a

polyadenylation factor subunit [28,33–35]. Thus, it may be that

the length of poly(A) tails on mRNAs in the oxt6 mutant may be

different from those in the wild-type or complemented plants. This

was tested by directly measuring the length distribution of bulk

poly(A) in the three lines. As shown in Figure 6, poly(A) lengths

ranged from very short to somewhere between 160 and 200 nts in

the wild-type, mutant, and complemented plants, with no obvious

differences between the three samples. Treatment with RNAse

H+oligo-dT eliminated the labeled products (Figure 6, lane 5 and

unpublished observations), indicating that the observed products

were authentic poly(A). These results thus indicate that the

disruption of the At1g30460 gene does not have a dramatic effect

on poly(A) length.

The Arabidopsis CPSF30 protein has been suggested to be directly

involved in the processing of the pre-mRNA prior to polyadenyl-

ation [33]. Thus a consequence of a deficit of AtCPSF30 might be

an alteration of poly(A) site choice in particular genes. This

hypothesis was tested in a small set of genes; three of these genes

were not significantly different in terms of their expression in the

three backgrounds, whereas one (At5g36910) was up-regulated by

some 10–15 fold in the mutant compared with both the wild-type

and complemented plants (not shown). The results of this

experiment are summarized in Figure 7, and the collection of

sequences listed in Supporting Table S3. For all four genes, the sites

seen in the wild-type were identical in position and approximate

abundance to sequences that may be found in EST databases (not

shown), indicating that the approach is a valid and accurate

estimation of poly(A) site profiles in these four genes.

The poly(A) site profiles were different in the three sets of plants.

For At1g64230, neither of the two sites used in the wild-type were

Figure 3. Complementation of the mutant phenotype by the AtCPSF30 coding region. (A) Photograph of representative plants grown in
soil under unstressed conditions. (B) Schematic representation of the OXT6 gene structure. Dark gray boxes indicate the exons present in the smaller
of the two transcripts encoded by this gene, while light gray boxes represent additional exons present in the larger of the two OXT6-encoded RNAs.
Note that the sequence represented by the small white box is absent in the larger RNA. The structures of the spliced RNAs (‘‘1’’ and ‘‘2’’) are depicted
beneath the illustration of the genomic DNA. The solid line above the illustration of the genomic DNA indicates the extent of the gene that was
expressed for complementation studies (note that the promoter sequences are not shown in the illustration). The polyadenylation site within the
second intron that is utilized for production of the shorter transcript is denoted as An, and the splice junctions that define the second intron linked
together above the depiction of the genomic DNA. (C) Root lengths of wild-type, oxt6 mutants, and oxt6:AtCPSF30 plants after exposure to 50 nM
MV.
doi:10.1371/journal.pone.0002410.g003
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seen in the oxt6 mutant. Much of the wild-type usage was restored

in the complemented plants, but other sites not seen in either the

mutant or wild-type were also selected. For At5g36910, the wild-

type 39 end profile was not seen in the mutant. However, some

wild-type poly(A) site usage was seen in the complemented plants,

although some 39 ends that corresponded to those seen in the

mutant were also apparent. For At3g09390, a majority of the 39

ends in the mutant and complemented plants corresponded to the

sole site seen in the wild-type. In the mutant and complemented

plants, however, additional sites were seen, some of which were

Figure 4. OXT6 gene expression profile. (A) RNA blot analysis of the expression of the OXT6 gene in the oxt6 mutant and wild-type (WT) plants.
The structure of the OXT6 gene is shown at the top, with the positions of the probes (‘‘Probe 1’’ and ‘‘probe 2’’) used for the RNA blotting highlighted.
The expression of the Arabidopsis tubulin gene is shown beneath the two OXT6 gene probe blots. ‘‘(1)’’ and ‘‘(2)’’ indicate transcripts sizes as those
depicted in the schematic in Figure 3B. (B) RT-PCR analysis of OXT6 gene expression in different plant tissues. Total RNA was isolated from root (R),
flower (F), cauline leaf (CL), rosette leaf (RL), silique (Si), and stem tissues (S) from mature (25-day-old) plants and gene primers specific to the small
(AtCPSF30) transcript were used following reverse transcription as described in Materials and Methods. (C) Meta-analysis of the expression of the
OXT6 gene. Expression data for this gene (probe 261798_at) for the developmental series available from NASC was extracted and the normalized
expression values plotted as shown; this probe set recognizes just the larger of the two OXT6-encoded RNAs. Developmental stages for the sets of
samples are indicated on the plot. The full dataset is provided in Supporting Table S5. (D) RT-PCR analysis of the expression of the small (left panel)
and large (right panel) mRNAs in wild type plants exposed to methyl viologen (MV) for 1, 10 and 24 hr.
doi:10.1371/journal.pone.0002410.g004
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unique to either mutant or complemented plants. For At5g38410,

