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+is paper proposes an aggressive cuckoo search algorithm for optimum power allocation in a CDMA-based cellular network. To
make the cuckoo search algorithm aggressive, adaptive parameters are used to vary the step size and probability of discovery.
Furthermore, the Lévy flight is replaced with the Beta distribution to further improve the performance of the algorithm. To prove
that the proposed algorithm is superior, the algorithm is tested on 23 benchmark test functions and its results are compared with
those of 10 other standard optimization algorithms and 4 other advanced optimization algorithms. +e performance of the
proposed algorithm is proved via the statistical analysis of the results using theWilcoxon rank-sum test.+e proposed algorithm is
then utilized in determining the optimal uplink power for multiple users in a CDMA-based cellular network in three different
scenarios through Rician fading channels. +e resultant allocated power should ensure that each mobile station meets its
predetermined signal-to-interference-and-noise ratio while utilizing the least amount of power.

1. Introduction

In the field of engineering, many design problems involve
the determination of the best solution from multiple pos-
sibilities containing different parameters and conditions
under complex constraints. +ere are a wide variety of
constraints that an engineer would have to take into account,
such as the range of material properties or even the load
capacity of a machine [1]. +is brings about the need for
optimization in engineering. +e goal of optimization is to
determine either the minimum or maximum point of the
function being solved [2]. Optimization is applied in other
aspects of engineering other than design, such as in infor-
mation systems to create deployment strategies for cloud
computing services or in electrical engineering to forecast
energy consumption [3].

Many types of optimization algorithms exist, such as
bracketing algorithms, first-order algorithms, and direct
algorithms. Of these algorithms, a recent trend has seen
the use of evolutionary algorithms, such as genetic al-
gorithms (GA) and genetic programming, and swarm-

based algorithms increasing. Examples of swarm-based
algorithms include ant colony optimization, particle
swarm optimization (PSO), firefly algorithm (FA), grey
wolf optimization algorithm (GWO), and the cuckoo
search algorithm [4]. +ese algorithms are inspired by
nature. +e flexible, efficient, and highly adaptable nature
of these algorithms is the reason behind their increased
use in optimization. Likewise, these algorithms can easily
be implemented in a large array of programming lan-
guages, thus enabling their use in a wide variety of cases
[5].

Evolutionary algorithms are a collective of algorithms
that adapt their population with each generation by mod-
ifying their potential solutions by randomly discarding poor
solutions and only permitting the fit solutions to move on to
the next generation. Although evolutionary algorithms can
solve unstructured problems and do not require differen-
tiability of their objective functions, they are typically
avoided as they are not suitable for solving large-scale
problems due to their intensive computational needs, thus
leading to the preference for swarm-based algorithms [6].
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In the development of these nature-inspired optimiza-
tion algorithms, two factors are taken into account in their
evaluation: exploration and exploitation. Exploration refers
to the searching of the global search space, while exploitation
refers to searching of the local search space. +ese two
factors need to be balanced in the development of the op-
timization algorithm [7, 8]. Swarm-based algorithms consist
of two phases, namely, the variation and selection phases.
+e variation phase searches the search space and the se-
lection phase exploits the identified search space based on
previous experiences. +ese two phases maintain a balance
between exploration and exploitation thus leading swarm-
based algorithms to be the preferred optimization algorithm
[6].

Among swarm-based algorithms, the cuckoo search
algorithm is determined to be efficient.+is is due to the two
search capabilities of the cuckoo search algorithm: the local
and global search, being controlled by a switching proba-
bility. +is enables the algorithm to more efficiently search
the global space compared to other swarm-based algorithms
such as PSO. Furthermore, the PSO algorithm has been
deduced to converge quickly to the current best solution but
not always to the global best solution [9, 10].

Due to the above-stated reasons, the cuckoo search al-
gorithm is one of the most preferred optimization algo-
rithms over other algorithms such as PSO and GA. Although
the cuckoo search algorithm is viewed as a highly efficient
optimization algorithm, it is not perfect. +e algorithm can
easily converge to the local optimum solution, and the al-
gorithm generally has a slow rate of convergence [11, 12].

+e purpose of this study is to mitigate the above
problems mentioned by proposing an aggressive cuckoo
search algorithm (ACSA). +e aggressive nature of the al-
gorithm comes about by using an adaptive step size and
probability of discovery whose values would change with
each iteration of the algorithm. Likewise, to further improve
the performance of the ACSA, the Lévy distribution is
replaced with a beta distribution. +e ACSA will be used in
determining the optimal uplink power for multiple users in a
CDMA-based cellular network.

2. Literature Review

2.1. Improvements to the Standard Cuckoo Search Algorithm.
Although the cuckoo search algorithm is a widely used
optimization algorithm due to its simple implementation, it
suffers from some downfalls. In [13], the authors expressed
some of the problems that the standard cuckoo search al-
gorithm suffers from, such as the reduced global exploration
ability due to the algorithm’s random initialization of its
population. Furthermore, the Lévy flight step size scaling
factor is constant, thus this parameter needs to be tuned for a
particular problem, and this increases the difficulty of using
the algorithm.

Due to this issue, many researchers have developed
improvements to the standard cuckoo search algorithm that
mitigate the above problem. In [14], Meng et al. described
that there are four main methods to improve the standard
cuckoo search algorithm. +e first method is to use an

adaptive parameter in the algorithm to enable the param-
eters of the algorithm to dynamically change. +e second
method is by replacing the Lévy flight method with other
better search strategies such as the random long-distance
search strategy or the stochastic short-distance strategy. +e
third method is the hybridization of the cuckoo search al-
gorithm with other optimization algorithms. +e last
method is improving the initial solutions.

2.2. Review of Cuckoo Search Algorithms with Adaptive
Parameters. In [15], Zhang and Chen noticed that the step
length of the Lévy flight was constant and thus proposed
making the Lévy flight step size a value that reduced with
increasing generation. He concluded that with the im-
provements, the new cuckoo search algorithm had a faster
convergence speed and higher precision than the standard
cuckoo search algorithm. A self-adaptive cuckoo search
algorithm was proposed in [16]. In this proposal, the
adaptive nature of the algorithm was employed through a
linear population reduction.+e linear population reduction
reduced the total number of function evaluations required
and thus enabled better exploration toward the end of the
iterations. +e self-adaptive cuckoo search algorithm
achieved better results than the standard cuckoo search
algorithm and the self-adaptive differential evolution
algorithm.

In [17], the authors proposed an adaptive cuckoo search
algorithm for searching for optimal network configuration
and distributed generation allocation. +e cuckoo search
algorithm was made adaptive by using graph theory to
reduce the number of infeasible individuals. In most sce-
narios, this adaptive algorithm outperforms a firework
optimization algorithm and harmony search algorithm in
determining the network configuration that minimized the
active power loss and enhanced the voltage stability index of
the power distribution system. Furthermore, an improved
cuckoo search algorithm was proposed in [18]. +is algo-
rithm was made adaptive by using a convergence im-
provement strategy, and it was tested against the standard
cuckoo search algorithm and it outperformed it in 32 out of
34 test cases. +is enabled the author to optimally determine
the roots of nonlinear equation systems.

2.3. Review of the Cuckoo Search Algorithms with Replaced
Lévy Flight. In [19], the authors present a hybrid many-
objective cuckoo search algorithm that uses both Lévy and
exponential distribution. +e authors compared their al-
gorithm with other variations of the cuckoo search algo-
rithm that used different combinations of the Lévy
distribution, Cauchy distribution, and exponential distri-
bution. In their analysis, they discovered that the Lévy and
exponential distribution combination had the best perfor-
mance of the other combinations and outperformed the
Multi-objective Evolutionary Algorithm Based on Decom-
position (MOEA/D) in the popular WFG suite. In [20], an
enhanced fractional-order cuckoo search optimizer using
heavy-tailed distributions is used to classify COVID-19
X-ray images. +e authors utilized the fractional-order
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cuckoo search (FO-CS) algorithm with a wide variety of
heavy-tailed distributions, i.e., the Lévy distribution, Mittag-
Leffler distribution, Pareto distribution, Cauchy distribu-
tion, andWeibull distribution.+e FO-CS variants were also
tested against the following algorithms: Harris hawks op-
timization (HHO), Henry gas solubility optimization
(HGSO), Genetic Algorithm (GA), Swarm Algorithm (SSA),
Whale optimization algorithm (WOA), and the Grey Wolf
Optimizer (GWO). +e authors concluded that the use of
heavy-tailed distribution can be used to prevent local
trapping by the algorithm and escape from the non-
prominent regions of the search space. +e authors also
concluded that the FO-CS variant with Weibull distribution
generally outperformed the other FO-CS variants in their
various tests such as in feature selection and in their mean
fitness function mean values.

