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Group-level repeated measurements are common in neuroimaging, yet their analysis

remains complex. Although a variety of specialized tools now exist, it is surprising

that to-date there has been no clear discussion of how repeated-measurements

can be analyzed appropriately using the standard general linear model approach, as

implemented in software such as SPM and FSL. This is particularly surprising given

that these implementations necessitate the use of multiple models, even for seemingly

conventional analyses, and that without care it is very easy to specify contrasts that

do not correctly test the effects of interest. Despite this, interest in fitting these types

of models using conventional tools has been growing in the neuroimaging community.

As such it has become even more important to elucidate the correct means of doing

so. To begin, this paper will discuss the key concept of the expected mean squares

(EMS) for defining suitable F-ratios for testing hypotheses. Once this is understood, the

logic of specifying correct repeated measurements models in the GLM should be clear.

The ancillary issue of specifying suitable contrast weights in these designs will also be

discussed, providing a complimentary perspective on the EMS. A set of steps will then be

given alongside an example of specifying a 3-way repeated-measures ANOVA in SPM.

Equivalency of the results compared to other statistical software will be demonstrated.

Additional issues, such as the inclusion of continuous covariates and the assumption of

sphericity, will also be discussed. The hope is that this paper will provide some clarity on

this confusing topic, giving researchers the confidence to correctly specify these forms

of models within traditional neuroimaging analysis tools.

Keywords: repeated measurements, within-subject, flexible factorial, SPM, FSL, GLM

1. INTRODUCTION

The modeling of group-level repeated measurements is a common, yet complex, topic in
neuroimaging. Although a variety of specialized tools are now available (e.g., Chen et al., 2014;
Guillaume et al., 2014; McFarquhar et al., 2016), it is surprising that to-date there has been no clear
discussion of how researchers can analyse repeated measurements using the traditional voxel-wise
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general linear model (GLM) approach, implemented in software
such as SPM (http://www.fil.ion.ucl.ac.uk) and FSL (https://fsl.
fmrib.ox.ac.uk)1. Despite the implication from some authors
(e.g., McLaren et al., 2011; Chen et al., 2014), the analysis of
complex repeated-measurement designs is possible within these
software packages. However, because they have often not been
designed with these analyses in mind, specification of the correct
models can be difficult. For instance, the traditional modeling
of repeated measurements requires the inclusion of subject and
all possible interactions with subject as factors in the model, as
well as specifying multiple models to force the use of appropriate
error terms for the F-ratios. Ignorance of the correct way to
model these effects would, at best, lead to an analysis that
lacked sensitivity, but at worst would lead to an analysis with
an increased Type I error rate and F-ratios that do not test the
intended model effects.

For researchers who are less familiar with classical
linear model theory, some of the requirements of repeated-
measurement models can seem esoteric. However, these models
are based on the key statistical concept of expected mean squares
(EMS) which, once understood, should make the logic behind
these methods clear. Given the importance of the EMS for
understanding the logic of hypothesis tests in repeated measures
models, this paper will begin with a detailed exposition of the
concept. No claims of originality are made on this exposition
as these are issues well-known in the statistical literature.
However, the degree of confusion surrounding these models in
the neuroimaging literature has prompted an explicit discussion
of this core statistical concept. An ancillary issues, in the form
of estimable functions in overparameterized ANOVA models,
will also be discussed. Once these concepts are understood,
it should become clear how these models need to be treated
in neuroimaging software. To that end, a set of simple steps
will be given alongside an example of how to specify a 3-way
repeated-measures ANOVA model in SPM12. Some further
issues with repeated measurement models, such as the inclusion
of continuous covariates and the assumption of sphericity,
will also be discussed. The hope is that these discussions will
provide some clarity on this complex topic, giving researchers
the knowledge and understanding needed to confidently use
these models within familiar software packages.

