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DNA methylation is a key transcription regulator, whose aberration was ubiquitous and
important in most cancers including hepatocellular carcinoma (HCC). Whole-genome
bisulfite sequencing (WGBS) was conducted for comparison of DNA methylation in tumor
and adjacent tissues from 33 HCC patients, accompanying RNA-seq to determine
differentially methylated region-associated, differentially expressed genes (DMR-DEGs),
which were independently replicated in the TCGA-LIHC cohort and experimentally
validated via 5-aza-2-deoxycytidine (5-azadC) demethylation. A total of 9,867,700 CpG
sites showed significantly differential methylation in HCC. Integrations of mRNA-seq,
histone ChIP-seq, and WGBS data identified 611 high-confidence DMR-DEGs.
Enrichment analysis demonstrated activation of multiple molecular pathways related
to cell cycle and DNA repair, accompanying repression of several critical metabolism
pathways such as tyrosine and monocarboxylic acid metabolism. In TCGA-LIHC, we
replicated about 53% of identified DMR-DEGs and highlighted the prognostic significance
of combinations of methylation and expression of nine DMR-DEGs, which were more
efficient prognostic biomarkers than considering either type of data alone. Finally, we
validated 22/23 (95.7%) DMR-DEGs in 5-azadC-treated LO2 and/or HepG2 cells. In
conclusion, integration of epigenome and transcriptome data depicted activation of
multiple pivotal cell cycle-related pathways and repression of several metabolic
pathways triggered by aberrant DNA methylation of promoters and enhancers in HCC.

Keywords: epigenetics, DNA methylation, promoter, enhancer, WGBS, RNA-Seq, hepatocellular carcinoma,
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignancies and a growing burden in global health (1, 2),
especially in China, which has the highest incidence of HCC
due to the high prevalence of hepatitis B virus (HBV) infection
(3). Even after decades of research, the 5-year survival rate for
liver cancer remains very low, generally less than 5% (4).
Therefore, further research on the pathogenesis of HCC and
the development of effective diagnosis and prognosis biomarkers
is urgently needed.

HCC is a complex disease in which both genetic mutations
and epigenetic alterations have been implicated (5). DNA
methylation is a critical epigenetic regulator whose aberrations
are ubiquitous in many cancers (6). Aberrant DNA methylation
has been investigated with several techniques in HCC, including
the Human Methylation27 BeadChips (7), Methylation450
BeadChip (5, 8–10), and targeted bisulfite sequencing (11).
Alterations in DNA methylation, including both global
hypomethylation and regional specific hypermethylation,
frequently occur in HCC and related preneoplastic conditions.
Hypermethylation events in HCC occur predominantly in
promoter-associated CpG islands (CGIs) and correlate with
attenuated gene expression (12, 13). Therefore, in HCC, there
were recurrent hypermethylated promoter-associated
repressions of well-known tumor suppressor genes such as
RASSF1A, RUNX3, SOCS1, HHIP, SFRP2, APC, CDKN1A,
CDKN2B, and CDH (14–20). However, hypermethylation
alterations of CGIs located in the gene bodies of oncogenes
were consistently associated with their transcriptional activation
(21). Most DNA hypomethylation events in HCC occur in repeat
DNA sequences, intergenic regions, and regions outside CGIs
(22). Hypomethylation was associated with increased genome
instability in HCC (23, 24). Besides, hypomethylation in
transcriptional regulatory elements could activate pivotal
oncogenic genes like CCAAT/enhancer-binding protein-beta
(C/EBPb) (25). Overall, the transcriptional dysregulations
perturbed by abnormal DNA methylation are still not
thoroughly clear in HCC.

Furthermore, the commonly used array techniques for
studying DNA methylation alterations in HCC lack a good
coverage in non-coding regions such as enhancers, which have
been implicated as playing pivotal regulatory roles in cancer
initiation and development (26, 27). In contrast, whole-genome
bisulfite sequencing (WGBS) provides comprehensive single-
base-pair resolution-based methylome profiling of more than
90% (>26 million) of all CpGs in the human genome (28). To
overcome the limitation of array technologies, WGBS was
recently applied to epigenomic profiling of HCC in two studies
(24, 25) but with a relatively small sample (generally less than
five). Specifically, Dr. Shibata and his colleagues illuminated the
interplay between DNA methylation and genetic aberrations by
integrating WGBS data and whole-genome shotgun sequencing
data (24). On the other side, WGBS was applied to perform
global enhancer methylation profiling of three HCC tumors, in
which aberrant enhancer hypomethylation of C/EBPb was
discovered and validated as causally linked to C/EBPb
Frontiers in Oncology | www.frontiersin.org 2
overexpression, thereby contributing to hepatocarcinogenesis
through global transcriptional reprogramming (25).

In the present study, we performed WGBS of tumor tissues
and paired adjacent tissues from 33 patients for a systematical
investigation of the DNA methylation abruption, especially in
promoter and enhancer regions, and its associated genes and
pathways dysregulated in HCC (Supplementary Figure S1). We
also aimed to replicate our findings of methylation aberration-
associated genes and explore their clinical significances in the
TCGA-LIHC cohort to identify potentially effective prognosis
biomarkers for HCC.
MATERIALS AND METHODS

Patient Collection
This study was approved by the Institutional Review Board of
The First Affiliated Hospital. All tissue samples used in the
current study were obtained from patients with HCC who
underwent a partial hepatectomy at the First Affiliated
Hospital, Zhejiang University School of Medicine. Each
specimen was reviewed by a board-certified pathologist to
confirm that the frozen section was histologically consistent
with tumor or non-tumor tissues. Written informed consent
was obtained from each patient.