the predominant wild-type site was also the predominant site used

in the mutant lines, and was used exclusively in the complemented

plants. Increased usage of an additional wild-type site was seen in

the mutant. However, there were several sites that were unique to

the wild-type or mutant. Taken together, these results show that

poly(A) site choice is different in the oxt6 mutant compared with

the wild-type and complemented plants, and indicate that

alternative poly(A) site choice is a consequence of the absence

(or not) of AtCPSF30.

Discussion

The involvement of CPSF30 in responses to ROS
The signaling events involved in the responses of plants to

oxidative stress include calcium fluxes, protein kinase cascades,

and transcription factors [1,4,14,17,18,21,23,25,30,36]; these

combine to promote increased production of enzymes that reduce

reactive oxygen species and ameliorate the effects of ROS on

cellular processes [3,4,11,12,25,30,31,37–39]. The multiplicity of

inducing agents (superoxide, peroxide, singlet oxygen, and

hydroxyl radicals) along with the diversity in cellular locations

for the various systems (being located in the cytoplasm,

chloroplast, peroxisome, and mitochondria) afford a large variety

of both signaling mechanisms and enzymatic pathways to

minimize the potential damage due to exposure to ROS. The

oxt6 mutant reveals an additional, as yet uncharacterized, route by

which plants may respond to ROS signals. Most genes that encode

detoxifying mechanisms are relatively unaffected by the oxt6

mutation, but a number of genes encoding thioredoxins and

glutaredoxins are expressed at a higher level in the mutant. This

observation suggests that modified expression of a relatively small

subset of ROS-associated or -induced genes may suffice for a

degree of tolerance to ROS. Moreover, the relatively specific (in

terms of ROS-associated genes) effects of AtCPSF30 suggest that

many members of the thioredoxin and glutaredoxin gene families

may be subject to control by signaling pathways and environ-

mental cues that are apart from those described to date.

The link between AtCPSF30 and tolerance to oxidative stress is

at first glance not apparent. One might hypothesize that

AtCPSF30 directly affects the expression of a ‘‘master’’ regulator

whose suite of clients includes those genes listed in Table 1.

Alternatively, the stress-tolerant phenotype in the oxt6 mutant

might be a secondary consequence of a different primary effect,

owing to changes in expression of genes somewhat removed from

direct ROS responses. In either case, it is likely that AtCPSF30

plays a role in ROS-regulated gene expression. This follows from

the recollection that AtCPSF30 is a calmodulin-binding protein,

and its RNA-binding activity is inhibited by calmodulin in a

calcium-dependent manner [28]. Rapid increases in intracellular

Ca2+ concentrations are among the first events that occur after

exposure of plants to oxidative stresses [22–24]. The increase in

Table 1. Thioredoxin- and glutaredoxin- related genes whose expression is two-fold or more greater in the oxt6 mutant than the
wild-type.

Locus Identifier Annotation wt/mut comp/mut wt/comp

AT1G07960 protein disulfide isomerase-like (PDIL) 0.38 (0.18) 0.42 0.90

AT1G19730 ATTRX4 (thioredoxin H-type 4) 0.44 0.14 3.06

AT3G25580 thioredoxin-related 0.22 (0.31) 0.41 0.53

AT3G62950 glutaredoxin family protein 0.30 0.40 0.76

AT4G15660 glutaredoxin family protein 0.30 0.24 1.23

AT5G06430 thioredoxin-related 0.49 0.23 2.12

AT5G06690 thioredoxin family protein 0.39 (0.96) 0.40 1.00

AT5G18120 protein disulfide isomerase-like (PDIL) 0.29 0.44 0.66

AT5G63030 glutaredoxin, putative 0.41 0.34 1.22

The columns labeled ‘‘wt/mut’’, ‘‘comp/mut’’, and ‘‘wt/comp’’ denote the respective expression ratios for these genes. Values in parentheses represent ratios derived
from RNA blot analysis.
wt – wild-type parent of oxt6; mut – the oxt6 mutant; comp – oxt6-derived lines that express a gene encoding just the smaller (CPSF30) of the two At1g30460-encoded
proteins.
doi:10.1371/journal.pone.0002410.t001