2.4. Review of the Hybridization of the Cuckoo Search Algo-
rithm with Other Metaheuristic Algorithms. In [21], the
authors describe that in population-based search algorithms,
the parameter settings of the algorithm and the present
population diversity can have a great impact on the per-
formance of the algorithm. +e higher the population di-
versity of the algorithm, the better the exploration by the
search algorithm. +is brings about the need for the hy-
bridization of population-based search algorithms. In [22], a
proposal was made for hybridizing the harmony search
algorithm with the cuckoo search algorithm. +e pitch
adjustment operation in the harmony search algorithm was
added to the cuckoo search algorithm as a mutation op-
erator. It was concluded that the hybridized cuckoo search
algorithm avoided premature convergence caused by getting
trapped in local optimum regions and thus outperformed
the standard cuckoo search algorithm.

In [23], a hybridization of the cuckoo search algorithm
and particle swarm optimization was proposed. +e hybrid
algorithm has an enhanced diversity of optimal solutions
and convergence solutions. +is resulted in the algorithm
outperforming the standard cuckoo search algorithm. On
top of that, a hybrid grey wolf optimizer and cuckoo search
algorithm were proposed in [24] to be used in the extraction
of parameters of solar photovoltaic models. +e hybrid-
ization of the two algorithms aimed to balance global ex-
ploration and local exploitation. +e hybrid algorithm was
applied to solve ten global optimization problems with
different characteristics and to four solar photovoltaic
models for parameter extraction, and it was concluded that
the hybrid algorithm had better robustness for parameter
extraction and it had faster convergence speed than other
algorithms such as the standard grey wolf optimizer, the
improved grey optimizer, and even the whale optimization
algorithm.

3. Standard Cuckoo Search Algorithm

3.1. Inspiration for the Cuckoo Search Algorithm. +e Stan-
dard Cuckoo Search algorithm (SCSA) was developed by
Yang and Deb [1, 9]. +e algorithm is based on the brood

parasitism nature of some species of cuckoo bird. +e
cuckoo bird lays its eggs in the nests of other host birds and
thus its offspring would depend on the host bird for food and
survival [25]. +ere is a probability that the host bird might
notice the cuckoo bird’s egg, and if the host bird does notice
the egg, it may either remove the cuckoo bird’s egg or
abandon the nest entirely and build a new nest in a different
place. To reduce the probability of discovery, the cuckoo bird
lays eggs that mimic the host egg’s color and pattern.

3.2. Random Walk and Lévy’s Flight. In nature, animals
search for food in a random or quasi-random manner in
which the next move is based on the current location or state
and transition probability to the next location. +e direction
chosen by the animal depends on a probability that can be
modeled mathematically. To mimic this random movement
Lévy’s flight is employed, which derives its step length from
the heavy-tailed Lévy distribution [26].

Lévy(β) �
ϕ∗ μ

|v|
(1/β)

,

ϕ �
Γ(1 + β)∗ sin(π ∗ β/2)

Γ ((1 + β)/2)∗ β∗ 2(β− 1/2)( 
 

1/β

.

(1)

+e values μ and v are random numbers drawn from a
normal distribution with a mean of 0 and a standard de-
viation of 1, and Γ is the gamma function.+e Lévy exponent
β is usually held constant throughout the operation of the
algorithm.

3.3. StandardCuckooSearchAlgorithm. In the cuckoo search
algorithm, each cuckoo egg represents a new solution while
the host bird’s eggs represent a new candidate solution [27].
To implement the cuckoo search algorithm, three idealized
rules need to be taken into account [28]:

(i) Each cuckoo bird lays one egg and places it in a
randomly chosen nest.

(ii) +e best nests with the highest quality eggs will carry
over to the next generation.

(iii) +e number of available host nests is fixed and the
host bird can discover the cuckoo bird’s egg with a
probability of discovery Pa ∈ [0, 1]. In this situa-
tion, the host bird can either remove the alien
cuckoo egg or abandon the nest entirely and build a
new nest in a new location.

Based on these three rules, the pseudo-code of the
standard cuckoo search algorithm can be summarized as
shown in Algorithm 1.

As discussed earlier, optimization algorithms take into
account two main phases: exploration and exploitation, and
these two phases need are balanced in Algorithm 1 by the
probability of discovery Pa � 0.25.

For nest i, its next generation is derived by the following
equation:
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x
t+1
i � x

t
i +(α⊕ Levy(β)), (2)

where xt
i is the current generation of nest i, while xt+1

i is the
new nest generated by Lévy flight. +e product ⊕ means
entry-wise multiplication. α is the step size and it must meet
the condition α> 0.

4. Proposed Aggressive Cuckoo
Search Algorithm

In this section, a new aggressive cuckoo search algorithm is
proposed based on three modifications made to the standard
cuckoo search algorithm.

4.1. Adaptive Step Size. In the standard cuckoo search al-
gorithm, a constant step size is employed in the Lévy flight. A
common observation is that when the step size is large, the
performance of the algorithm is slow but the algorithm does
reach the global optimum after a large number of iterations.
If the step size is small, the algorithm has a high chance of

converging to a local optimum. Due to this problem, an
adaptive step size is proposed.

During the initialization of the population, a uniform
distribution is employed, thus enabling a diverse distribu-
tion of the population throughout the entire search space.
+erefore, a smaller step size can be employed in the initial
iterations to enable each search agent efficiently search for
the minimum in their diverse locations in the search space.
However, as the iterations increase, the search agents may be
trapped in a local minimum, thus warranting the need for a
larger step size to enable the search agents to move out of
their local minimum. +erefore, increasing the step size
would enable better faster convergence of the cuckoo search
algorithm compared to a constant step size.

Eber Moll’s model of a transistor is emulated to get an
equation for step size α.

Is � Ies e
VBE/VT( ) − 1 . (3)

+is produces the following equation for step size α:

Normalising Equation �
1

e
(Maximum Iterations − 1/Maximum Iterations)

− 1
, (4)

factor � Normalizing Equation∗ e
(Iteration/Maximum Iterations)

− 1 , (5)

αadaptive � αmin + factor∗ αmax − αmin( . (6)

+e values of αmin and αmax are predetermined before the
execution of the algorithm. Figure 1 shows the adapting
nature of the algorithm as the iterations increase to a
maximum of 500:

4.2. Adaptive Probability of Discovery. +e probability of
discovery controls the two search capabilities of the cuckoo
search algorithm: local search (exploitation) and global
search (exploration). In SCSA, the probability of discovery
Pa is kept constant at 0.25. +is means that the algorithm
focuses on local search 25% of the time and focuses on the
global search 75% of the time. +erefore, by increasing the
probability of discovery from a minimum to the maximum
predetermined value, the local search of the algorithm can be
increased to coincide with the increasing local search caused
by the adaptive step size.

+e probability of discovery is made adaptive by making
it vary linearly with respect to the iteration of the algorithm.

Gradient � Pamax + Pamin( ∗
Maximum Iterations

Maximum Iterations − 1
 , (7)

Paadaptive �
Gradient∗ Iteration
Maximum Iterations

  + Pamin.

(8)

+e values of Pamin and Pamax are predetermined before
the execution of the algorithm. Figure 2 shows the adapting
nature of the probability of discovery as the iterations in-
crease to a maximum of 500:

4.3. Replacement of Lévy Flight with Beta Distribution.
+e beta distribution is a continuous probability distribution
defined in the interval [0, 1]. It is characterized by its widely
varying shape due to the manipulation of its two parameters
alpha and beta.

Beta(α, β) �
X

α− 1
i ∗ 1 − Xi( 

β− 1 ∗Γ(α + β)

Γ(α)∗ Γ(β)
, (9)

where Γ is the gamma function.
+is widely varying shape is advantageous as it enables the

creation of a distribution that adds to the increased conver-
gence rate caused by the adaptive parameters. To further in-
crease the convergence rate, a negatively skewed distribution is
required, thus alpha must be greater than beta.