WGBS and RNA Sequencing
Paired tumor and adjacent non-tumor tissue samples from 33
HCC patients were subjected to WGBS on the Illumina X Ten
platform with the procedures described in our previous WGBS
paper (29). Briefly, a 200-ng genomic DNA sample was sheared
to about 300-bp fragments by sonication. Then, DNA fragments
were subjected to end-repair, addition of adenosine to the 3′ end,
and TruSeq adaptor ligation (Illumina, San Diego, CA, USA).
Bisulfite conversion was implemented via the EZ DNA
Methylation kit (Zymo Research, Irvine, CA, USA) according
to the manufacturer’s protocol. After that, bisulfite-converted
DNA was enriched through several cycles of PCR amplification
using the KAPA HiFi HotStart uracil DNA polymerases (Kapa
Biosystems, Boston, MA, USA). The PCR conditions were set as
45 s at 98°C followed by 10 cycles at 98°C for 15 s, 65°C for 30 s,
72°C for 30 s, ending with 72°C for 1 min. The quality of each
WGBS library was assessed by Qubit 2.0 (Life Tech, Carlsbad,
CA, USA) and an Agilent 2100 Bioanalyzer. Finally, 150-bp pair-
end sequencing was conducted on the Illumina X Ten
sequencing platform. High-throughput mRNA-seq was
performed for each WGBS sample. Similarly, all 66 RNA
samples with high quality (RIN ≥ 7) were applied to the
Illumina X Ten platform for sequencing. Specifically, total
RNA was extracted and purified using the RNeasy Micro Kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions. The quality of RNA was assessed via an Agilent
2100 Bioanalyzer. Libraries for poly(A)+ RNA were prepared
according to the Illumina standard protocol. Constructed
libraries were sequenced on HiSeq X Ten platform by WuXi
AppTec (Wuxi, Jiangsu China).
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Computational Preprocessing of the Next-
Generation Sequencing Data
For raw reads from RNA-seq, Cutadapter (30) (v.1.12) and
Trimmomatic (31) (v. 0.33) were applied for adapter removal
and trimming of low-quality sequences, followed by FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) for
a quality check. After quality control, clean reads were
submitted as the input of Kallisto (32) (v.0.44) for abundance
quantification of transcripts based on a gene model download
from the GENCODE (v. 29) (33). Normalized expression
(transcripts per million [TPM] reads) of each gene was
summarized from the transcript level via the R package
tximport (v. 1.6.0) (34). Non-expressed and low-expressed
genes (defined as those with TPM < 0.01 among more than
half of the total 66 samples) were excluded from downstream
analysis. Clean reads were also aligned against the reference
genome by STAR (v. 2.5.2a) (35), and the resulting BAM files
were utilized as input for enhancer RNA expression
quantification via bedtools (v.2.27.1) (36). Besides, the gene
count outputs of STAR were used as inputs of DESeq2
(v.1.18.1) (37) for identification of differential expressed genes
(FDR < 5% and |Log2FoldChange| > 0.5). The clean WGBS reads
that passed preprocessing were aligned with the hg38 reference
genome using Bismark (v. 0.16.1) (38) with default parameters.
The harvested count information from each strand was then
combined. As recommended by the R package DSS (v.2.26.0)
developer (39), the smoothing approach was adopted for
estimation of smoothed methylation level for all 28.9 million
CpGs with default parameters.

Identification of DML and Differentially
Methylated Regions
In order to identify overall significant differential methylation
between all tumor and non-tumor samples, a combined
Baumgartner–Weib–Schindler (BWS) test (40) was applied to
carry out age-adjusted differentially methylated loci (DML)
detection via the R package BWStest (v.0.2.2). We divided all
the 33 HCC patients into three age groups: “young” (age < 55
years; n = 10), “medium” (55 < age ≤ 65; n = 13), and “old”
(age > 65; n = 10). A single BWS test was performed for each age
group on every CpG to obtain two individual BWS p-values (pleft
and pright). Afterward, three one-sided p-values were combined
as statistic Tleft (or Tright) = -2* Slog10(pleft [or pright]), and a new
statistic T was defined as max(Tleft, Tright) (40). The empirical
distribution of the T statistics of combined BWS test was
determined by 2.0 × 108 time permutations. At last, an overall
empirical p-value was estimated as the combined BWS p-values
for each CpG. CpG with a combined BWS p-value < 1.0 × 10-5

was identified as DML for subsequent differentially methylated
loci (DMR) calling.

Tumor-associated DMRs were determined by R script with
the following two steps: 1) DML were combined into pre-DMRs
if the distance between neighbor CpGs was < 200 bp; and 2) all
CpGs located between the start and the end of each pre-DMR
were included as a final DMR. The arithmetic mean of T statistics
for all CpGs in each DMR was calculated for estimating the
Frontiers in Oncology | www.frontiersin.org 3
empirical combined BWS p-value for each DMR. Group-level
methylation was estimated as the arithmetic average of DNA
methylation of all CpGs in each corresponding DMR.

Annotation of DML and DMRs
Annotation of the genomic location of each identified DML and
DMR was realized by using the function “findOverlaps” in the R
package GenomicRanges (v.1.30.3) (41). Specifically, location
annotations were determined according to overlaps (>1 bp)
between the range of each DML/DMR and all known genomic
regions. These genomic region annotations were defined on the
basis of the gene model downloaded from the GENCODE, which
included promoter (upstream 1,500 bp and downstream 500 bp
from the TSS of each transcript), exon, intron, 5′-UTR, 3′-UTR,
and intergenic region.

Identification of Promoter- and Enhancer-
Like DMRs
Functional annotation was performed for all identified DMRs to
search for potentially active promoter- and enhancer-like DMRs.
Specifically, liver-active promoter/enhancers were obtained
according to candidate regulatory element annotation of eight
liver-relevant histone ChIP-seq samples, which included five
tissue samples (i.e., two tumor and adjacent samples from two
HCC patients and one normal liver sample) from a recent
integrative epigenomic HCC study (42) and three liver-relevant
samples (i.e., one adult liver tissue, one hepatocyte, and one
HepG2 cell sample) from the ENCODE database (43). The
regulatory element annotation of these five liver tissue samples
was based on 10-state chromHMM annotations, whereas those
three ENCODE samples were based on five-state candidate
regulatory element annotations. Hence, active liver promoters
were composed of regions annotated as “activeTSS” or
“activePromoter” (refer to regions with both H3K4me3 and
H3K27ac peaks) in any of those five tissue samples
and “promoter-like cRE” (refer to regions with both H3K4me3
and DNase peaks) in any of those three ENCODE samples.
Similarly, active liver enhancers included regions annotated as
“activeEnhancer” (regions with both H3K4me1 and H3K27ac
peaks) in any of those five tissue samples and “enhancer-like cRE”
(regions with both H3K27ac and DNase peaks) in any of those
three ENCODE samples. Finally, DMRs that overlapped with at
least one active promoter/enhancer in any sample were identified
as promoter-like or enhancer-like DMRs. Besides, promoter-like
DMRs also included DMRs that were annotated as promoters in
the genomic location annotation. For identified promoter/
enhancer-like DMRs, their promoter/enhancer-like activity
scores were calculated as the number of ChIP-seq liver samples
in which they were annotated as promoter/enhancer-like
regulatory elements. Moreover, as a supplement of annotated
enhancers in the public domain, we estimated enhancer RNA
(eRNA) expression, which was reported to be a reliable indicator
of enhancer activity (44, 45), for all intergenic DMRs via bedtools
(36) for identification of potential novel enhancers with active
enhancer expression (count of reads ≥ 3 in at least one third of
tumor or adjacent HCC samples) among our HCC samples.
November 2021 | Volume 11 | Article 769390
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Identification of DMR-DEGs
To investigate the effect of the identified tumor-associated DMRs in
transcriptional regulation, we performed integrative genomic
analysis by integrating the paired DNA methylomic and
transcriptomic data from our original HCC cohort and histone
ChIP-seq data from the public domain. To ameliorate potential
false-positive findings, we focused only on DMRs (|Dmethylation| ≥
0.15) in candidate active regulatory elements, i.e., active promoters
and enhancers in the liver. As mentioned earlier, DMRs that
overlapped with active promoters or enhancers were identified as
promoter/enhancer-like DMRs. For promoter-like DMRs, nearby
genes (TSS ≤ 2 kb away from the DMR start or end site) were tested
for correlation between mRNA expression and methylation of
DMR. Only differentially expressed genes (FDR < 5% and |Log2
FoldChange| > 0.5) with a BH-corrected Spearman correlation p-
value < 0.05 were designated promoter-like DMR-associated genes.