2. EMS IN ANOVA MODELS

In order to begin understanding the requirements of repeated
measurement models when implemented in the GLM, the
concept of EMS in ANOVA models must be understood. A basic
aim of any ANOVA model is to split the data into different
sources of variation. These sources of variation are formalized
in terms of the calculation of sums-of-squares for each model
component, which are converted to mean squares using the

1It is notable that AFNI (https://afni.nimh.nih.gov) has facilities included to

accommodate random effects in the group-level ANOVA programs 3dANOVA2

and 3dANOVA3, as well as facilities for multivariate approaches to repeated-

measurements in 3dMVM. As such, the discussions in the paper are less relevant

for AFNI users.

degrees of freedom of the model terms. The F-ratios are then
formed by dividing a suitable mean square for the effect of
interest by a suitable mean square for the error. In order to
understand the logic of these F-ratios, it is necessary to consider
the expected value for the mean squares. The EMS represents the
theoretical mean of the sampling distribution of each of the mean
squares and take the form of the addition of several sources of
variation. In order to test a specific effect, the F-ratio should be
formed from two terms whose EMS differ only by the source of
variation associated with that effect. Under the null hypothesis
that the effect of interest is 0, the magnitudes of the two mean
squares should be similar and the F-ratio should be close to 1.
As such, the larger the discrepancy between the mean squares
the larger the F-ratio and the greater the evidence against the
null. This logic of constructing ANOVA tests is central to the
ANOVA methodology, but is also one of the major sources of
misunderstanding when attempting to construct tests of effects
in repeated-measurement models. As such, this first section aims
to describe the derivation of the EMS and their use in forming
meaningful hypothesis tests.

2.1. EMS in Between-Subject Designs
To understand the use of EMS in deriving suitable F-ratios,
consider a balanced two-way between-subjects ANOVA model
with n observations per-cell

yijk = µ + αi + βj + (αβ)ij + ǫijk (1)

whereµ is the overall mean, αi is the effect of the ith level of factor
A (i = 1, . . . , a), βj is the jth level of factor B (j = 1, . . . , b), (αβ)ij
is the ij interaction effect and ǫijk is random error (k = 1, . . . , n)

assumed ǫijk ∼ N (0, σ 2).
For this basic ANOVA design, the correct error term for

the omnibus main effects and interaction is the model variance
σ 2. To see why this is the case, we can calculate the EMS.
Although possible to derive the EMS formally through the use
of the expectation operator, a more practical approach involves
following some basic rules. In this paper, the rules given by
Kutner et al. (2004) are used. As an example, Table 1 gives an
outline of the arithmetic involved in constructing the EMS for
the model in Equation (1). These tables are provided throughout
this paper to give direct correspondence between the method of
Kutner et al. (2004) and the eventual forms of the EMS used to
derive appropriate F-ratios.

Using Table 1, the EMS for the terms in Equation (1) are given
in Equation (2). Construction of an appropriate F-ratio involves
using the EMS to identify two mean squares which differ only by
the effect of interest. For instance, to test the effect of factor A
we must identify which EMS in Equation (2) differs only from

EMSA by bn
∑

α2
i

a−1 . In this instance, the only choice is EMSE. As
such, a test for the effect of A can be constructed using the ratio
of the mean square of A (MSA) and the mean square of the errors
(MSE). Continuing in this fashion, suitable F-ratios for all the
model effects can be derived, as given in Table 2. This confirms
the initial statement that a suitable denominator for all tests from
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the model in Equation (1) is the overall error term.

EMSA = σ 2 + bn

∑

α2
i

a− 1

EMSB = σ 2 + an

∑

β2
j

b− 1
(2)

EMSAB = σ 2 + n

∑

(αβ)2ij

(a− 1)(b− 1)

EMSE = σ 2

2.2. EMS in Mixed-Measures Designs
For between-subject designs containing only fixed-effects it is
rarely necessary to calculate the EMS as a suitable denominator
for the F-ratios is always given by the overall error term. The
situation becomes quite different when considering ANOVA
models containing random-effects. Although not usually
applicable in neuroimaging for between-subjects designs, when
within-subject and mixed within-subject and between-subjects
(mixed-measures) designs are considered, it is usually desirable
to include subject, as well as all possible interactions with subject,
as random-effects. In doing so, the structure of the EMS changes
and the derivation of a suitable error term for testing hypotheses
about particular effects becomes more complex.

2.2.1. A Single Within-Subject Factor
To begin, consider a basic mixed-measures design containing a
single within-subject factor and a single between-subjects factor.
The model is

yijk = µ + αi + βj + (αβ)ij + Sk(j) + ǫijk (3)

where µ is the overall mean, αi is the effect of the ith level of
the within-subject factor (i = 1, . . . , a), βj is the effect of the jth
level of the between-subjects factor (j = 1, . . . , b) and (αβ)ij is
the ij interaction effect. Sk(j) is the random effect of the kth subject

(k = 1, . . . , n) assumed Sk(j) ∼ N (0, σ 2
s ) and ǫijk is random error

assumed ǫijk ∼ N (0, σ 2). The notation Sk(j) indicates that the
kth subject is nested within group j. This conveys the fact that,
for example, k = 1 refers to a different subject depending on the
value of j (see Chapter 26 in Kutner et al., 2004).