With the above three proposed changes to the cuckoo
search algorithm, the generation of the next nest i, is derived
from the following equation:

X
t+1
i � X

t
i + αadaptive ⊕ r∗Beta(α, β) , (10)

where r � [− 1, 0, 1].
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(1) Begin
(2) Objective function f (x), x � x1, . . . , xd where d is the number of dimensions
(3) Initialize a population of n host nests xi (i � 1, 2, 3, . . . , n)
(4) While (t< Stop Criterion):
(5) Get a cuckoo (say i) randomly by Lévy flight (equation (2))
(6) Evaluate its fitness
(7) Choose a nest among n (say j) randomly
(8) if (Fi> Fj)
(9) Replace j by new solution
(10) End if
(11) Abandon a fraction Pa of worse nests and build new ones at new locations via Lévy flight
(12) Keep the best solutions (or nests with quality solutions)
(13) Rank the solutions and keep the current best
(14) End while
(15) Post process results
(16) Stop

ALGORITHM 1: Pseudo Code of Standard Cuckoo Search Algorithm.
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Figure 1: Plot showing the step size of the algorithm against the increasing number of iterations.
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Figure 2: Plot showing the probability of discovery of the algorithm against the increasing number of iterations.
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Based on the above-proposed changes, the pseudo-code
of the aggressive cuckoo search algorithm is shown in
Algorithm 2.

A diagrammatic representation of Algorithm 2 is pre-
sented in Figure 3.

5. Implementation and Validation

In this section, the performance of the algorithms will be
evaluated by using the algorithms to solve classical opti-
mization benchmark functions utilized in the following
optimization literature [29]. +e benchmark functions are
grouped into three categories: unimodal, multimodal, and
fixed-dimension multimodal functions. +e unimodal test
functions verify the local search ability of the ACSA and are
presented in Table 1, the multimodal benchmark functions
are used to evaluate the global search capability and are
presented in Table 2 and the fixed-dimension multimodal
functions are used to evaluate the convergence accuracy and
are presented in Table 3 [30].

5.1.AblationExperiment on theVarying Step Size. In order to
determine if the increasing step size of the algorithm in-
creases the performance of the algorithm by a greater
magnitude as compared to an algorithmwith decreasing step
size, a variant of the cuckoo search algorithm is implemented
that only has the adaptive step size implemented in equation
(6). In this implementation, the step size is increasing. An-
other variant of the cuckoo search algorithm is implemented
that has an adaptive step size that decreases as the iterations of
the algorithm increase. +e varying step sizes of the two
cuckoo search algorithm variants are shown in Figure 4.

+e two cuckoo search algorithm variants are used to
solve the 23 classical benchmark optimization functions
presented in Tables 1–3. For each benchmark function, the
algorithms were tested with a maximum number of 500
iterations and a population of 50 starting from randomly
generated initial populations. Each algorithm was run 15
times independently for each benchmark function and the

average of the obtained minimum values and their standard
deviation have been recorded in Table 4. +e following
results were obtained by running the algorithm on an ASUS
Intel Core i5-8250U @1.60GHz laptop with 6.00GB RAM.

Of the 23 benchmark functions, the cuckoo search
variant with the increasing step size outperformed the other
variant in nine functions. +e variant with a decreasing step
size outperformed in five functions, and the two variants
obtained the same value in nine functions.

5.2. EvaluationMetrics. In this section, the ACSA is initially
compared with ten other standard optimization algorithms
to evaluate its performance. +ese algorithms are: Artificial
Bee Colony (ABC) algorithm, Bat Algorithm (BA), Cultural
Algorithm (CA), Differential Evolution (DE) algorithm,
Firefly Algorithm (FA), Flower Pollination Algorithm
(FPA), Genetic Algorithm (GA), Invasive Weed Optimi-
zation (IWO) algorithm, Particle Swarm Optimization
(PSO) algorithm and the Standard Cuckoo Search algorithm
(SCSA).

For each benchmark function, the algorithms were tested
with a maximum number of 500 iterations and a population
of 50 starting from randomly generated initial populations.
Each algorithm was run 15 times independently for each
benchmark function and the average of the obtained min-
imum values and their standard deviation have been
recorded in Table 5. If multiple algorithms achieved the same
mean, the algorithm with the lower standard deviation was
chosen as the best performing algorithm.

From the results in Table 5, it can be seen that the ACSA
outperformed the other algorithms or reached the same
optimum value as some of the other algorithms in 18 of the
23 benchmark functions, with the ACSA only being out-
performed in benchmark functions F5, F6, F8, F12, and F13.
+e ACSA always outperformed or reached the same op-
timum value as the SCSA in all 23 functions.

+e plot of each algorithm’s convergence curve against
each test function is shown in Figure 5.

(1) Begin
(2) Objective function f (x), x � (x1, . . . , xd) where d is the number of dimensions
(3) Initialize a population of n host nests xi (i � 1, 2, 3, . . . , n)
(4) While (t< Stop Criterion):
(5) Get a cuckoo (say i) randomly by equation (10)
(6) Evaluate its fitness
(7) Choose a nest among n (say j) randomly
(8) if (Fi> Fj)
(9) Replace j by new solution
(10) End if
(11) Abandon a fraction Paadaptive (equation (8)) of worse nests and build new ones at new locations via equation (10)
(12) Keep the best solutions (or nests with quality solutions)
(13) Rank the solutions and keep the current best
(14) End while
(15) Post process results
(16) Stop

ALGORITHM 2: Pseudo Code of Aggressive Cuckoo Search Algorithm.
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START

DEFINE Objective function f(x) ,
x = (x1, x1, ...,x1) where d is the

number of dimensions,

INITIALIZE population of n host
nests xi ( i = 1, 2, 3, ..., n)

GET a cuckoo (say i) randomly
by equation 11

EVALUATE its Fitness Fi

CHOOSE a nest (say j)
randomly IF Fi >Fj ?

REPLACE j by new solution by
Cuckoo i

ABANDON fraction Paadaptive (equation 9)
of worse nests and build new ones at new

locations using Levy Flight

RANK solutions and keep the
current best

Is t < Stopping
Criterion?

POST Best Solution

STOP

Yes

No

No

Yes

Figure 3: Flowchart representation of Algorithm 2.
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From the convergence curves, it can be seen that the
aggressive cuckoo search algorithm has a faster convergence
rate compared to the other optimization algorithms, like in
functions F1, F2, F3, F4, F9, F10, and F11.

To further test the performance of the ACSA, it is
compared against the following advanced optimization al-
gorithms: Fuzzy Self-Tuning Differential Evolution (FSTDE)
algorithm [31], Ranking-based Adaptive Cuckoo Search
(RACS) algorithm [32], Improved Real-Coded Genetic
Algorithm (IRGA) [33], and Gaussian Quantum-behaved
Particle Swarm Optimization (GQPSO) [34] algorithm. +e
FSTDE algorithm utilizes fuzzy logic to determine the pa-
rameters for each solution, the RACS uses a ranking-based
crossover in its mutation strategy, the IRGA utilizes a di-
rectional crossover to improve the performance of a real-
coded GA and the GQPSO uses a modified PSO algorithm
that utilizes a mutation operator with a Gaussian probability
distribution. For each benchmark function, the algorithms
were tested with a maximum number of 500 iterations and a
population of 50 starting from randomly generated initial
populations. Each algorithmwas run 15 times independently
for each benchmark function and the average of the obtained
minimum values and their standard deviation have been
recorded in Table 6. If multiple algorithms achieved the same
mean, the algorithm with the lower standard deviation was
chosen as the best performing algorithm.

Of the 23 functions, the ACSA either outperformed or
matched the performance of another algorithm in 13
functions. +e ACSA was mainly outperformed in the
unimodal functions by the GQPSO due to its superior local
search capability. +e GQPSO struggled in the multimodal
functions, particularly in the fixed-dimension multimodal
functions.

5.3. Timing Analysis. +e execution time of each of the
algorithms can be used to determine the performance of the
aggressive cuckoo search algorithm. +e average time of
running each of the algorithms 15 times has been presented
in Table 7.

From the results of Table 7, it can be seen that the PSO
algorithm has the shortest runtime in 16 functions, i.e., in
approximately 69.5% of all the benchmark functions. +is is
due to the algorithm having few parameters to tune, thus
executing quickly [35].

+e ACSA consistently had around the fifth or sixth
shortest execution time among the 10 standard optimization
algorithms. Although, this is due to the algorithm being
compared to consistently fast algorithms such as the flower
pollination algorithm which is characterized by being simple
in its formulation and thus having a high computational
performance [36].