As for genic enhancer-like DMRs, nearby genes whose
distances from DMR were < 100 kb were examined for
Spearman correlation, and differentially expressed genes with a
BH-corrected correlation p-value < 0.05 were identified as
enhancer-like DMR-associated genes. Regarding those identified
intergenic enhancer-like DMRs, neighbor genes within ± 0.5Mb of
those intergenic enhancer-like DMRs were screened for
differentially expressed genes with significant DMR-eRNA–gene
triple correlation (simultaneous significant Spearman correlation
between DMR methylation and eRNA expression, between eRNA
and gene expression, and between DMR methylation and gene
expression). Additionally, enhancer-like DMR-associated target
genes were ruled out of genes that were also identified as
promoter-like DMR-associated genes. Those target genes
associated with promoter-like DMRs, genic enhancer-like DMRs,
or intergenic enhancer-like DMRs were defined as DMR-DEGs.

Pathway Enrichment Analysis
Genic- and intergenic enhancer-like DMR-associated genes were
first combined as enhancer-like DMR-DEGs, along with
promoter-like DMR-DEGs which were then used as inputs for
enrichment analysis via Metascape (v.3.5) (46).

Identification of High-Confidence
DMR-DEGs
Strict screening procedures were imposed to identify DMR-DEGs
with high confidence and a low possibility of false-positive results,
which would be more applicable to downstream validation. For
promoter-like DMRs and genic enhancer-like DMRs, we
conducted another genomic location and functional annotation
with a much stricter criterion. Specifically, only DMRs
overlapping with at least 80% of a promoter region, an active
promoter, or an active enhancer were defined as high-confidence
promoter/enhancer-like DMRs. Afterward, all DEGs associated
with those high-confidence promoter/enhancer-like DMRs were
identified as high-confidence DMR-DEGs. As for intergenic
enhancer-like DMRs, only target DEGs that were highly
positively co-expressed (Spearman correlation coefficient r ≥
0.7) with corresponding eRNAs passed the screening and were
included as high-confidence DMR-DEGs.
Frontiers in Oncology | www.frontiersin.org 4
Independent Replication and Clinical
Significance of DMR-DEGs in the TCGA-
LIHC Cohort
In silico replication was conducted for each high-confidence
DMR–DEG pair using methylomic and transcriptomic data of
the TCGA-LIHC cohort. The clinical phenotypes, DNA
methylation, and gene expression dataset of the TCGA-LIHC
cohort were downloaded via the RTCGA (v.1.22.0) R package
(47). The 450 k array methylation data were updated to hg38 from
hg19 via the UCSC genome liftover tool (genome.ucsc.deu/cgi-
bin/hgLiftOver). For each high-confidence DMR–gene pair, the
availability of all CpG sites in the DMR and active expression of
the corresponding target gene were verified in the LIHC-TCGA. If
no CpGs existed or the gene was not expressed, the replication
was said to have failed for that DMR–gene pair. Differential DNA
methylation, differential gene expression, and the correlation
between DNA methylation and gene expression were evaluated
via Wilcox test and Spearman correlation, respectively. A DMR–
gene pair was considered to have been replicated in TCGA-LIHC
only when there were significant differential methylation,
differential gene expression, and consistent (same sign)
significant correlation. About the calculation of replication rates
of our identified DMR-DEGs in the TCGA-LIHC, it might be
unfair to replicate our promoter/enhancer-like DMR-DEGs
directly in the TCGA-LIHC cohort, whose DNA methylation
levels were profiled by 450k array, especially for DMRs in
enhancers, which were rarely covered by 450k array. Thus,
DMR-DEGs that failed to replicate were divided into two
groups: Group I, replication failure was because no CpG of the
DMR was covered in the 450k array; Group II, at least one CpG
was available in the 450k array but still failed to replicate the
correlated differential methylation and differential expression.
Platform-adjusted replicated rates were calculated as:
CountReplicated/(CountType II failure + CountReplicated).

In the end, the clinical significance of those high-confidence
DMR-DEGs was investigated by way of survival analysis and
tumor-stage association analysis. Briefly, the overall survival time
(OS) and progression-free survival (PFS) time of TCGA-LIHC
samples were retrieved from the integrated TCGA pan-cancer
clinical data resource (48). Survival analyses for methylation and
gene expression were performed on the basis of the univariate
Cox proportional hazards regression model. The Kaplan–Meier
method was used to create the survival plots, and the log-rank
test was employed to compare the difference between survival
curves. The optimal cutoffs of DNA methylation, gene
expression, and combination of methylation and expression
were determined by minimizing the p-values of log-rank tests.
The differences in methylation and gene expression in various
tumor stages were compared using ANOVA in R (v.3.5).

In Vitro DNA Methylation-Unmasking
Treatment
For expression detection, 5 × 105 L02 or HepG2 cells were seeded
in 12-well plates and allowed to reach 80%–90% confluence. Then,
freshly prepared 5-aza-2-deoxycytidine (5-azadC; decitabine)
solution was added to the medium at a final concentration of
November 2021 | Volume 11 | Article 769390
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100 mM. Cells were allowed to grow for 72 h at 37°C with 5% CO2
and then harvested for RNA extraction and qRT-PCR
quantification. The cDNA was reverse-transcribed using the
iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s protocol. The real-time PCR
was conducted with SYBR Premix Ex Taq (TaKaRa, Kyoto,
Japan). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as an internal control for amplification of mRNAs.
The comparative Ct method was used to calculate the relative
mRNA expression. There were three replicates for each
experimental condition (2 cell lines × 2 treatment concentrations).
RESULTS

Age-Dependent Global Hypomethylation in
HCC
By WGBS, we obtained the methylation profile of a total of
28,978,826 CpG sites with an average sequencing depth of
12.76 × in 33 pairs of HCC tumor and adjacent non-tumor
Frontiers in Oncology | www.frontiersin.org 5
tissue samples (Figure 1A, Supplementary Figure S2A and
Supplementary Table S1). To rescue some CpGs with
relatively low depth, smoothed methylation amounts were
obtained for all CpGs. We observed a significant methylation
difference between tumoral and adjacent tissues and a negative
correlation (r = -0.49; p = 0.0038) between the average extent of
DNA methylation and chronological age in the tumor tissues
(Figure 1B). This negative correlation also was significant in
most genomic regions, including exons, introns, and intergenic
regions (Supplementary Figures S2B–J). In the PCA plot of all
CpGs among all samples, HCCs were clearly separated from
paired adjacent tissues, whereas there existed considerable
heterogeneities among tumor samples (Figure 1C).