One of the key differences between the model in Equation (1)
and the model in Equation (3) is the inclusion of the random

TABLE 1 | Arithmetic for the derivation of the EMS in a 2-way between-subjects

ANOVA model, using the method of Kutner et al. (2004).

i j k

F F R EMSA EMSB EMSAB EMSE

a b n Variance i j ij k(ij)

αi 0 b n σ2
α bn 0 0 0

βj a 0 n σ2
β

0 an 0 0

(αβ)ij 0 0 n σ2
αβ

0 0 n 0

ǫk(ij) 1 1 1 σ2 1 1 1 1

TABLE 2 | The numerator and denominator mean squares from Equation (2) used

to form appropriate F-tests for the model in Equation (1).

Effect Test

Factor A MSA /MSE

Factor B MSB /MSE

A × B MSAB/MSE

subject effects Sk(j). Although possible to forego the subject effects
and work with a pooled error term (Penny and Henson, 2007),
doing so produces tests which are more conservative (see Casella,
2008, p. 85). As such, the inclusion of Sk(j) allows one to partition
the model errors in order produce more sensitive tests of the
model effects. Some intuition can be gained here by re-writing
Equation (3) as

yijk = µ + αi + βj + (αβ)ij + ǫ
(1)
k(j)

+ ǫ
(2)
ijk

(4)

where the splitting of the singular error term is now more
explicit. The complication for the traditional neuroimaging GLM
framework is that the error term used as the denominator
for the test statistics is derived implicitly from the difference
between the data and the model prediction. This means that

for the model in Equation (4), only ǫ
(2)
ijk

will be used in

the formation of the test statistics. Furthermore, in order
to correctly derive the final error term, ǫ

(1)
k(j)

must also be

included in the design matrix, despite its status as a random-
effect.

As with before, the breakdown of the arithmetic in Table 3

gives the calculation of the EMS for the mixed-measures ANOVA
model given in Equation (3). The final EMS are given in
Equation (5) with suitable ratios for testing the main effects
and interactions given in Table 4. Of particular importance here
is to recognize how both the A and A × B effects use the
overall error term, but that a suitable F-ratio for the effect
of B requires the use of MSS as the denominator instead. As
discussed above, only MSE will be used as the denominator
in neuroimaging software implementing the traditional GLM
approach. Testing of the effect of B therefore requires specifying
a separate model where the final error term is forced to become
MSS. This can be achieved by averaging the raw data over
the levels of the within-subject factor, and will be discussed
in more detail in the example analysis given at the end of
this paper.

EMSA = σ 2 + bn

∑

α2
i

a− 1

EMSB = σ 2 + aσ 2
s + an

∑

β2
j

b− 1

EMSAB = σ 2 + n

∑

(αβ)2ij

(a− 1)(b− 1)
(5)

EMSS = σ 2 + aσ 2
s
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TABLE 3 | Arithmetic for the derivation of the EMS in a 2-way mixed ANOVA with a single within-subject and a single between-subjects factor.

i j k

F F R EMSA EMSB EMSAB EMSS EMSE

a b n Variance i j ij k(j) k(ij)

αi 0 b n σ2
α bn 0 0 0 0

βj a 0 n σ2
β

0 an 0 0 0

(αβ)ij 0 0 n σ2
αβ

0 0 n 0 0

Sk(j) a 1 1 σ2
s 0 a 0 a 0

ǫk(ij) 1 1 1 σ2 1 1 1 1 1

TABLE 4 | The EMS ratios used to form appropriate F-tests for the main effects

and interactions in a 2-way mixed-measures ANOVA.