Table 1: Unimodal benchmark functions.

Function Dimensions Range Optimum value
F1(x) � 

n
i�1 x2

i 15 [− 100, 100] 0
F2(x) � 

n
i�1 |xi| + 

n
i�1 |xi| 15 [− 10, 10] 0

F3(x) � 
n
i�1 (

i
j− 1 xj)

2 15 [− 100, 100] 0
F4(x) � maxi |xi|, 1≤ i≤ n  15 [− 100, 100] 0
F5(x) � 

n− 1
i�1 [100(xi+1 − x2

i )2 + (xi + 1)2] 15 [− 30, 30] 0
F6(x) � 

n− 1
i�1 ([xi + 0.5]2) 15 [− 100, 100] 0

F7(x) � 
n− 1
i�1 ix4

i + random[0, 1) 15 [− 1.28, 1.28] 0

Table 2: Multimodal benchmark functions.

Function Dimensions Range Optimum
value

F8(x) � 
n
i�1 − xi sin(

���
|xi|


) 15 [− 500,

500] − 2094.9145

F9(x) � 
n
i�1[x2

i − 10 cos(2πxi) + 10] 15 [− 5.12,
5.12] 0

F10(x) � − 20 exp(− 0.2
�����������
(1/n) 

n
i�1 x2

i


) − exp((1/n) 

n
i�1 cos(2πxi)) + 20 + e 15 [− 32, 32] 0

F11(x) � (1/4000) 
n
i�1 x2

i − 
n
i�1 cos(xi/

�
i

√
) + 1 15 [− 600,

600] 0

F12(x) � (π/n) 10 sin(πyi) + 
n− 1
i�1 (yi − 1)2 [1 + 10sin2(πyi+1)] + (yn − 1)2  + 

n
i�1 u(xi, 10, 100, 4)

yi � 1 + ((xi + 1)/4)u(xi, a, k, m) �

k(xi − a)
m

xi > a

0 − a<xi < a

k(− xi − a)
m

xi < − a

⎧⎪⎨

⎪⎩
15 [− 50, 50] 0

F13(x) � 0.1 sin2(3πx1) + 
n
i�1 (xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]  + 

n
i�1 u(xi, 5, 100, 4) 15 [− 50, 50] 0

8 +e Scientific World Journal
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Plot of Step Size of Cuckoo Search Algorithm
 Variants for Ablation Experiment
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Figure 4: Plot of step size for cuckoo search algorithm variants for the ablation experiment.

Table 4: Optimization results for ablation experiment.

Function Cuckoo search algorithm variant
With increasing step size With decreasing step size

F1 Mean 9.1727E − 08 9.9413E − 08
Std. deviation 4.6146 E − 08 4.3413E − 08

F2 Mean 5.5501 E − 05 3.0945E − 05
Std. deviation 1.6182 E − 05 1.0957E − 05

F3 Mean 8.7521 E+ 00 9.2051E+ 00
Std. deviation 3.2950E+ 00 3.2103E+ 00

F4 Mean 6.0963E − 01 6.4898E − 01
Std. deviation 8.7436E − 02 1.0937E − 01

F5 Mean 1.0882E+ 01 1.1213E+ 01
Std. deviation 1.7445E+ 00 1.4061E+ 00

F6 Mean 9.1427E − 08 1.0865E − 07
Std. deviation 3.6420E − 08 5.1097E − 08

F7 Mean 1.3694E − 02 1.3638E − 02
Std. deviation 6.1983E − 03 3.3336E − 03

F8 Mean − 4.5028E+ 03 − 4.5898E+ 03
Std. deviation 2.6909E+ 02 1.7075E+ 02

F9 Mean 3.6834E+ 01 3.1332E+ 01
Std. deviation 8.5542E+ 00 8.2324E+ 00

F10 Mean 3.7197 E − 03 9.6193E − 03
Std. deviation 2.7807E − 03 6.5831E − 03

F11 Mean 4.7514 E − 02 3.9768E − 02
Std. deviation 4.9314 E − 02 3.5430E − 02

F12 Mean 1.7433E − 05 2.4992E − 05
Std. deviation 3.3108 E − 05 5.4847E − 05

F13 Mean 1.8434E − 06 3.5573E − 06
Std. deviation 1.2647E − 06 3.0531E − 06

F14 Mean 9.9800E − 01 9.9800E − 01
Std. deviation 2.2984E − 16 2.2984E − 16

F15 Mean 3.3698E − 04 3.2268E − 04
Std. deviation 4.1346E − 05 2.1580E − 05
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+e ACSA has a faster execution time compared to the
SCSA in 17 of the 23 benchmark functions, with the SCSA
mainly outperforming it in functions F14, F16, F17, F18, F19,
and F23. On top of that, the SCSA was quicker in the fixed-
dimension multimodal benchmark functions which had fewer
dimensions, i.e., from 2–6, and was slower in the unimodal and
multimodal benchmark functions which had 15 dimensions.
+erefore, the modifications in the aggressive cuckoo search
algorithm improved the execution time of the algorithm when
dealing with objective functions with many dimensions but
slowed down the algorithmwhen dealing with few dimensions.
+is improves the performance of the ACSAwhen dealingwith
complex objective functions that may have numerous di-
mensions for its variables.

To analyze the time complexity of the ACSA, the SCSA
and ACSA were used to solve the optimization functions F1,
F5, and F10 with varying dimensionality for each function.
For each function, each algorithm solved the function 15
times for varying dimensionality starting from 5 to 50. +e
mean timings for each algorithm for each number of di-
mensions have been plotted in Figure 6.

From the three plots in Figure 6, it can be seen that the
execution time of the SCSA increases by a greater rate with
the increase in the number of dimensions of the objective
function as compared to the ACSA. +is is beneficial to the
ACSA when solving problems with a large number of
variables as the algorithm will iterate quicker and thus
converge at the optimum solution quicker.

5.4. Statistical Analysis of EvaluationMetrics. In this section,
the ACSA is compared to each of the 10 standard optimi-
zation algorithms in each of the 23 test functions using the
Wilcoxon ranked sum test to determine if there is a sig-
nificant difference between the two algorithms. +e Wil-
coxon ranked sum test was carried out with a 5% significance
level. An h-value of 1 demonstrates that there is a significant

difference between the two algorithms, whereas an h-value
of 0 demonstrates the opposite.+e statistical analysis results
have been presented in Table 8. From Table 8, of the 230
comparisons done between the ACSA and the other opti-
mization algorithms, 207 resulted in an h-value of 1.
+erefore, 90% of all 230 comparisons had different results
between the two algorithms.

6. Application of the Aggressive Cuckoo
Search for Optimized Uplink Power
Control in CDMA-Based Cellular Networks

CDMA networks enable multiple users to communicate via
a single transmission channel by optimizing the use of the
available bandwidth. +e use of this single transmission
channel leads to the problem of interference between
multiple users, as the users transmit their data using the
same frequency.

Furthermore, the near-far effect degrades the quality of the
received signal at the base station. +is is a phenomenon that
arises when a mobile station near the base station transmits a
signal that overpowers the signal from another mobile station
that is farther from the base station [37]. +e signal from the
farther mobile station is weaker due to path loss as the signal
has to travel a longer distance to reach the base station. On top
of that, the signal may encounter objects such as trees and
buildings in its path, which would cause scattering and dif-
fraction of the signal. Figure 7 shows the interference that
multiple users would cause on the signal from one user.

Power control is needed in this system to ensure that a
predetermined Quality of Service (QoS) is met while still
ensuring the least amount of power is required by the
transmitting Mobile Stations (MS). In this use case, the QoS
requirement for each user is the Signal-to-Interference and
Noise Ratio (SINR).

+e SINR for the ith user is determined as follows:

Table 4: Continued.