Figure 5. Venn diagrams of genes impacted by AtCPSF30 and various stresses. Shown are the commonalities of genes dependent on the
presence of AtCPSF30 and those genes that are responsive to heat shock, hydrogen peroxide treatment (H2O2), superoxide treatment, and increased
levels of ozone (singlet oxygen). Shaded circles represent genes whose expression is significantly affected by the absence of AtCPSF30, while white
circles denote genes affected by the other indicated treatments. The genes represented in each set of overlaps are listed in Table S7.
doi:10.1371/journal.pone.0002410.g005
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Ca2+ that accompanies the onset of stress would be expected to

result in an inhibition of RNA binding by AtCPSF30. This would

in turn mimic the situation seen in the oxt6 mutant, triggering the

gene expression program that includes increased production of

thioredoxin- and glutaredoxin- related proteins. Thus, AtCPSF30

might be envisioned to be positioned relatively early in response to

oxidative signals, along with a variety of other cellular components

that possess calcium/calmodulin domains and are directly

modulated by Ca2+ signals (Figure 8).

Other aspects of nuclear RNA processing have recently been

implicated in the responses of plants to various abiotic stresses. For

example, plants homozygous for one mutant allele (los4-2) of the

Arabidopsis LOS4 gene that encodes an RNA helicase involved in

export of RNA from the nucleus to the cytoplasm are tolerant to

cold and freezing stresses but more sensitive than the wild-type to

heat shock [40]. Mutants homozygous for another allele of this

gene, los4-1, are more sensitive to chilling and freezing stress [41].

In these two instances, the responses to chilling and freezing stress

reflect the mRNA export characteristics of plants grown at low

temperatures. Mutants in another component of the RNA export

machinery, AtNUP160 (the Arabidopsis ortholog of the NUP160

subunit of the nucleoporin NUP107-160 subcomplex), are also

sensitive to chilling and freezing stress [42]. Thus, RNA export

would seem to be a crucial determinant of tolerance to low

temperatures in Arabidopsis.

Loss-of-function mutations in another gene whose product is

involved in nuclear RNA metabolism, STABILIZED1, also have

differing effects on responses of plants to abiotic stresses [43]. In

this case, mutants in this gene were more sensitive than the wild-

type to ABA, cold stress, and LiCl, but were not affected in their

responses to NaCl. Interestingly, these mutants seemed more

tolerant to osmotic stress imposed by growth on mannitol. Thus, a

theme that is reiterated by the oxt6 mutant is apparent – loss of

function of RNA processing enzymes appears to lead to differing

but somewhat specific or focused effects on abiotic stress responses.

Together, these studies insinuate RNA processing into the network

of regulatory interactions involving reactive oxygen signaling in

abiotic stress responses.

AtCPSF30 and polyadenylation in plants
OXT6 is the only Arabidopsis gene that encodes an obvious

CPSF30/Yth1p homologue [28]. The smaller of the two OXT6-

encoded proteins (AtCPSF30) is the CPSF30 ortholog; this protein

Figure 6. Bulk poly(A) length is not affected in the oxt6 mutant.
Results of samples obtained from the wild-type (lane 1), oxt6 mutant
(lane 2), and complemented plants (lane 3) are shown. Samples treated
with oligo-dT in the absence (lane 4) or presence (lane 5) of RNAse H are
shown on the right-hand panel. A small RNA that is resistant to the
RNAse A+T1 treatment is denoted with *. RNA size standards are in lane
M, and the sizes indicated on the left.
doi:10.1371/journal.pone.0002410.g006