Through the combined BWS test, we identified a total of
9,867,700 significant DML between paired HCCs and non-
cancerous tissues, including 157,320 hypermethylated DML
(hyper-DML) and 9,710,380 hypomethylated DML (hypo-
DML). The genomic location annotation of those DML
showed that hyper-DML were depleted in the intergenic and
intron regions and enriched in other regions, particularly in
A C

B D

FIGURE 1 | Age-dependent global hypomethylation in HCC. (A) Empirical cumulative density plot of average depth of all 28.9 million CpGs profiled by WGBS in all
66 samples. (B) Median methylation level of all CpGs in each sample vs. chronological age. (C) A PCA plot of all tumor and non-tumor samples based on smoothed
methylation levels of all CpGs. (D) Genomic location distribution and enrichment of hypomethylated and hypermethylated DML. Upstream 1,500 bp to downstream
500 bp from TSS of each transcript was defined as “promoter region”.
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promoters (defined as -1,500 ~ +500 bp from a TSS)
(Figure 1D). As for hypo-DML, the pattern was in the
opposite direction (Figure 1D). Moreover, 47.94% and 43.44%
of those hypo-DML were located in the intergenic and intron
regions, respectively (Figure 1D), which usually were missed in
previous arrays or target sequencing-based methylation studies.

Aberrantly Methylated Promoters and
Enhancers in HCC
After DMR calling from those DML, we identified 608,279 DMRs
composed of 6,924 hypermethylated DMRs (hyper-DMRs) and
601,355 hypomethylated DMRs (hypo-DMRs). Promoter
annotation of these DMRs revealed 2,882 promoter-like hyper-
DMRs and 44,611 promoter-like hypo-DMRs. Of them, 1,569
promoter-like hyper-DMRs and 9,285 promoter-like hypo-DMRs
exhibited active promoter-associated histone peaks (H3K4me3) in
at least one of those eight liver-related ChIP-seq samples
(Figures 2A, B). From their corresponding enhancer activities
Frontiers in Oncology | www.frontiersin.org 6
in tumor and non-tumor liver ChIP-seq samples, we found 3,232
enhancer-like hyper-DMRs and 20,568 enhancer-like hypo-
DMRs (Figures 2C, D). Overall, 61.54% of those 6,924 hyper-
DMRs were annotated as promoter or enhancer-like regulatory
elements (Supplementary Figure S3A), while only 4.17% of those
601,355 hypo-DMRs were annotated as promoter or enhancer-
like regulatory elements (Supplementary Figure S3B). This
indicated that hypermethylation events were much less than
hypomethylation events but functionally more critical for
transcriptional regulation in HCC.

Those promoter-/enhancer-like DMRs were inferred to be
“repressed in tumor” (Figure 2E and Supplementary Figure S3C)
or “activated in tumor” (Figure 2F; Supplementary Figure S3D)
according to comparison of their promoter/enhancer activities in
tumor and non-tumor samples. In line with the classical negative
regulatory relationship between DNA methylation and gene
expression, a majority (82.47% and 85.02%, respectively) of those
promoter- and enhancer-like hyper-DMRs were recognized as being
A

B

C

D

E

F

G H

FIGURE 2 | Identification of aberrant DNA methylation in promoter- and enhancer-like regulatory elements. (A,B) Distribution of promoter activity of hypermethylated
and hypomethylated promoter-like DMRs in tumor vs. non-tumor liver ChIP-seq samples. (C,D) Distribution of enhancer activity of hypermethylated and
hypomethylated enhancer-like DMRs in tumor vs. non-tumor liver ChIP-seq samples. Promoter/enhancer activity scores in tumor and non-tumor reflect counts of
tumor and non-tumor liver ChIP-seq samples that show active promoter-/enhancer-related histone peaks in corresponding DMRs. Promoter/enhancers that show
greater activity (dots in upper area of dotted line) in tumor condition would be defined as “activated (promoter/enhancer) in tumor” and vice versa. (E,F) Paradigm of
repressed and activated promoter associated with differential methylation in HCC. Location of DMRs highlighted in red in the chromosome. “Methy.Adjacent” and
“Methy.Tumor” refer to average methylation of DMR among adjacent and tumor WGBS samples, respectively. “Promoter-Like cRE” refers to a genomic region with
both H3K4me3 and DNase peak; “activePromoter” and “activeTSS” refer to similar regions with both H3K4me3 and H3K27ac peak. (G,H) Summarized ratio of
“activated (promoter/enhancer) in tumor” of hypermethylated and hypomethylated promoter/enhancer-like DMRs.
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repressed promoters or enhancers in HCC (Figures 2G, H) whereas
about half (44.01% and 56.03%, respectively) of those promoter-like
or enhancer-like hypo-DMRs were inferred to be repressed
promoters or enhancers in HCC (Figures 2G, H), indicating the
potential presence of substantial non-classical positive regulation
between DNA methylation and histone modification.

The genomic location annotation for all 6,924 hyper-DMRs
and 601,355 hypo-DMRs revealed that there were 641 intergenic
hyper-DMRs and 250,932 intergenic hypo-DMRs (Figure S3E).
Quantification of eRNA expression for all intergenic DMRs
revealed 36,651 hypo-DMRs and 309 hyper-DMRs with active
eRNA expression in our HCC samples. They were recognized as
candidate active enhancers in the liver given that eRNA
expression is implicated to be a reliable indicator of enhancer
activity. The majority of those intergenic active enhancer
candidates appeared to be novel. Specifically, 2,378 of them
(6.4%) were annotated as active enhancers in at least one of
the eight ChIP-seq liver samples, whereas only 6,622 of all
283,631 intergenic DMRs (2.3%) were annotated as active
enhancers, an indication of a nearly three-fold enrichment of
known enhancers among our intergenic active enhancer
candidates. After correlation analysis between DNA
methylation and eRNA expression, 4,833 intergenic hypo-
Frontiers in Oncology | www.frontiersin.org 7
DMRs and 23 intergenic hyper-DMRs exhibited a significant
negative methylation-eRNA correlation, whereas 2,126 hypo-
DMRs and 52 hyper-DMRs displayed non-classical positive
methylation-enhancer regulation(Figure S3F). Only these
7,034 intergenic DMRs with both active eRNA expression and
significant methylation–eRNA correlation were defined as
intergenic enhancer-like DMRs for downstream analyses.

Genes and Pathways Deregulated by
Aberrant DNA Methylation in HCC
Aberrant methylation associated genes were determined by
integrating DNA methylation with transcriptomic data for our
identified promoter-like DMRs, genic enhancer-like DMRs, and
intergenic enhancer-like DMRs. Specifically, we found a total of
1,323 potential target genes (i.e., promoter-like DMR-DEGs) for
all promoter-like DMRs (Figure 3A and Supplementary Table
S2.1.1). As for genic enhancer-like DMRs, we determined 1,751
genes to be their potential targets (i.e., genic enhancer-like
DMR-DEGs) (Figure 3A and Supplementary Table S2.1.3).
Regarding intergenic enhancer-like DMRs, there were 562 genes
(i.e., intergenic enhancer-like DMR-DEGs) that passed the
methylation-eRNA–gene triple correlation examination; i.e.,
these 562 DMR-DEGs displayed simultaneous significant
A B

C D

FIGURE 3 | Genes and pathways deregulated by aberrant DNA methylation in promoter- and enhancer-like regulatory elements. (A) Counts of genes classically or
non-classically associated with identified promoter-, genic enhancer-, and novel intergenic enhancer-like DMRs. “HyperDown” refers to hypermethylated and
downregulated gene, “HyperUp” refers to hypermethylated and upregulated gene, “HypoDown” refers to hypomethylated and downregulated gene, and “HypoUp”
refers to hypomethylated and upregulated gene. (B) Top 20 pathways/process that significantly enriched in activated genes associated with hypomethylated
enhancer-like DMRs. (C) Top 20 pathways/processes that significantly enriched in repressed genes associated with hypermethylated enhancer-like DMRs. (D) Top
20 pathways/processes that significantly enriched in activated genes associated with hypomethylated promoter-like DMRs.
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Spearman correlations between DMR methylation and eRNA
expression, between eRNA and gene expression, and between
DMR methylation and gene expression (Figure 3A and
Supplementary Table S2.1.5). Overall, 70.0%, 65.0%, and
79.0% of those identified promoter-like DMR-DEGs, genic
enhancer-like DMR-DEGs, and intergenic enhancer-like DMR-
DEGs appeared to be negatively regulated by DNA methylation.