Function Cuckoo search algorithm variant
With increasing step size With decreasing step size

F16 Mean − 1.0316 E+ 00 − 1.0316E+ 00
Std. deviation 4.5968E − 16 4.5968E − 16

F17 Mean 3.9789E − 01 3.9789E − 01
Std. deviation 5.7460E − 17 5.7460E − 17

F18 Mean 3.0000E+ 00 3.0000E+ 00
Std. deviation 0.0000E+ 00 0.0000E+ 00

F19 Mean − 3.8628E+ 00 − 3.8628E+ 00
Std. deviation 0.0000E+ 00 0.0000E+ 00

F20 Mean − 3.3220E+ 00 − 3.3220E+ 00
Std. deviation 9.1935E − 16 9.1935E − 16

F21 Mean − 1.0153E+ 01 − 1.0153E+ 01
Std. deviation 0.0000E+ 00 0.0000E+ 00

F22 Mean − 1.0403E+ 01 − 1.0403E+ 01
Std. deviation 0.0000E+ 00 0.0000E+ 00

F23 Mean − 1.0536E+ 01 − 1.0536E+ 01
Std. deviation 0.0000E+ 00 0.0000E+ 00
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Figure 5: Continued.
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Figure 5: Continued.
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Figure 5: Continued.
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ci �
Hiipi


n
j�1,j≠1 Hjipj + σ2

. (11)

+e σ2 is the additive white Gaussian noise (AWGN) and
pi is the power transmitted by user i. Hij is the Rician fading
component and channel gain from user i to j, and it takes
into consideration the path loss and log-normal shadowing.

H ii is the channel gain from user i to the base station and
is written as follows [38, 39]:

Hii � gd
− ∝
ii 10Ξ/10, (12)

where g � 0.97, dii is the distance from user i to the base
station, α is the path loss exponent, and Ξ is the Gaussian
random variable that represents the shadowing.

+eACSAwas tested in this electrical engineering design
problem. +e objective of the algorithm is to minimize the
power consumption among all users while still meeting the
required SINR value for each user.
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Figure 5: Comparison of the convergence curves of ACSA with the other optimization algorithms for all benchmark optimization
functions.
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+e objective function is shown as follows:

min
n

i�1
pi, (13)

where pi is the transmit power from the ith MS and n is the
total number of MS.

+e constraints used in this optimization problem are as
follows:

Hiipi


n
j�1,j≠1 Hjipj + σ2

≥ c
th
i ,

pi ≥ 0,

(14)

Table 6: Comparison of optimization results from advanced algorithms.

Function ACSA GQPSO IRGA RACS FSTDE

F1 Mean 4.8221E − 48 1.9724E − 91 1.4005E − 19 7.6901E − 16 1.2323E − 07
Std. deviation 1.8541E − 47 4.1239E − 91 5.4237E − 19 5.6795E − 16 4.5591 E − 08

F2 Mean 5.4215E − 31 1.1509E − 49 2.2875E − 16 4.7214E − 10 5.2382E − 05
Std. deviation 1.3225E − 30 2.6290E − 49 8.3263E − 16 2.2922E − 10 9.8743E − 06

F3 Mean 3.4492E − 16 3.1627E − 46 2.8860E+ 01 1.1424E+ 01 3.3559E+ 03
Std. deviation 1.3223E − 15 1.2248E − 45 3.0764E+ 01 1.0268E+ 01 7.2910E+ 02

F4 Mean 4.0529E − 13 2.8701E − 39 2.3161E − 01 6.5397E − 03 3.1662E+ 00
Std. deviation 9.3867E − 13 5.3079E − 39 1.4892E − 01 2.7908E − 03 4.5167E − 01

F5 Mean 9.7070E+ 00 1.2910E+ 01 1.7260E+ 01 8.9719E+ 00 5.4752E+ 01
Std. deviation 2.7433E − 01 9.9435E − 02 2.1532E+ 01 1.5111E+ 00 2.4079E+ 01

F6 Mean 1.7559E − 04 5.4841E − 01 6.1296E − 23 1.2358E − 15 2.0152E − 07
Std. deviation 7.3491E − 05 7.4729E − 02 1.2339E − 22 9.4064E − 16 1.4882E − 07

F7 Mean 1.8982E − 03 1.0292E − 04 3.0213E − 03 8.5470E − 03 2.6284E − 02
Std. deviation 1.5623E − 03 9.4909E − 05 1.5828E − 03 2.9045E − 03 8.2054E − 03

F8 Mean − 3.8558E+ 03 − 1.9422E+ 03 − 6.1742E+ 03 − 6.2847E+ 03 − 2.8379E+ 76
Std. deviation 1.5969E+ 02 1.2939E+ 02 1.0465E+ 02 1.8828E − 12 4.9659E+ 76

F9 Mean 0.0000E+ 00 0.0000E+ 00 3.8218E − 12 2.6954E − 08 6.9869E − 02
Std. deviation 0.0000E+ 00 0.0000E+ 00 1.0837E − 11 4.3614E − 08 9.5101 E − 02

F10 Mean 8.8818E − 16 8.8818E − 16 2.3465E − 11 1.0676E − 08 1.8699E − 04
Std. deviation 2.0414E − 31 2.0414E − 31 3.6666E − 11 3.5527E − 09 4.6148E − 05

F11 Mean 0.0000E+ 00 0.0000E+ 00 1.4426E − 02 1.8368E − 02 8.8549E − 03
Std. deviation 0.0000E+ 00 0.0000E+ 00 1.6758E − 02 6.6206E − 03 6.6708E − 03

F12 Mean 7.6020E − 04 7.1707E − 02 1.2601E − 20 9.3048E − 16 5.3876E − 09
Std. deviation 4.8806E − 04 1.2912E − 02 4.5205E − 20 7.5322E − 16 2.6303E − 09

F13 Mean 2.3459E − 03 3.6423E − 01 6.6567E − 20 2.2345E − 15 2.3757E − 08
Std. deviation 1.2862E − 03 5.3472E − 02 2.2354E − 19 2.0989E − 15 1.1320E − 08

F14 Mean 9.9800E − 01 2.7620E+ 00 9.9800E − 01 9.9800E − 01 9.9800E − 01
Std. deviation 2.2984E − 16 2.2657E+ 00 2.2984E − 16 2.2984E − 16 2.2984E − 16

F15 Mean 3.1446E − 04 3.6353E − 04 2.0484E − 03 3.0749E − 04 1.0605E − 03
Std. deviation 1.1029E − 05 4.1497E − 05 5.0683E − 03 0.0000E+ 00 2.1523E − 04

F16 Mean − 1.0316E+ 00 − 1.0314E+ 00 − 1.0316E+ 00 − 1.0316E+ 00 − 1.0316E+ 00
Std. deviation 4.5968E − 16 1.4075E − 04 4.5968E − 16 4.5968E − 16 4.5968E − 16

F17 Mean 3.9789E − 01 4.0041E − 01 3.9789E − 01 3.9789E − 01 3.9789E − 01
Std. deviation 5.7460E − 17 3.5059E − 03 5.7460E − 17 5.7460E − 17 5.7460E − 17

F18 Mean 3.0000E+ 00 3.0001E+ 00 3.0000E+ 00 3.0000E+ 00 3.0000E+ 00
Std. deviation 0.0000E+ 00 1.7915E − 04 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F19 Mean − 3.8628E+ 00 − 3.8558E+ 00 − 3.8628E+ 00 − 3.8628E+ 00 − 3.8628E+ 00
Std. deviation 0.0000E+ 00 4.5270E − 03 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F20 Mean − 3.3220E+ 00 − 3.0228E+ 00 − 3.2903E+ 00 − 3.3220E+ 00 − 3.3204E+ 00
Std. deviation 9.1935E − 16 6.3832E − 02 5.4425E − 02 9.1935E − 16 4.4347E − 03

F21 Mean − 1.0153E+ 01 − 4.4861E+ 00 − 1.0153E+ 01 − 1.0153E+ 01 − 1.0152E+ 01
Std. deviation 0.0000E+ 00 2.1697E − 01 0.0000E+ 00 0.0000E+ 00 3.3594E − 03

F22 Mean − 1.0403E+ 01 − 4.6669E+ 00 − 9.4486E+ 00 − 1.0403E+ 01 − 1.0403E+ 01
Std. deviation 0.0000E+ 00 2.0743E − 01 2.5251E+ 00 0.0000E+ 00 0.0000E+ 00

F23 Mean − 1.0536E+ 01 − 4.5974E+ 00 − 1.0089E+ 01 − 1.0536E+ 01 − 1.0536E+ 01
Std. deviation 0.0000E+ 00 1.8971E − 01 1.7301E+ 00 0.0000E+ 00 0.0000E+ 00
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where ci is the predetermined SINR value for MS i.