Effect Test

A MSA /MSE

B MSB /MSS

A × B MSAB / MSE

EMSE = σ 2

2.2.2. Multiple Within-Subject Factors
The situation with multiple error terms becomes more
complex as the number of within-subject factors increases.
Consider adding another within-subject factor to the model in
Equation (3). This produces a 3-way mixed-measures ANOVA
model, which can be written as

yijkl = µ + αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk

+ (αβγ )ijk + Sl(k) + (Sα)il(k) + (Sβ)jl(k) + ǫijkl (6)

where βj is now the effect of the jth level of the additional
within-subject factor, γk is the effect of the kth level of the
between-subjects factor (k = 1, . . . , c) and the subject effects
are indexed by l = 1, . . . , n. In comparison to the model
in Equation (3), inclusions of additional within-subject factors
provides an opportunity for further interactions with the subject
effects. These are given by the interaction with the first within-
subject factor (Sα)il(k) and the interaction with the second within-
subject factor (Sβ)jl(k). Because these are interactions with a
random factor, these effects are also considered random-effects
and thus represent a further partitioning of the error term.
Although it may initially appear as though a 3-way interaction
with subject could also be included, this is not possible as it would
be perfectly collinear with the errors. This is a clue to the fact
that the error term in this model is the 3-way interaction with the
subject effects.

As this is a much larger model than the previous example, the
derivation of the EMS is more lengthy process. As with before,
the arithmetic is presented in Table 5 and the EMS are given
in Equation (7). We can see that there are now four possible
error terms, given by MSS, MSSA, MSSB, and MSE, respectively.
As indicated above, MSE could equivalently be written as MSSAB

to denote the equivalence with the highest-order interaction
between the subjects and within-subject factors. Suitable tests for
the model effects are given in Table 6, presenting a much more
complex arrangements where no more than two effects are tested
using the same error term.

EMSA = σ 2 + bσ 2
sα + bcn

∑

α2
i

a− 1

EMSB = σ 2 + aσ 2
sβ + acn

∑

β2
j

b− 1

EMSC = σ 2 + abσ 2
s + abn

∑

γ 2
k

c− 1

EMSAB = σ 2 + cn

∑

(αβ)2ij

(a− 1)(b− 1)

EMSAC = σ 2 + bσ 2
sα + bn

∑

(αγ )2
ik

(a− 1)(c− 1)

EMSBC = σ 2 + aσ 2
sβ + an

∑

(βγ )2
jk

(b− 1)(c− 1)
(7)

EMSABC = σ 2 + n

∑

(αβγ )2
ijkl

(a− 1)(b− 1)(c− 1)

EMSS = σ 2 + abσ 2
s

EMSSA = σ 2 + bσ 2
sα

EMSSB = σ 2 + aσ 2
sβ

EMSE = σ 2

2.3. Section Summary
EMS are a necessary concept in ANOVA models in order to
define suitable tests for the model effects. In purely fixed-effects
models it is rarely necessary to explicitly calculate the EMS
as a suitable denominator for each test is always given by the
overall error term. When random effects are included, such
as in repeated-measurements models with partitioned errors,
complications arise in the derivation of suitable tests. As a
minimum, models with a single within-subject factor have a
choice of two error terms to form tests, whereas those with
multiple within-subject factors have multiple possibilities when
forming tests. It is precisely this issue of specifying the correct
error term that leads to problems when using neuroimaging
software designed to only use a single error term. Unless the
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TABLE 5 | Arithmetic for the derivation of the EMS in the 3-way mixed-measures ANOVA with two within-subject and one between-subjects factor.

i j k l

F F F R EMSA EMSB EMSC EMSAB EMSAC EMSBC EMSABC EMSS EMSSA EMSSB EMSE

a b c n Variance i j k ij ik jk ijk l(k) il(k) jl(k) l(ijk)

αi 0 b c n σ2
α bcn 0 0 0 0 0 0 0 0 0 0

βj a 0 c n σ2
β

0 acn 0 0 0 0 0 0 0 0 0

γk a b 0 n σ2
γ 0 0 abn 0 0 0 0 0 0 0 0

(αβ)ij 0 0 c n σ2
αβ

0 0 0 cn 0 0 0 0 0 0 0

(αγ )ik 0 b 0 n σ2
αγ 0 0 0 0 bn 0 0 0 0 0 0

(βγ )jk a 0 0 n σ2
βγ

0 0 0 0 0 an 0 0 0 0 0

(αβγ )ijk 0 0 0 n σ2
αβγ

0 0 0 0 0 0 n 0 0 0 0

Sl(k) a b 1 1 σ2
s 0 0 ab 0 0 0 0 ab 0 0 0

(Sα)il(k) 0 b 1 1 σ2
Sα

b 0 0 0 b 0 0 0 b 0 0

(Sβ)jl(k) a 0 1 1 σ2
Sβ

0 a 0 0 0 a 0 0 0 a 0

ǫl(ijk) 1 1 1 1 σ2 1 1 1 1 1 1 1 1 1 1 1

TABLE 6 | The EMS ratios used to form appropriate F-tests for the main effects

and interactions in a 3-way mixed-measures ANOVA.