The pathway enrichment analysis of negatively correlated
DMR-DEGs (i.e., HyperDown and HypoUp) demonstrated
deregulated DNA methylations in enhancer-induced activation
of genes implicated in the cell cycle, retinoblastoma gene in
cancer, DNA replication, and DNA repair (Figure 3B)
accompanied by the repression of genes in various critical
metabolism pathways, including monocarboxylic acid
metabolic process, tyrosine metabolism, and carbohydrate
metabolic process (Figure 3C). Similarly, hypomethylated
promoters activated genes implicated in the cell cycle, DNA
replication, and DNA repair (Figure 3D). On the other hand, 75
genes repressed by promoter hypermethylation failed to be
enriched in any pathways, possibly because of the small
number of genes, but many of them, such as ST8SIA6-AS1
(49) and GRHL2 (50), were reported to play a suppressor role in
multiple cancers including HCC (Table 2). Pathway enrichment
analysis of both negatively and positively methylation-correlated
DMR-DEGs displayed similar overrepresented pathways
(Supplementary Table S2.2).

In Silico Replication and Clinical
Significance Investigation of High-
Confidence DMR-DEGs
We identified a set of 611 DMR-DEGs with high confidence
through strict screening for genes whose associated DMRs
Frontiers in Oncology | www.frontiersin.org 8
overlapped completely with annotated promoters or enhancers
from ChIP-seq (Table 1). Specifically, we discovered 171 high-
confidence promoter-like DMR-DEGs (Supplementary Table
S2.1.2), 338 high-confidence genic enhancer-like DMR-DEGs
(Supplementary Table S2.1.4), and 102 high-confidence
intergenic enhancer-like DMR-DEGs (Supplementary Table
S2.1.6). Most of the differential DNA methylation in the
promoter and genic enhancer regions (70.18% and 73.96%)
exhibited a negative correlation with expression of the target
gene, but a considerable proportion (41.18%) of those intergenic
enhancers showed hypomethylation-associated gene repression.

Literature searching of the identified 56 top differentially
expressed high-confidence DMR-DEGs in our HCC sample
indicated that 22 of them were implicated in HCC
carcinogenesis and the other 15 genes were involved in other
types of cancers (Tables 2, 3). Subsequently, 139/661 high-
confidence DMR-DEGs were replicated in the TCGA-LIHC
cohort, which consisted of 63 promoter-like DMR-DEGs, 67
genic enhancer-like DMR-DEGs, and 9 intergenic enhancer-like
DMR-DEGs (Table 1). Given the limited availability of WGBS-
profiled CpGs in the 450k array, particularly the CpGs in non-
coding regions, the raw replication rate of DMR-DEGs was
modest except for the promoter-like DMR-associated DEGs.
Nevertheless, when the platform effect was adjusted, we
achieved a considerably higher replication rate (66.32%,
60.36%, and 52.94%) for the above three groups of DMR-
DEGs in the TCGA-LIHC cohort (Table 1).

To explore further the clinical significance of our identified
661 potential methylation drivers, we carried out separate
survival analyses and tumor stage-association tests based on
DNA methylation and transcription data. At the expression
level, survival analysis showed that 108 and 82 of those 661
TABLE 1 | Distribution and replication of 611 high-confident DMR-DEGs.

Type of DMR-DEGs Count in
discovery

Count of type I failure Count of
type II failure

Count passed
replication

Replication rate (%) Adjusted replication
rate (%)

Promoter-like DMR-DEGs
HyperDown 12 4 1 7 58.33 87.50
HypoUp 108 61 15 32 29.63 68.09
HyperUp 21 1 10 10 47.62 50.00
HypoDown 30 10 6 14 46.67 70.00
Total 171 76 32 63 36.84 66.32

Genic enhancer-like DMR-DEGs
HyperDown 14 11 1 2 14.29 66.67
HypoUp 236 155 34 47 19.92 58.02
HyperUp 34 19 7 8 23.53 53.33
HypoDown 54 42 2 10 18.52 83.33
Total 338 227 44 67 19.82 60.36

Intergenic enhancer-like DMR-DEGs
HyperDown 6 6 0 0 0.00 /
HypoUp 54 45 6 3 5.56 33.33
HyperUp 0 0 0 0 / /
HypoDown 42 34 2 6 14.29 75.00
Total 102 85 8 9 8.82 52.94
November 2021 | Volum
HyperDown, hypermethylation-associated downregulated gene; HypoUp, hypomethylation-associated upregulated gene; HyperUp, hypermethylation associated upregulated gene;
HypoDown, hypomethylation associated with downregulated gene; Type I replication failure, no CpG available in 450k for corresponding DMR; Type II replication failure, at least one
CpG available but no significant differential methylation-associated differential gene expression; replication rate = Count passed replication/Count in discovery * 100; Adjusted replication rate =
Count passed replication/(Count in discovery - Count type I failure) * 100.
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genes were significantly associated with overall survival (OS) and
progression-free survival (PFS) (Figure 4A), with a high overlap
(72 genes) between the two sets of genes. The tumor stage-
association test confirmed the significant association between the
expression of 140 of the 661 methylation drivers and tumor
progression, and 48 of them also were associated with survival
(Figure 4A and Supplementary Table S3.1). As for methylation
analyses, most of the 661 high confidence DMR-DEGs, except
those 139 DMR-DEGs replicated in the TCGA-LIHC cohort,
Frontiers in Oncology | www.frontiersin.org 9
were excluded because of the low coverage in the 450k
methylation array. Among those 139 genes, 27, 30, and 18
were highlighted as OS, PFS, and tumor stage-associated
methylation biomarkers (Figure 4B and Supplementary Table
S3.2). In the same manner, there were extensive overlaps among
the three sets of clinically relevant genes (Figure 4B). Integration
of DNA methylation and gene expression data highlighted six
OS-associated, eight PFS-associated, and eight tumor stage-
associated DMR-DEGs whose transcription and DNA
TABLE 2 | Top differentially expressed promoter- and genic enhancer-like DMR-DEGs and implicated cancers.