7. Results and Comparisons

+e performance of the ACSA is tested in three scenarios. In
the first scenario, there are five users, uniformly distributed
in a 50m× 50m square geographical area. Each user is
required to meet a target SINR of 3 dB. In the second
scenario, there are five users, uniformly distributed in a
150m× 150m square geographical area, with each user
required to meet a target SINR of 3 dB. In scenario three,
there are six users uniformly distributed in a 200m× 200m
square geographical area, with the required target SINR
value being 3 dB. In all three scenarios, the base station is
located at the center of the square geographical area.

+e objective function was set as a penalty unconstrained
function to take the constraints into account, with the
penalty parameter being equal to 1020. +e algorithms were
run with a population size of 50 and for 1000 iterations. α
was set as 4 for the simulation of an urban environment and
noise was set as 0.0002mW.

Due to the random positions, the mobile stations could
take in each square geographical area, the algorithm was
tested four times in each scenario, with one example being
elaborated on further. Algorithms that returned values

greater than their total allocated power did this due to the
algorithm not being able to meet the SINR requirement for
each user, thus a penalty value was added to the returned
value. +e SINR values have been determined by the power
values derived by the algorithms. To extensively test the
ACSA, the ACSA was compared against two sets of algo-
rithms for each scenario, the standard and advanced opti-
mization algorithms.

+e total power for transmission together with the SINR
values for each user have been presented in Tables9–14.
+e Tables 15–20 contain the extra test cases that algorithms
were observed in for each scenario.

7.1. Scenario 1. For scenario 1, the first test case’s results are
presented in Tables 9 and 10. From Table 9, the ACSA was
able to allocate the least amount of power to each mobile
station for signal transmission, while still ensuring that the
required SINR value for uplink transmission was achieved
by each mobile station. From Table 10, the RACS and IRGA
outperformed the ACSA in ensuring that the least amount of
power was utilized. +e results of the remaining three test
cases are presented in Tables 15 and 16. From Table 16, it can
be seen that the RACS and IRGA algorithms still out-
performed the ACSA.

Table 7: Comparison of ACSA against the 10 other optimization algorithms on runtime in seconds.

Function
Timing in seconds

SCSA ACS ABC BA DE GA PSO IWO CA FPA FA
F1 0.23350 0.19976 0.83612 0.14544 0.52964 0.13972 0.03839 0.35092 2.23420 0.13210 0.78708
F2 0.24539 0.20572 0.86824 0.14434 0.54550 0.14442 0.04209 0.32486 2.27600 0.13283 0.80137
F3 0.49218 0.44686 1.11720 0.27144 0.64493 0.28165 0.16578 0.50632 2.52310 0.13392 0.92855
F4 0.23989 0.20061 0.85224 0.14951 0.52736 0.14571 0.03993 0.34404 2.41320 0.13305 0.81448
F5 0.29579 0.26231 0.93798 0.18561 0.57212 0.17226 0.06669 0.40304 2.40120 0.13263 0.83263
F6 0.23378 0.19766 0.85472 0.14524 0.54563 0.14325 0.03895 0.35519 2.36120 0.13185 0.80165
F7 0.36877 0.33887 1.01590 0.21414 0.58772 0.21021 0.10451 0.49662 2.43820 0.13382 0.87378
F8 0.28490 0.25478 1.04950 0.19612 0.57992 0.17219 0.05976 0.39868 2.35710 0.13623 0.83169
F9 0.25869 0.22004 0.89568 0.15365 0.54479 0.15849 0.04794 0.35004 2.36850 0.13384 0.81912
F10 0.27957 0.23557 0.94785 0.17987 0.58514 0.16651 0.04807 0.33403 2.36530 0.13726 0.84347
F11 0.31408 0.27288 1.00910 0.20132 0.62486 0.18819 0.07231 0.44287 2.41550 0.13403 0.84499
F12 0.66107 0.62268 1.37900 0.37513 0.80876 0.36280 0.25126 0.63189 2.50200 0.13173 0.99674
F13 0.68999 0.65314 1.45660 0.39948 0.84302 0.38126 0.26280 0.67952 2.70640 0.13381 1.02870
F14 1.48210 1.49200 2.33320 0.82751 1.21690 0.80241 0.68303 2.04150 1.10570 0.10988 1.35500
F15 0.19909 0.19723 0.87645 0.15704 0.52369 0.13857 0.04340 0.49802 0.76498 0.11581 0.73431
F16 0.18284 0.19618 0.87759 0.13167 0.47554 0.12953 0.03608 0.61993 0.37355 0.10845 0.71024
F17 0.17853 0.18176 0.85572 0.12801 0.50837 0.12708 0.03073 0.62991 0.41328 0.11968 0.76187
F18 0.39712 0.43054 2.28870 0.31962 1.28050 0.31055 0.06731 1.62700 0.99864 0.28960 1.81540
F19 0.20557 0.20650 0.90854 0.14340 0.51140 0.14572 0.04468 0.53982 0.54281 0.10881 0.71253
F20 0.22471 0.21872 0.90675 0.15602 0.54593 0.15004 0.04826 0.41306 0.99210 0.11398 0.74711
F21 0.48337 0.46856 1.22390 0.29008 0.66938 0.29144 0.17722 0.66183 0.88404 0.11234 0.86309
F22 0.58358 0.58199 1.34000 0.34576 0.71697 0.33000 0.23188 0.70044 0.92874 0.11234 0.90753
F23 0.78849 0.80828 1.60290 0.44727 0.85724 0.45297 0.33318 0.87908 1.04030 0.11827 1.04710
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7.2. Scenario 2. For scenario 2, the first test case’s results are
presented in Tables 11 and 12. Just as in scenario 1, in this
scenario, as can be seen in Table 11, the ACSA was able to
allocate the least amount of power to each mobile station for
signal transmission among the standard optimization al-
gorithms, while still ensuring that the required SINR value
for uplink transmission was achieved by each mobile station.
+e results of the remaining three test cases are presented in
Table 17. Among the advanced optimization algorithms, the
ACSA was outperformed only by the RACS algorithm, and
this can be seen from the results in Tables 12 and 18.

7.3. Scenario 3. For scenario 3, the first test case’s results are
presented in Tables 13 and 14. In this scenario, none of the
algorithms could achieve the required 3 dB SINR value for

each mobile station due to the upper bound set to prevent
the algorithms from assigning power values of greater than
100W. However, the ACSA managed to have the lowest
returned value. +is is because the returned value contains
both the sum of the mobile stations’ powers and the penalty
value that was added due to not achieving the required SINR
value. +e magnitude of this penalty value is dependent on
the difference between the achieved SINR value and the
required value. +is is the reason behind the ACSA’s lowest
returned value. It is because the achieved SINR values of its
mobile stations were closest to the required SINR value of
3 dB.

+is is the reason for choosing it as having allocated the
best power values, even though its total power is greater than
those of the CA, ABC, and RACS algorithms. It is because it
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Figure 7: CDMA-based system with 4 users.

Table 9: Returned results of ACSA and other standard optimization algorithms for scenario 1.

Algorithm Returned value from algorithm Total power (mW) SINR values of each mobile station (dB)

SCSA 6.7180 e + 16 3.2340 e + 06

3.0857
6.5276
2.9503
3.7025
2.9860

ACSA 2.7813 e + 03 2.7813 e + 03

3.0279
3.0333
3.0051
3.0002
3.0097

PSO 1.6669 e + 12 1.8503 e + 03

2.5997
2.5997
2.5997
2.5997
2.5997

CA 4.9413 e + 05 4.9413 e + 05

3.4289
5.8598
3.4912
3.4306
3.3293

ABC 2.9245 e + 05 2.9245 e + 05

3.9532
5.3618
3.6490
3.3117
3.3786

DE 3.0886 e + 03 3.0886 e + 03

3.0529
3.2305
3.0223
3.1257
3.1036

BA 4.9943 e + 21 2.3474 e + 06

− 3.0218
15.6949
− 3.2819
− 2.5987
− 1.3870

FA 1.0762 e + 06 1.0762 e + 06

3.8657
3.2196
3.8842
4.6311
4.2080
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Table 9: Continued.

Algorithm Returned value from algorithm Total power (mW) SINR values of each mobile station (dB)

GA 2.7891 e + 03 2.7891 e + 03

3.0048
3.0398
3.0173
3.0204
3.0069

IWO 2.2551 e + 22 2.4979 e + 06

− 2.7827
17.5497
− 9.6257
− 2.7127
− 4.0556

Table 10: Returned results of ACSA and other advanced optimization algorithms for scenario 1.