Figure 7. 39 end choice is different in the oxt6 mutant and in complemented plants. The results of sequencing of collections of 39-RACE
clones are illustrated here; each vertical tic represents a distinct 39 end. Lower case letters denote 39 ends that are the same in the various collections.
Numbers above the line denote the numbers of independent clones with 39 ends at the corresponding site. The size of a 25 nt increment is shown
beneath each depiction. The translation termination codons for these genes were 86 (At1g64230), 186 (At3g09390), 60 nts (At5g38410), and 158
(At5g36910) upstream, respectively, from the 59 extremities of the sequences illustrated here and provided in Table S3.
doi:10.1371/journal.pone.0002410.g007
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is present in the nucleus and is the smaller of the two and resides in

a complex with at least one other polyadenylation factor subunit,

AtCPSF100 [28]. AtCPSF30 also interacts physically with an

Arabidopsis ortholog of Fip1 [34]. AtCPSF30 has recently been

reported to be an endonuclease, an activity that is inhibited by its

association with the Fip1 ortholog [33]. These characteristics are

consistent with a role for AtCPSF30 in the processing that

precedes poly(A) addition. The results described in Figure 7 of this

report buttress these other observations, in that they show a clear

effect of a deficit in AtCPSF30 on poly(A) site choice; such a result

is to be expected of a gene that encodes a processing endonuclease.

In yeast, Yth1p is an essential protein [44,45], and it is to be

expected that the same function would likewise be essential in

plants. That the OXT6 gene is nonessential is thus surprising. The

reasons for the discrepancy between the yeast system and

Arabidopsis are not known, but a number of interesting possibilities

merit discussion. The OXT6 gene may not be essential due to the

presence in Arabidopsis of other proteins that function as does

CPSF30 in mRNA 39-end formation. While BLAST searches do

not yield obvious candidates for such hypothetical proteins,

Arabidopsis does possess a large family of CCCH zinc finger

proteins [28], one or more of which may be able to replace

AtCPSF30 in mRNA 39 end formation. Moreover, there exists a

possibility that other proteins, unrelated at the amino acid

sequence (or even motif organization) level, may be able to

provide the activity of CPSF30 in plants. One likely candidate is

the Arabidopsis ortholog of CPSF73, which in mammals has been

suggested to be a processing endonuclease in the polyadenylation

reaction [46,47].

Variation in poly(A) site profiles was seen in the complemented

plants as well as the oxt6 mutant (Figure 7, Supporting Table S3).

However, each of the three lines studied –wild type, oxt6 mutant,

and complemented plants expressing just the smaller of the two

At1g30460-encoded mRNAs –possessed distinctive profiles. The

absence of complete restoration of wild-type poly(A) site choice in

the complemented plants implicates both AtCPSF30 and

AtCPSF30-YT521B in mRNA 39 end formation. This in turn

adds the possibility of additional control to the process. The

YT521B domain that is present in the larger polypeptide is also

found in a family of Arabidopsis proteins that bind to a protein

kinase that may function in concert with calcineurin [48]. The

significance of this association is not clear, but the link between

calcineurin, the calcineurin B-like interacting protein kinase

(CIPK1), and the YT521B domain raises the possibility of

regulation of AtCPSF30-YT521B function via calcineurin. This

would provide a link apart from calmodulin between calcium and

mRNA 39 end formation.

Materials and Methods

Mutant isolation
Seeds of Arabidopsis thaliana Columbia (Col-0) mutagenized by T-

DNA (pROK2) insertion were obtained from the Arabidopsis

Biological Resource Center (Ohio State University). Seedlings

were germinated and grown in growth chambers set at 22 uC
under continuous light (60–80 mmol m22 s21) on vertical plates

containing 1% agar-solidified Murashige and Skoog (MS) mineral

salts, 1% (w/v) sucrose and 0.5 mM MES. MS medium was

supplemented with 2.0 mM 3-amino-1, 2, 4- triazole (AT) and

400 mM buthionine S,R sulfoximine (BSO) to conduct the primary

screen. For the primary screen, 14-day-old seedlings displaying

decreased sensitivity to the AT and BSO-induced stress conditions

were scored by elongated roots, and transferred to soil to set seed.

For the secondary screen and for follow-up phenotypic studies,

plants were grown on media containing methyl viologen at 0 to

100 nM.