Effect Test

A MSA /MSSA

B MSB /MSSB

C MSC /MSS

A × B MSAB/MSE

A × C MSAC/MSSA

B × C MSBC/MSSB

A × B × C MSABC/MSE

EMS are taken into consideration it is entirely possible to end
up with F-ratios that do not actually test the intended model
effects. For instance, testing of MSB from Equation (3) using
MSE would not result in a test of the between-subject effect,
but a test of the between-subject effect plus the between-subject
error, leading to an artificial inflation of the F-statistic (as
noted previously by McLaren et al., 2011). Considering that
the between-subject results are often of great interest in clinical
neuroimaging studies, the ramifications of inflating these effects
could be dire. Furthermore, these issues are not constrained to
just between-subject effects. Considering the breakdown of the
EMS in Equation (6), it is clear that the use of MSE as the
denominator of the F-ratios could lead to over-inflated statistics
for all but the A×B and A×B×C interaction effects. As such, it is
vital that the correct error terms are derived and then enforced to
make sure that the tests of the model effects are accurate.

3. CONTRAST WEIGHTS

In the previous section we saw the importance of using EMS
to derive suitable error terms in ANOVA models. Although this
represents the core issue at the heart of implementing repeated
measurement models in the GLM, it is also worth considering
the practical question of how questions can be asked of these

models in the form of contrast weights. Although the contrast
framework is a well-established aspect of hypothesis testing in
the neuroimaging GLM (e.g., Poline et al., 2007), additional
complications arise when implementing repeated measurements
models. This is due to both the inclusion of the subject effects in
the model and the necessity of using overparameterized designs
in certain software packages (such as SPM). These complications
have unfortunately lead to some dubious advice on forming
contrast weights in these models, which shall be discussed below.
In addition, the use of contrast weights provides further insights
into the topic of the EMS and formation of F-ratios, and so
provides a complimentary perspective on the issues discussed in
the previous section.

3.1. Contrast Weights for
Overparameterized
Repeated-Measurement Models
Consider the overparameterized design matrix for a 2×2 mixed-
measures ANOVA with n = 2, given in Equation (9). Each row
represents the linear combination of parameters which form one
of the model predictions. As an example, the first row is given by

X
(A)
1 =

[

1 1 0 1 0 1 0 0 0 1 0 0 0
]

which tells us the combination of parameters needed to
calculate the prediction for the A1B1 cell for subject 1, defining
an estimable function of the parameters (see McFarquhar,
2016). Because linear combinations of estimable functions are
themselves estimable (see McCulloch et al., 2008, p. 122), the
rows of the design matrix can be used as the building-blocks for
deriving contrast weights, irrespective of the form that the design
matrix takes. Furthermore, note that this prediction is given by

µ111 = X
(A)
1 β

= µ + α1 + β1 + (αβ)11 + S1(1) (8)

which is a combination of both the fixed and random model
effects. Although the subject effects are not of interest, their
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inclusion in the design matrix means we cannot simply give
them a weight of 0 when calculating cell or marginal means as
this would define a non-estimable function. As such, calculation
of the ANOVA effects from cell and marginal means will
include the subject terms. For certain ANOVA effects, the subject
terms will cancel in the numerator, whereas for others they
will not. For those where they do not, an error term must
be selected such that the subject effects are also present in
the denominator. This is simply a re-statement of the general
approach to constructing F-ratios using the EMS, but from the
perspective of contrast weights.