Algorithm Returned value from algorithm Total power (mW) SINR values of each mobile station (dB)

ACSA 1.0859 e + 03 1.0859 e + 03

3.0006
3.0063
3.0279
3.0044
3.0219

RACS 1.0688 e + 03 1.0688 e + 03

3.0005
3.0000
3.0008
3.0001
3.0002

GQPSO 1.6930 e + 13 1.4850 e + 01

− 8.0862
− 8.0662
− 9.1052
− 8.9064
− 8.8860

IRGA 1.0690 e + 03 1.0690 e + 03

3.0006
3.0010
3.0008
3.0005
3.0000

FSTDE 1.05023 e + 05 1.05023 e + 05

4.6007
4.2824
3.2933
4.1381
3.432

Table 11: Returned results of ACSA and other standard optimization algorithms for scenario 2.

Algorithm Returned value from algorithm Total power (mW)

SINR values of each receiving node (dB)
SINR1
SINR2
SINR3
SINR4
SINR5

SCSA 1.9578 e + 06 1.9578 e + 06

4.0782
3.1685
4.8501
3.9451
3.5019

ACSA 8.6615 e + 04 8.6615 e + 04

3.0007
3.0024
3.0004
3.0009
3.0000
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Table 11: Continued.

Algorithm Returned value from algorithm Total power (mW)

SINR values of each receiving node (dB)
SINR1
SINR2
SINR3
SINR4
SINR5

PSO 1.5912 e + 13 2.0820 e + 03

− 6.6329
− 6.6330
− 6.6328
− 6.6330
− 6.6330

CA 3.5512 e + 05 3.5512 e + 05

3.0366
4.1623
4.1751
4.1612
3.0110

ABC 2.4507 e + 05 2.4507 e + 05

4.0564
3.4052
3.6729
3.5795
3.3408

DE 1.2821 e + 05 1.2821 e + 05

3.2833
3.5701
3.3450
3.2315
3.0989

BA 7.7463 e + 16 1.6941 e + 06

− 4.9341
3.2219
6.5298
5.4585
8.8142

FA 1.2546 e + 05 1.2546 e + 05

3.0132
3.0105
3.0093
3.0258
4.0500

GA 8.6984 e + 04 8.6984 e + 04

3.0101
3.0081
3.0023
3.0040
3.0003

IWO 1.1725 e + 17 2.1732 e + 06

5.6861
5.1089
2.7159
4.8911

− 0.2595

Table 12: Returned results of ACSA and other advanced optimization algorithms for scenario 2.

Algorithm Returned value from algorithm Total power (mW) SINR values of each mobile station (dB)

ACSA 2.4981E+ 05 2.4981E+ 05

3.0003
3.0000
3.0002
3.0004
3.0001

RACS 2.4974E+ 05 2.4974E+ 05

3.0000
3.0000
3.0000
3.0000
3.0000
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Table 12: Continued.

Algorithm Returned value from algorithm Total power (mW) SINR values of each mobile station (dB)

GQPSO 1.6702E+ 13 4.8085E+ 03

− 7.2965
− 8.1011
− 7.4467
− 7.3607
− 8.1087

IRGA 2.4984E+ 05 2.4984E+ 05

3.0004
3.0001
3.0004
3.0003
3.0000

FSTDE 3.4141E+ 05 3.4141E+ 05

3.2197
3.0833
3.2967
3.1819
3.3998

Table 13: Returned results of ACSA and other standard optimization algorithms for scenario 3.

Algorithm Returned value from algorithm Total power (mW) SINR values of each receiving node (dB)

SCSA 6.8176E+ 13 0.0150

− 56.3922
− 63.3367
− 70.2903
− 63.3124
− 64.4378
− 67.9588

ACSA 1.4544E+ 13 2.2869E+ 06

2.7841
2.7841
2.7841
2.7841
2.7841
2.7841

PSO 1.7349E+ 13 6.5014E+ 03

− 9.9581
− 9.9581
− 9.9581
− 9.9581
− 9.9581
− 9.9581

CA 1.4570E+ 13 2.2387E+ 06

2.7793
2.7793
2.7793
2.7793
2.7793
2.7793

ABC 1.4634E+ 13 2.1304E+ 06

2.7679
2.7679
2.7679
2.7679
2.7679
2.7679

DE 2.2595E+ 13 253.8245

− 23.8316
− 23.8255
− 23.8259
− 23.8122
− 23.8302
− 23.8322
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Table 13: Continued.

Algorithm Returned value from algorithm Total power (mW) SINR values of each receiving node (dB)

BA 4.4517 E+ 15 2.4952E+ 06

1.5088
− 0.4148
− 0.5029
8.8117
2.7728

− 0.0866

FA 1.5916 E+ 13 1.1834E+ 05

− 0.0744
− 0.0693
− 0.0739
− 0.0734
− 0.0686
− 0.0696

GA 1.7151 E+ 13 8.0167E+ 03

− 9.0984
− 9.1001
− 9.0979
− 9.1004
− 9.1008
− 9.0990

IWO 2.8979E+ 16 2.3928E+ 06

8.4637
4.3753

− 1.5520
− 8.8044
5.5631

− 11.5173

Table 14: Returned results of ACSA and other advanced optimization algorithms for scenario 3.

Algorithm Returned value from algorithm Total power (mW) SINR values of each receiving node (dB)

ACSA 1.4544E+ 13 2.2869E+ 06

2.7840
2.7841
2.7841
2.7841
2.7841
2.7841

RACS 1.4573E+ 13 2.2867E+ 06

2.7838
2.7840
2.7839
2.7846
2.7841
2.7838

GQPSO 1.7592E+ 13 9.5587E+ 03

− 9.0734
− 7.5709
− 8.8931
− 9.0629
− 8.0456
− 7.8165

IRGA 1.5372E+ 13 9.0019E+ 05

2.4571
2.4571
2.4571
2.4571
2.4571
2.4571

FSTDE 1.5464E+ 13 1.9699E+ 06

2.7471
2.7424
2.7517
2.7514
2.7563
2.7435
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Table 15: Returned values and total power of ACSA and other standard optimization algorithms in Scenario 1 in three more test cases.

Algorithm
Test case

Test 1 Test 2 Test 3
Returned value Total power (mW) Returned value Total power (mW) Returned value Total power (mW)

SCSA 4.38E+ 13 0.01 6.13 E+ 17 8.57E+ 04 3.86E+ 13 0.0100
ACSA 1.71 E+ 03 1.71E+ 03 331.2068 331.2068 605.2781 605.2781
PSO 1.71 E+ 03 1.71E+ 03 1.68E+ 13 6.4845 605.5045 605.5045
CA 1.71 E+ 03 1.71E+ 03 349.6878 349.6878 1.2943E+ 05 1.2943E+ 05
ABC 7.77E+ 04 7.77E+ 04 5.78E+ 04 5.78E+ 04 4.6975E+ 04 4.6975E+ 04
DE 1.71 E+ 03 1.71E+ 03 331.2072 331.2072 3.8618 E+ 13 0.0100
BA 1.63E+ 19 1.35E+ 06 4.69E+ 22 9.27E+ 05 3.3030E+ 21 1.9445E+ 06
FA 2.10E+ 05 2.10E+ 05 3.60E+ 13 0.01 3.8618 E+ 13 0.0100
GA 1.71 E+ 03 1.71E+ 03 331.2945 331.2945 605.4585 605.4585
IWO 3.53E+ 20 7.96E+ 05 1.45E+ 24 1.83E+ 06 1.2339E+ 23 4.2270E+ 05

Table 16: Returned values and total power of ACSA and other advanced optimization algorithms in scenario 1 in three more test cases.

Algorithm
Test case

Test 1 Test 2 Test 3
Returned value Total power (mW) Returned value Total power (mW) Returned value Total power (mW)

ACSA 2.81 E+ 03 2.81E+ 03 2.34E+ 03 2.34E+ 03 3.69E+ 03 3.69E+ 03
RACS 2.79E+ 03 2.79E+ 03 2.33E+ 03 2.33E+ 03 3.68E+ 03 3.68E+ 03
GQPSO 1.68E+ 13 4.54E+ 01 1.55E+ 13 8.87E+ 01 1.68E+ 13 6.08E+ 01
IRGA 2.79E+ 03 2.79E+ 03 2.40E+ 03 2.40E+ 03 3.76E+ 03 3.76E+ 03
FSTDE 3.48E+ 04 3.48E+ 04 1.01 E+ 05 1.01E+ 05 1.28E+ 05 1.28E+ 05

Table 17: Returned values and total power of ACSA and other standard optimization algorithms in scenario 2 in three more test cases.