Phenotypic analyses
Seeds were sown on soil and grown in growth chambers at 22

uC with a 16-h photoperiod (,130 mmol m22 s21). Relative

growth rates were calculated by measuring the dry weight of each

sample, each containing 20 seedlings. Tolerance to methyl

viologen was assayed by comparing cell damage from leaf discs

excised from wild-type and oxt6 plants. For each ion leakage

measurement, three 0.6-cm diameter discs were punched from a

fully expanded rosette leaf from plants just prior to bolting. Three

leaves were sampled per plant. The discs were placed onto 6 ml

distilled water with or without 2.0 mM methyl viologen and

sampled after incubation for various times at 22 uC at 80 mmol

m22s 21 light (PAR). Dilutions of the incubation fluid were made

in water and ion leakage was estimated by measuring the resulting

conductivity (Model 61161-362 conductivity meter; VWR Inter-

national).

To assess the susceptibility of plants to a brief heat shock,

stratified seed were sown on MS+sucrose agar plates. Immediately

after sowing, control plates were placed at room temperature for

3 hours in the dark, while the experimental plates were placed at

40uC for 3 hours in the dark. Plates were then moved to room

temperature and hypocotyl length was measured after 5–7 days of

growth in complete darkness.

Figure 8. Working model showing the relationship between
AtCPSF30 and reactive oxygen signaling in stress responses.
Forms of extracellular stress that result in alterations in reactive oxygen
species (ROS) cause rapid increases in cellular Ca++. ‘‘???’’ denotes as yet
hypothetical steps between the consequences of inhibition of
AtCPSF30 activity and induction of the genes (‘‘TRX, GRX’’) implicated
in this study as being responsible for tolerance to MV-induced stress.
doi:10.1371/journal.pone.0002410.g008
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Low and high temperature growth studies were carried out by

growing seedlings on MS+sucrose agar plates for seven days at

22uC before shifting plates to incubators set at different

temperatures. After 14-d of additional growth at the designated

temperature, seedlings were harvested, dried and weighed. Thirty-

six seedlings were weighed for each temperature treatment. All

phenotypic assays were repeated at least twice.

Genetic analysis and mutant complementation
Oxt6 was backcrossed to wild-type Col and F2 seedlings were

grown on MS medium containing 100 nM methyl viologen. After

14 days, seedlings with long or short roots were individually

transferred to MS medium plates and 2–3 leaves were removed to

prepare DNA for PCR analysis. The presence of the T-DNA in

segregating individuals was detected by using oligonucleotide

primers (Table S6) specific to the neomycin phosphotransferase II

(NPTII) gene present within the T-DNA. Genomic DNA flanking

the inserted T-DNA was identified by thermal asymmetric

interlaced (TAIL) PCR as described by (Liu et al., 1995) using

three T-DNA specific primers (Table S6).

A genomic clone encompassing the first two exons of the OXT6

gene was constructed by PCR amplifying a 3.5-kb fragment

containing ,2- kb upstream of the ATG start codon and 0.5-kb

downstream of the translation termination codon present in the 39-

untranslated region of the smaller of the two OXT6-derived

transcripts (see Results) using appropriate oligonucleotides

(OXT6-1 and OXT6-2; Table S6) and wild-type genomic DNA

as template. The amplified fragment was ligated into SmaI-

digested pBluescript II KS+ and then into the plant transformation

vector, pCAMBIA1300, as a BamHI-PstI insert. All constructs

were confirmed by sequencing. The plasmids were introduced into

Agrobacterium tumefaciens GV3101 and Arabidopsis plants were

transformed as described [49]. Additional details are provided in

Methods S1.

Gene expression analyses
The RNA blotting, RT/PCR, and transcriptional profiling

methods are detailed in Methods S1.

Poly(A) length determination
The protocol described by Preker et al.[50] was followed with

slight modifications. Total RNA was isolated from the leaves of soil

grown plants using the Trizol reagent. Two mg of RNA were end-

labeled with 32P-a-39-dATP using yeast poly(A) polymerase; 10 ml

reactions contained 2 mCi of label, a final 39-dATP concentration

of 2 mM, and 500 units of poly(A) polymerase. After 30 minutes,

the poly(A) polymerase was inactivated at 90 uC for 3 minutes.