DMR location Dmethy Gene name LFC Dist (bp) Rho Rho.padj TCGA-LIHC replication Implicated cancer

Promoter-likeDMR-DEGs
chr8:101492028-101494873 0.30 GRHL2 -3.36 0 -0.52 9.70E-06 Replicated HCC (50) and others (51, 52)
chr14:21022886-21023796 0.29 TPPP2 -2.93 -313 -0.79 <2.00E-

16
Replicated HCC (53)

chr6:160122738-160123492 0.25 SLC22A1 -2.54 949 -0.73 <2.00E-
16

Type I failure Unknown

chr4:52051223-52052036 0.26 SPATA18 -2.51 0 -0.56 1.90E-06 Replicated Breast (54) and others (55, 56)
chr14:21022886-21023796.1 0.29 AL161668.4 -2.49 -376 -0.79 <2.00E-

16
Type II failure Unknown

chr1:58575901-58577030 0.32 TACSTD2 -2.31 -743 -0.39 0.0012 Replicated Cholangiocarcinoma (57) and others (58)
chr8:85465316-85466086 0.17 CA2 -2.14 1464 -0.44 0.00056 Type I failure HCC (59) and others (60)
chr7:128030940-128032690 0.37 LRRC4 -2.08 0 -0.53 7.20E-06 Replicated Glioma (61) and Ovarian cancer (62)
chr6:133889000-133890152 0.19 TCF21 -1.81 0 -0.39 0.0015 Replicated HCC (63) and others (64, 65)
chr1:118983368-118990519 0.31 TBX15 -1.12 0 -0.4 0.00098 Replicated Renal cell carcinoma (66)
chr19:28606496-28607360 -0.25 AC079466.1 9.26 0 -0.58 6.30E-07 Type I failure Unknown
chr7:153409385-153414141 -0.32 LINC01287 8.83 0 -0.53 7.70E-06 Type I failure HCC (67) and others (68, 69)
chr13:64076307-64079199 -0.35 LINC00355 6.60 263 -0.55 3.00E-06 Type I failure Gastric (70) and others (71)
chr10:17386395-17387833 -0.32 ST8SIA6-

AS1
6.23 0 -0.65 3.10E-09 Type I failure HCC (49) and others (72)

chrX:133987205-133987743 -0.24 GPC3 6.20 1310 -0.66 1.30E-09 Type I failure HCC (73) and others (74)
chr22:45286491-45287226 -0.30 UPK3A 5.86 1509 -0.39 0.0012 Type I failure Unknown
chr1:26862894-26863264 -0.26 SFN 5.30 0 -0.69 <2.00E-

16
Replicated HCC (75) and others (76)

chr15:23565016-23566853 -0.35 MKRN3 4.40 0 -0.71 1.80E-11 Replicated Lung cancer (77)
chr1:43359350-43360396 -0.16 CDC20 4.18 395 -0.65 1.40E-08 Replicated HCC (78) and others (79)
chr13:100088021-100088317 -0.27 AL355338.1 4.09 -531 -0.42 0.001 Type I failure Unknown
Genic enhancer-like DMR-
DEGs
chr9:133368447-133369064 0.22 ADAMTS13 -3.27 -45294 -0.61 1.20E-06 Type I failure Unknown
chr1:8004016-8004614 0.27 AL034417.4 -3.08 12882 -0.5 0.00012 Type I failure Unknown
chr7:26365323-26365835 0.18 AC004540.2 -2.73 -10866 -0.66 7.20E-09 Type I failure Unknown
chr19:3428124-3428792 0.22 SMIM24 -2.47 -51750 -0.41 0.0024 Type I failure Unknown
chr5:172871061-172871507 0.29 DUSP1 -2.15 99866 -0.42 0.0022 Type I failure HCC (80) and others (81)
chr11:66717972-66718255 0.18 SPTBN2 -1.99 -10971 -0.59 1.80E-06 Type I failure Unknown
chr1:25686093-25686578 0.21 MAN1C1 -1.70 68625 -0.39 0.0012 Type I failure Renal cell carcinoma (82)
chr16:2036508-2038495 0.27 SLC9A3R2 -1.26 11152 -0.57 1.40E-05 Replicated Unknown
chr2:3535603-3535962 0.26 ADI1 -1.21 15867 -0.48 5.40E-05 Type I failure HCC (83) and others (84)
chr17:4222301-4222630 0.18 CYB5D2 -1.20 79133 -0.46 0.00011 Replicated Breast cancer (85) and others (86)
chr3:124858896-124859415 -0.15 MUC13 6.72 -94404 -0.52 1.70E-05 Type I failure HCC (87) and others (88)
chr5:147773067-147773789 -0.21 SPINK1 5.45 -57997 -0.45 0.00051 Type I failure HCC (89) and others (90)
chr20:43652556-43653516 -0.30 MYBL2 4.35 -13503 -0.59 1.00E-06 Type I failure HCC (91) and others (92)
chr17:44905503-44905963 -0.21 C1QL1 4.22 -62108 -0.47 0.00081 Type I failure Lung adenocarcinoma (93)
chr15:40100406-40101049 -0.21 BUB1B 4.16 -59974 -0.43 0.0016 Type I failure Glioblastoma (94) and others (95)
chr6:44094402-44095522 -0.19 AL109615.3 4.08 19750 -0.42 0.002 Type II failure Breast cancer (96)
chr1:44676848-44677387 -0.19 KIF2C 3.95 -62431 -0.66 1.10E-08 Type I failure HCC (97) and others (98)
chr9:98862188-98863173 -0.24 COL15A1 3.81 -80006 -0.47 3.00E-04 Type I failure Unknown
chr10:5284186-5284850 -0.18 LINC02561 3.80 12950 -0.64 4.10E-08 Type I failure Unknown
chr5:176545906-176546537 -0.23 GPRIN1 3.23 -63596 -0.59 1.40E-06 Type I failure Unknown
Novem
LFC, estimated log2 transformation of fold change of gene expression between tumor and non-tumor (baseline) by DESeq2; Dist, distance between the DMR and associated
target genes; Rho, the Spearman correlation coefficient between DNA methylation and gene expression; Rho.padj, BH-adjusted p-value of the Spearman correlation test;
Type I failure, no CpG available in 450k for corresponding DMR; Type II failure, at least one CpG available but no significant differential methylation-associated differential
gene expression.
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methylation were both plausible biomarkers (Figure 4C).
Interestingly, five of those six genes whose expression and
methylation were both significant OS biomarkers were more
powerful (lower log-rank p-values) prognostic biomarkers when
considering both expression and methylation data together
(Figure 4D and Supplementary Table S3.3). Similarly, seven
of those eight genes whose expression and methylation were both
significant PFS biomarkers show higher significance (lower log-
rank p-values) when considering both expression and
methylation together (Figure 4E and Supplementary Table
S3.3). In addition, four genes (CDC20, UCK2, HEATR6,
and SLC9A3R2) were concordantly associated with both
survival duration and tumor progression (Figure 4F and
Supplementary Tables S3.1, 3.2).