Algorithm
Test case

Test 1 Test 2 Test 3
Returned value Total power (mW) Returned value Total power (mW) Returned value Total power (mW)

SCSA 6.1818 e + 13 0.0125 1.2694 e + 06 1.2694 e + 06 2.0641 e + 12 2.7487 e + 06
ACSA 1.4469 e + 05 1.4469 e + 05 1.4945 e + 05 1.4945 e + 05 1.1732 e + 05 1.1732 e + 05
PSO 1.4202 e + 13 2.2278 e + 04 1.5464 e + 13 4.8485 e + 03 1.6207 e + 13 2.2838 e + 03
CA 4.3364 e + 05 4.3364 e + 05 2.2806 e + 05 2.2806 e + 05 4.4728 e + 05 4.4728 e + 05
ABC 3.3436 e + 05 3.3436 e + 05 3.7870 e + 05 3.7870 e + 05 2.1981 e + 05 2.1981 e + 05
DE 2.4106 e + 13 1.4072 e + 06 1.5023 e + 05 1.5023 e + 05 1.0835 e + 06 1.0835 e + 06
BA 1.0507 e + 17 1.1152 e + 06 3.7041 e + 06 3.7041 e + 06 4.4641 e + 17 1.3226 e + 06
FA 1.0091 e + 13 3.0693 e + 04 1.5005 e + 05 1.5005 e + 05 6.3762 e + 12 4.4233 e + 04
GA 1.4476 e + 05 1.4476 e + 05 1.4946 e + 05 1.4946 e + 05 1.1737 e + 05 1.1737 e + 05
IWO 1.6808 e + 17 1.0580 e + 06 1.9468 e + 16 3.1805 e + 06 8.0124 e + 17 8.0124 e + 17

Table 18: Returned values and total power of ACSA and other advanced optimization algorithms in scenario 2 in three more test cases.

Algorithm
Test case

Test 1 Test 2 Test 3
Returned value Total power (mW) Returned value Total power (mW) Returned value Total power (mW)

ACSA 3.3646E+ 05 3.3646E+ 05 1.3850E+ 05 1.3850E+ 05 3.9960E+ 05 3.9960E+ 05
RACS 3.3644E+ 05 3.3644E+ 05 1.3847E+ 05 1.3847E+ 05 3.9956E+ 05 3.9956E+ 05
GQPSO 1.5358E+ 13 2.9261E+ 04 1.6743E+ 13 2.2283E+ 03 1.3861 E+ 13 4.5963E+ 04
IRGA 3.3647E+ 05 3.3647E+ 05 1.3850E+ 05 1.3850E+ 05 3.9981 E+ 05 3.9981E+ 05
FSTDE 4.1758E+ 05 4.1758E+ 05 1.5767E+ 05 1.5767 E+ 05 4.7408E+ 05 4.7408E+ 05
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managed to achieve closer SINR values to the required SINR
value while still allocating low power to each mobile station.
+e results of the remaining test cases for both the standard
and advanced optimization algorithms are presented in
Tables 19 and 20.

As the difficulty in optimization increased from scenario
1 to 3, the ACSA’s performance increased with respect to the
other algorithms. For example from Tables 10, 12 and 14, it
can be seen that in scenario 1 (Table 10) the RACS algorithm
easily outperformed the ACSA. In scenario 2 (Table 12), the
RACS algorithm still outperformed the ACSA but by a
smaller margin. In scenario 3 (Table 14), the ACSA algo-
rithm outperformed all the other algorithms. As the di-
mensionality and parameters increased, the ACSA’s
performance was slowed down by a smaller degree as
compared to the other algorithms.

+is can also be seen in Figure 6, whereby as the di-
mensions of the objective function increased the execution
time of the ACSA increased, but by a smaller magnitude as
compared to SCSA.

8. Conclusion

In this study, an aggressive cuckoo search algorithm (ACSA)
is proposed and the algorithm is used to optimize uplink
power in Code-Division Multiple Access based (CDMA)
networks. In the ACSA, the concept of Eber Moll’s model of
a transistor is emulated to make the step size of the ACSA to
be adaptive, and thus vary non-linearly from a smaller step
size to a larger one. Likewise, the value of the probability of
discovery is made to vary linearly from a larger probability
value to a smaller set value and is dependent on the number

of iterations of the ACSA. Lastly, Lévy flight in the cuckoo
search algorithm was replaced with the Beta distribution.
+e ACSA was tested against 10 other standard optimi-
zation algorithms and 4 other advanced optimization al-
gorithms in 23 benchmark optimization functions. +e
ACSA managed to outperform or obtain the same opti-
mum value as the standard optimization algorithms in 18
of the 23 functions and outperformed or obtained the same
optimum value as the other advanced optimization algo-
rithms in 13 of the 23 functions. Moreover, the ACSA was
used to determine the optimum uplink power in a CDMA-
based network where each Mobile Station (MS) has a
predetermined SINR value that it is supposed to meet. +e
ACSA was able to determine the power needed by all the
MS optimally compared to the other algorithms in all three
testing scenarios. +e ACSA outperformed the other
standard optimization algorithms in all three scenarios and
outperformed the other advanced optimization algorithms
in the third scenario.
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Table 19: Returned values and total power of ACSA and other standard optimization algorithms in scenario 3 in three more test cases.

Algorithm
Test case

Test 1 Test 2 Test 3
Returned value Total power (mW) Returned value Total power (mW) Returned value Total power (mW)

SCSA 7.0641 E+ 13 0.0150 6.4006E+ 13 0.0150 1.2913 E+ 14 2.2206E+ 05
ACSA 1.4984E+ 13 2.5303E+ 06 1.3264E+ 13 3.8763E+ 06 1.3999E+ 13 3.5652E+ 06
PSO 1.7137E+ 13 1.3273E+ 04 1.7035E+ 13 7.8628E+ 03 1.7242E+ 13 8.0351E+ 03
CA 1.5296E+ 13 1.6735E+ 06 1.3746E+ 13 3.1428E+ 06 1.5451 E+ 13 8.5323E+ 05
ABC 1.5002E+ 13 2.4715E+ 06 1.4558E+ 13 1.9445E+ 06 1.4703E+ 13 2.2291E+ 06
DE 4.4162E+ 13 0.7668 1.6351 E+ 13 1.4943E+ 06 6.4893E+ 13 0.0160
BA 1.0194E+ 16 2.1026E+ 06 2.5283E+ 15 6.5356E+ 05 4.0160 E+ 15 2.9678E+ 06
FA 1.6153E+ 13 2.2931E+ 05 1.5635E+ 13 4.2343E+ 05 1.7334E+ 13 2.0477E+ 05
GA 1.5518 E+ 13 1.0805E+ 06 1.4630E+ 13 1.8402E+ 06 1.6387E+ 13 2.6052E+ 04
IWO 1.9954E+ 16 2.4647E+ 06 4.0982E+ 15 3.0969E+ 06 1.8434E+ 17 2.5480E+ 06

Table 20: Returned values and total power of ACSA and other advanced optimization algorithms in scenario 3 in three more test cases.

Algorithm
Test case

Test 1 Test 2 Test 3
Returned value Total power (mW) Returned value Total power (mW) Returned value Total power (mW)

ACSA 1.4992E+ 13 2.5021E+ 06 1.3281 E+ 13 1.9941E+ 06 1.4323E+ 13 2.3531E+ 06
RACS 1.5049E+ 13 2.4750E+ 06 1.3357E+ 13 1.9842E+ 06 1.4381 E+ 13 2.3187E+ 06
GQPSO 1.7544E+ 13 1.0467E+ 04 1.7695E+ 13 2.6353E+ 03 1.7608E+ 13 5.0555E+ 03
IRGA 1.5522E+ 13 1.0691E+ 06 1.4100 E+ 13 1.3541E+ 06 1.5161E+ 13 1.1057E+ 06
FSTDE 1.6413 E+ 13 3.6050E+ 05 1.6867E+ 13 1.0827E+ 06 1.6307E+ 13 1.6819E+ 06
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