X(A) =









































µ α1 α2 β1 β2 (αβ)11 (αβ)21 (αβ)12 (αβ)22 S1(1) S2(1) S1(2) S2(2)

1 1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 1 0 0 1 0 0 1 0 0 0

1 1 0 1 0 1 0 0 0 0 1 0 0

1 0 1 1 0 0 1 0 0 0 1 0 0

1 1 0 0 1 0 0 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1 0 0 1 0

1 1 0 0 1 0 0 1 0 0 0 0 1

1 0 1 0 1 0 0 0 1 0 0 0 1









































(9)

As an example, consider deriving the weights for testing the main
effect of the within-subject factor A. To do so, we can first average
the rows in Equation (9) which code the first level of factor A and
then average the rows which code the second level of factor A2.
This gives

G
(A)
A1 =

[

1 1 0 1/2 1/2 1/2 0 1/2 0 1/4 1/4 1/4 1/4
]

G
(A)
A2 =

[

1 0 1 1/2 1/2 0 1/2 0 1/2 1/4 1/4 1/4 1/4
]

(10)

providing the weights for calculating the marginal means of
factor A. Notice that these weights are non-zero for the subject
effects. The weights for the main effect are then formed from the
subtraction of the weights for the marginal means, giving

L
(A)
A = G

(A)
A1 − G

(A)
A2 (11)

=
[

0 1 −1 0 0 1/2 −1/2 1/2 −1/2 0 0 0 0
]

(12)

where we can see that the subject effects have canceled. Now
consider deriving the weights for testing the main effect of the
between-subject factor B. Taking a similar approach to above
we find

G
(A)
B1 =

[

1 1/2 1/2 1 0 1/2 1/2 0 0 1/2 1/2 0 0
]

G
(A)
B2 =

[

1 1/2 1/2 0 1 0 0 1/2 1/2 0 0 1/2 1/2
]

(13)

which provide the weights for the marginal means of factor B
which again contain non-zero weights for the subject effects.
Subtracting these weights gives

L
(A)
B = G

(A)
B1 − G

(A)
B2 (14)

2Be aware that this approach will not work with unbalanced design matrices. See

section 4.2.4 for how this procedure can be adjusted for those cases.

=
[

0 0 0 1 −1 1/2 1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2
]

(15)

which notably is still non-zero for the subject terms. This has
direct correspondence with the definitions of the EMS from
earlier where EMSB in Equation (3) contains σ 2

s . In order to
form a meaningful F-ratio using the weights given above, one
would need to select an error term that also contained the subject
effects. As this is not possible by default in most neuroimaging
implementations of the GLM, the use of the above contrast
would be inappropriate for testing the between-subject effect of
factor B. This is because, as stated earlier, the magnitude of the
test-statistics would be inflated by the inclusion of the subject
effects in the numerator, but not in the denominator. This speaks
to a general rule-of-thumb for implementing these models in
neuroimaging software, namely that appropriate contrast weights
should always contain zeros for all terms containing the subject
effects. Notably, this goes against the methods given by Gläscher
and Gitelman (2008), where contrasts containing weights for the
subject-terms are given as means of testing all the ANOVA effects
within the same model. Hopefully it is now clear why this advice
is inappropriate.

3.2. Contrast Weights for
Non-overparameterized
Repeated-Measurement Models
To see how the discussions in the previous section are readily
applicable to non-overparameterized models (such as those
used in FSL FEAT), consider the design matrices given in
Equation (16). These are both constrained versions of the matrix
from Equation (9), with X(B) using “treatment” coding and
X(C) using “sigma-restricted” coding (see McFarquhar, 2016).
Of note is the fact that “cell means” coding could also be
used to simplify Equation (9), but that the design would
remain overparameterized (although the contrast weights would
be simpler).

X(B) =









































µ α1 β1 (αβ)11 S1(1) S1(2)

1 1 1 1 1 0

1 0 1 0 1 0

1 1 1 1 0 0

1 0 1 0 0 0

1 1 0 0 0 1

1 0 0 0 0 1

1 1 0 0 0 0

1 0 0 0 0 0









































X(C) =









































µ α1 β1 (αβ)11 S1(1) S1(2)

1 1 1 1 1 0

1 −1 1 −1 1 0

1 1 1 1 0 0

1 −1 1 −1 0 0

1 1 −1 −1 0 1

1 −1 −1 1 0 1

1 1 −1 −1 0 0

1 −1 −1 1 0 0









































(16)

Application of the earlier approach to deriving contrasts leads to
the weights for the effect of within-subject factor A in model B

(L
(B)
A ) and model C (L

(C)
A ), as given in Equation (17).