Successful In Vitro Demethylation
Treatment-Based Validation of DMR-DEGs
For the sake of validation, 15 top differentially expressed
STRING protein–protein interaction (PPI) network hub genes
of the overrepresented pathways of DMR-DEGs, including cell
cycle, DNA repair, and metabolic pathways, and nine genes
significantly associated with OS, PFS, and/or tumor stages were
selected for in vitro DNA methylation unmasking validation in
LO2 and HepG2 cells. After 5-azadC treatment, 20/23 (87.0%)
and 15/23 (65.2%) of those selected genes (one gene, named
CDC20, belonged to both the pathway hub gene and the
clinically relevant gene) showed significant upregulation in
LO2 and HepG2, respectively. For instance, four of the five
hub genes in the cell cycle and all six hub genes related to the
DNA repair pathway showed apparent upregulation in LO2, and
a majority of them also presented upregulation in HepG2 after
methylation unmasking (Figures 5A, B). Likewise, we obtained
similar high validation rates for the remaining pathways
(Supplementary Figure S4). Furthermore, after 5-azadC
Frontiers in Oncology | www.frontiersin.org 10
treatment in LO2 and HepG2, the qRT-PCR results showed
significant upregulation of all seven survival-associated genes
and five of the six tumor stage-associated genes (Figures 5C, D).
DISCUSSION

In recent years, large-scale genome-wide DNA methylome
studies using methylation array and next-generation
sequencing technologies have reshaped our understanding of
epigenetic aberrations’ vital roles in tumor formation and
maintenance. Owing to the technical merits of WGBS, we
identified about 9.8 million differentially methylated CpGs and
more than 600,000 regional differential methylations, most of
which were located in the intergenic and intronic regions, which
could rarely be discovered by the array or target sequencing
platform. To the best of our knowledge, this work is the third, but
the largest, WGBS-based DNA methylation study in HCC.
Considering the small samples of the previous two WGBS
studies with sample sizes of eight (five tumor samples and
three non-tumor control samples) in one study (24) and of five
(two tumor samples and three non-tumor control samples) in
the other study (25), they might lack sufficient power to detect
methylomic aberrations comprehensively, given the
heterogeneity of tumor tissues.

It is well established that HCC is a complex disease contributed
to by a disrupted genome that harbors numerous genetic
mutations and epigenetic aberrations during the development
and maintenance of liver carcinogenesis. Applying an integration
of multi-omics data to gain a deeper understanding of the
hepatocarcinogenesis mechanisms underlying HCC has become
increasingly popular. For instance, the integration of multiple
epigenomics data that included DNA methylation, DNA
hydromethylation, and four types of histone ChIP-seq data
TABLE 3 | Top differentially expressed intergenic enhancer-like DMR-DEGs and implicated cancers.

DMR location Dmethy Gene name LFC Dist (bp) Rho.Me Rho.eG Rho.MG TCGA-LIHC repli-
cation

Implicated cancer

chr11:1667908-1668094 0.23 FAM99A -2.68 2311 -0.49 0.92 -0.45 Type I failure HCC (99)
chr15:74758829-74759080 0.19 CYP1A2 -4.56 9985 -0.52 0.86 -0.55 Type I failure HCC (100)
chr18:31601037-31601741 0.20 TTR -2.35 44027 -0.47 0.72 -0.74 Type I failure Lung cancer (101)
chr4:154603041-154603623 0.17 FGG -1.35 -9344 -0.52 0.72 -0.75 Type I failure HCC (102) and others (103)
chr4:154603041-154603623 0.17 FGB -1.56 40085 -0.52 0.74 -0.73 Type I failure Renal cell carcinoma (104)
chr5:147837794-147838222 -0.19 SPINK1 5.45 6008 -0.64 0.82 -0.64 Type I failure HCC (105) and others (90)
chrX:109740935-109741180 -0.19 ACSL4 3.76 7532 -0.44 0.7 -0.4 Type I failure HCC (106) and others (107)
chr14:19242162-19242285 -0.23 DUXAP10 3.70 -95445 -0.46 0.83 -0.39 Type I failure HCC (108) and others (109)
chr4:49513136-49516430 -0.27 AC119751.4 3.43 -63403 -0.57 0.72 -0.65 Type II failure Unknown
chr18:6683286-6684199 -0.34 ARHGAP28 2.37 -45519 -0.63 0.71 -0.43 Type I failure Unknown
chr8:122448922-122449306 -0.17 SMILR 2.16 20371 -0.36 0.76 -0.4 Type I failure Unknown
chr8:144145816-144146462 -0.21 TSSK5P 2.15 2152 -0.68 0.73 -0.66 Type I failure Unknown
chr1:109309171-109309440 -0.18 SORT1 2.06 -88511 -0.5 0.74 -0.54 Type I failure Lung cancer and others (110)
chr8:122448922-122449306 -0.17 AC108136.1 1.93 -40509 -0.36 0.71 -0.4 Type I failure Unknown
chr8:144347135-144347612 -0.28 TONSL 1.72 -96832 -0.43 0.71 -0.61 Type I failure Gastric cancer (111) and

others (112)
November 2021
LFC, estimated log2 transformation of fold change of gene expression between tumor and non-tumor (baseline) by DESeq2; Dist, distance between the DMR and associated target gene;
Rho.Me, the Spearman correlation coefficient between DNA methylation and enhancer RNA expression; Rho.eG, the Spearman correlation coefficient between enhancer RNA expression
and associated target gene expression; Rho.MG, the Spearman correlation coefficient between DNAmethylation and associated target gene expression; Type I failure, No CpG available in
450k for corresponding DMR; Type II failure, at least one CpG available but no significant differential methylation-associated differential gene expression.
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identified novel tumor-suppressor genes for HCC (42). Besides
integration with genomic mutations or other epigenomic data,
DNA methylomic data most commonly were integrated with
genome-wide transcriptome profiling for identification of
potential methylation-associated tumor suppressors or
oncogenes (113). In our DMR-DEG identification procedure,
DNA methylation was systematically integrated with genome-
wide gene expression profiling, intergenic eRNA expression, and
histone ChIP-seq data. The combination of histone ChIP-seq peak
signals and active eRNA expression with DNA methylation
profiling contributed to identifying differentially methylated
transcription regulatory elements effectively and credibly,
followed by integration of gene expression to identify
significantly correlated nearby genes as candidate DMR-DEGs
for downstream replication and validation. Thus, our strategy
would be more powerful and reliable to identify epigenetic
drivers with high confidence, in contrast to a simple integrative
analysis of the DNA methylome and transcriptome.