Labeled RNAs were then treated with a mixture of RNAse

A+RNAse T1 (1 mg and 25 units, respectively, in a 50 ml reaction)

in a reaction buffer containing 10 mM Tris-HCl (pH 8.0),

300 mM NaCl, and 50 mg yeast tRNA. After 40 minutes at 37

uC, the reaction was stopped by addition of 1 mg/ml of proteinase

K, 5% SDS, 50 mM EDTA, and 200 mg of glycogen and

incubated at 42 uC for 30 min. The nuclease resistant poly(A) tails

were precipitated in 2.5 M ammonium acetate, 15 mM MgCl2,

and 2.5 vol of ethanol and pelleted by centrifugation. The

recovered nucleic acids were separated on 12% sequencing gels.

Size standards consisted of 39 end -labeled RNAs derived from

Decade TM Marker system (Ambion). When needed, RNAs

labeled and treated with RNAses A+T1 were subsequently treated

with RNAse H in the presence of oligo-dT; for these reactions, the

products of the above reactions were treated in 60 ml with 10 units

of RNAse H and 500 ng of oligo-dT18.

39-RACE analysis
First-strand cDNA was prepared from 300 ng of total RNA (see

the preceding section) in reactions of 10 ml using 60 ng of the 39-

RACE RT primer (Table S6). PCR reactions were then conducted

using the nested 39 primer and the gene-specific primers listed in

Table S6. PCR products were purified on agarose gels, cloned into

pGEM, and individual clones sequenced using the nested gene

specific primer as a sequencing primer. The results presented

represent the pooled results of at least two different experiments

per gene; all of the sites noted in Figure 7 were seen in all replicates

that were performed.

Supporting Information

Methods S1 Additional Methods.

Found at: doi:10.1371/journal.pone.0002410.s001 (0.05 MB

DOC)

Table S1 List of Arabidopsis genes whose expression in the oxt6

mutant was at least two-fold different compared with the wild-

type. The column designated ‘‘wt/mut’’ is a list of absolute ratios

of expression in the wild-type and mutant, respectively; in this

column, values greater than two indicate greater expression in the

wild-type. The column designated ‘‘wt/mut p-value’’ provides the

results of the students t-test for each comparison.

Found at: doi:10.1371/journal.pone.0002410.s002 (0.15 MB

XLS)

Table S2 List of Arabidopsis genes whose expression in the oxt6

mutant was at least two-fold different compared with the wild-

type, and significantly different (p,0.01) when compared with

expression in the complemented plants. Groups of genes were

extracted from the set of genes that passed the filter and compared

with all genes that passed the filter. The results of F-tests, Student

t-tests, and z-Tests are presented on the various sheets.

Found at: doi:10.1371/journal.pone.0002410.s003 (1.65 MB

XLS)

Table S3 The results of sequencing of 39-RACE clones from

nine collections are presented here. The At gene designation is

indicated in underlined text; following the AtGID are collections

of sequences obtained from wild-type plants, the oxt6 mutant, and

the mutant complemented with the smaller At1g30460-encoded

RNA. Each line represents a separate sequence. All sequences

possessed the poly(A) tract present in the RT primer; this tract has

been deleted from the sequences shown here. All sequences read,

left to right, 59R39, and the 39-most base denotes the

polyadenylation site. Nucleotides other than the poly(A) tract that

are that are not templated [48] are denoted in lower case.

Found at: doi:10.1371/journal.pone.0002410.s004 (0.06 MB

DOC)

Table S4 Statistical analysis of various sets of genes involved in

ROS responses. Groups of genes were extracted from the set of

genes that passed the filter and compared with all genes that

passed the filter.

Found at: doi:10.1371/journal.pone.0002410.s005 (0.06 MB

XLS)

Table S5 Complete summary of OXT6 expression data in the

ATGE developmental series of microarray experiments.

Found at: doi:10.1371/journal.pone.0002410.s006 (0.04 MB

XLS)

Table S6 Primers and plasmids used in this study.

Found at: doi:10.1371/journal.pone.0002410.s007 (0.09 MB

DOC)
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Table S7 Overlapping probe list for hydrogen peroxide, singlet

O2, superoxide and heat shock-induced genes.

Found at: doi:10.1371/journal.pone.0002410.s008 (0.11 MB

XLS)
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