Through integrating WGBS-based DNA methylation profiling
and RNA-seq based transcriptomic data from paired tumor and
Frontiers in Oncology | www.frontiersin.org 11
adjacent tissues of 33 HCC patients, along with the integration of
liver histone ChIP-seq data from the public domain, we identified
661 differential methylated promoter/enhancer-associated target
genes and replicated 139 of them in the TCGA-LIHC cohort,
which is a high, platform-adjusted, independent replication rate.
Moreover, the set of high-confidence DMR-DEGs contains a high
proportion of previously experimentally validated HCC driver
genes, many other cancer-relevant genes, and some
uncharacterized genes with considerable biological function, for
instance, cell division cycle 20 (CDC20), a critical coactivator of
the cellular division essential complex—anaphase-promoting
complex/cyclosome (APC/C), whose overexpression has been
associated with the development of a multitude of cancers such
as those of the prostate (79) and liver (78). Silencing of CDC20
introduced effective antitumor activity into the orthotopic liver
tumormodel (114). Although CDC20 is prevalently overexpressed
in HCCs (115), the underlying mechanism still was obscure. In
our HCC sample, we identified significantly correlated the
hypomethylated promoter and transcriptional activation of
CDC20, which was replicated successfully in the TCGA-LIHC
A B C
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E

FIGURE 4 | Prognosis and tumor progression-associated biomarkers among DMR-DEGs in HCC. (A, B) Overlap between identified survival (OS and PFS) and
tumor progression (tumor stage)-associated expression and methylation-based biomarkers among identified 661 high-confidence DMR-DEGs. (C) DMR-DEGs,
whose expression and methylation were significantly associated with survival and/or tumor progression in HCC. Four genes that associated with both survival and
tumor stages are highlighted in green. (D) Combination of both promoter hypomethylation and gene upregulation of CDC20 identified more efficient OS biomarkers.
(E) Combination of both promoter hypomethylation and gene upregulation of CDC20 identified more powerful PFS biomarkers. (F) Progressively hypomethylated
promoter and increased expression of CDC20 in HCC.
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dataset and validated in methylation-unmasked LO2 and HepG2.
Hence, hypomethylated promoter-associated activation might
represent a plausible mechanism underlying the widespread
dysregulation of CDC20 in HCC. Besides, other known HCC-
related genes such as TPPP2 (53), TCF21 (63), GRHL2 (50), and
CA2 (59) also were found to be negatively regulated by aberrant
promoter DNA methylation in our study. Moreover, the
spermatogenesis-associated protein 18 (SPATA18) is a p53-
inducible protein involved in the mitochondrial quality-control
process, whose dysregulation is associated with cancer. Unlike
CDC20, the role of SPATA18 is uncharacterized in HCC,
although it also showed concurrent transcriptional repression
(115). However, SPATA18 was reported to suppress growth of
murine intestinal tumor (116) and human breast cancer (54) via
mitochondrial quality control. Therefore, our integrative
epigenomic analysis might shed new light on the epigenetic-
mediated roles of novel genes such as SPATA18 in the process
of liver carcinogenesis. Furthermore, accumulating evidence
indicates the significance of aberrant enhancer-mediated
transcriptional dysregulation in the formation and maintenance
of multiple tumors (117, 118), including HCC (25). In the present
study, we identified abundant hypomethylated enhancer-
associated activated HCC-related genes such as MUC13 (119),
Frontiers in Oncology | www.frontiersin.org 12
SPINK1 (105), and KIF2C (97), plus hypermethylated enhancer-
associated repression of known HCC suppressors like DUSP1 (80)
and ADI1 (83). Additionally, we found aberrant enhancer-
associated dysregulation of genes whose functions are
uncharacterized in cancer but harbor possibly essential
biological functions. For example, the liver-specific long non-
coding (Lnc) gene, FAM99A, was characterized only a fewmonths
ago as a powerful regulator of metastasis of HCC (99).

It is well known that DNA methylation modulates gene
transcription in negative regulation, especially promoter
hypermethylation-induced silencing of tumor suppre sors,
which is a hallmark of most cancers. However, there were new
studies suggesting that the effect of DNA methylation of CpG
islands in gene bodies on transcriptional regulation is different
(21, 120). Furthermore, some transcription factors such as
CEBPB (121) and RXRA (122) have been reported to prefer
methylated CpGs in their binding sites, suggesting a positive
correlation between promoter/enhancer methylation and gene
transcription. A newly published prostate cancer study also
reported extensive, robust associations between DNA
hypermethylation and gene upregulation (123), indicating the
diversity of epigenetic regulation. In our findings, 181 of those
661 high-confidence DMR-DEGs displayed a positive correlation
A B

C D

FIGURE 5 | Successful in vitro validation of methylation-mediated transcriptional regulation of key pathway hub genes and clinical associated genes. (A)
Demethylation validation results of five hub genes of cell cycle pathway in LO2 and HepG2 cells. (B) Demethylation validation results of selected hub genes from
DNA repair pathway in LO2 and HepG2 cells. (C, D) Demethylation validation results of selected survival (OS or PFS) and tumor stage-associated genes in LO2 and
HepG2 cells. n.s., non-significant; *p < 0.05, **p < 0.01, and ***p < 0.001.
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between methylation and gene expression, and 48 of these 181
genes represented the same non-classical association in the
TCGA-LIHC cohort. These 48 genes also contained several
noted HCC-relevant genes, such as CELSR3 (124) and PCK1
(125), as well as some genes involved in other cancers, such
as NTF3 in breast cancer (126) and TIMD4 in B-cell
lymphoma (127).

Our integrative analysis advances the understanding of the
disordered methylome of HCC, although there still are several
potential limitations. We implemented the first relatively large-
scale WGBS-based global DNA methylome profiling of paired
tumor and adjacent non-tumor tissues from 33 HCC patients,
which covered almost all gene body and intergenic CpG islands
that could barely be estimated by the 450k methylation array or
target sequencing. However, the average depth of WGBS samples
in our study was medium because of the significant cost of
WGBS. Besides, we identified a total of 661 high-confidence
differentially methylated promoter/enhancer-associated DEGs
and achieved a high ratio of successful replication in the
TCGA-LIHC cohort after platform limitation adjustment,
whereas the considerable DMR-DEGs suffered from lack of
replication. Further replication in a larger independent cohort
with WGBS-based DNA methylation profiling is greatly needed,
which might be a promising method of discovering more
epigenetic drivers associated with aberrant methylation in the
gene body and intergenic regions. In addition, further validation
of methylation-mediated regulation of particular genes via
technologies like CRISPR, like previous studies (25, 26), were
lacking in our present study but would be part of our ongoing
works. Besides, it would be better if histone modification, DNA
methylation, and gene expression were performed in the same
samples, which would provide a more accurate functional
annotation of identified DMRs.

Collectively, our integrative analysis of epigenome and
transcriptome of HCC convincingly proved the powerful
potential of WGBS in uncovering the global DNA methylation
aberrations in HCC, especially numerous enhancers in the intron
and intergenic regions. Specifically, we identified a group of 661
DMR-DEGs with high confidence, and they were substantially
replicated in an independent cohort and validated by in vitro
methylation unmasking experiments. Intriguingly, those genes
reflected a high percentage of known HCC or other cancer-
relevant vital genes. These findings depicted activated pathways
such as those for the cell cycle and DNA repair and repressed key
metabolic pathways induced by aberrant DNA methylation of
promoters and enhancers in HCC. Beyond those results, our
perfectly matched methylome and transcriptome sequencing
data from relatively large-scale paired tumoral and adjacent
non-tumoral tissues also provide a valuable resource for
follow-up studies in HCC, in which WGBS-based methylome
data were insufficient.
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