G
(B)
A1 =

[

1 1 1/2 1/2 1/4 1/4
]

G
(C)
A1 =

[

1 1 0 0 1/2 1/2
]

G
(B)
A2 =

[

1 0 1/2 0 1/4 1/4
]

G
(C)
A2 =

[

1 −1 0 0 1/2 1/2
]

(17)

L
(B)
A =

[

0 1 0 1/2 0 0
]

L
(C)
A =

[

0 2 0 0 0 0
]
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which, as with before, do not contain weights for the subject
effects. Similarly, the contrast for between-subjects factor B can
be derived for both alternative codings as shown in Equation (18).

G
(B)
B1 =

[

1 1/2 1 1/2 1/2 0
]

G
(C)
B1 =

[

1 0 1 0 1/2 0
]

G
(B)
B2 =

[

1 1/2 0 0 0 1/2
]

G
(C)
B2 =

[

1 0 −1 0 0 1/2
]

(18)

L
(B)
B =

[

0 0 1 1/2 1/2 −1/2
]

L
(C)
B =

[

0 0 2 0 1/2 −1/2
]

which again contain weights for the subject effects and are
therefore inappropriate when dealing with software that only
implements a single error term.

3.3. Contrast Weights for Follow-Up Tests
Another aspect of hypothesis testing in ANOVA models is the
use of post-hoc contrasts to follow-up omnibus main effects or
interaction results. Although often dealt with using t-contrasts,
most of the discussion in the preceding sections is equivalent for
using either t- or F-contrasts. Indeed, given that F = t2 when
rank (L) = 1, the discussions in this paper can be taken as
equivalent for both the t and the F. In terms of the actual follow-
up tests, the theory remains the same insofar as the post-hoc tests
of the main effects can be conducted using the same error term as
the omnibus test. For interactions, more caremust be taken as the
error term for the follow-up tests will not necessarily be the same
as the error term used for the omnibus effect. As an example,
consider following-up the A×B interaction from the model in
Equation (9). Using the approach of simple main effects, we may
wish to examine the effect of the within-subject factor A at the
first level of the between-subjects factor B. The weights for this
would be derived as follows

G
(A)
A1B1 =

[

1 1 0 1 0 1 0 0 0 1/2 1/2 0 0
]

G
(A)
A2B1 =

[

1 0 1 1 0 0 1 0 0 1/2 1/2 0 0
]

(19)

L
(A)
A1−A2(B1)

=
[

0 1 −1 0 0 1 −1 0 0 0 0 0 0
]

which contains no weights for the subject effects and so can be
tested with the overall error term of the model. Alternatively,
if we wanted to examine the effect of the between-subjects
factor B at the first level of the within-subject factor A, the
weights would be

G
(A)
A1B1 =

[

1 1 0 1 0 1 0 0 0 1/2 1/2 0 0
]

G
(A)
A1B2 =

[

1 1 0 0 1 0 0 1 0 0 0 1/2 1/2
]

(20)

L
(A)
B1−B2(A1)

=
[

0 0 0 1 −1 1 0 −1 0 1/2 1/2 −1/2 −1/2
]

which does contains non-zero values for the subject effects.
This is perhaps not surprising given that this simple main
effect is a between-subject comparison, constrained to only use
the estimates from the first level of factor A. Nevertheless, it
demonstrates that the error term for the omnibus test may not
always be appropriate for testing the simple effects. If one did
wish to test this effect, another between-subjects model would

need to be specified containing only the data from the first level
of the within-subject factor, adding further complication to the
approach necessitated by the implementation of the GLM in
common neuroimaging packages.

3.4. Section Summary
Although contrast weights are a familiar concept for hypothesis
testing in the GLM, the inclusion of the random subject effects
can make their derivation more difficult depending on the design
matrix coding options available. A general approach has been
given whereby weights can always be reliably derived using the
rows of the design matrix. In addition, this section has shown
how contrast weights can provide a complimentary perspective
on the issue of suitable error terms. In particular, weights
that are derived correctly but contain non-zero values for the
subject effects are not suitable for testing with the overall error-
term of the model. This provides a useful rule-of-thumb for
neuroimaging researchers, particularly when it comes to follow-
up tests of interactions, where extra care must be taken given that
a suitable error term is not necessarily the same as the error term
used for the omnibus effect.

4. BUILDING REPEATED MEASURES
MODELS IN NEUROIMAGING SOFTWARE

Now that the core theoretical concepts of repeatedmeasurements
models have been described, we turn to the practical aspect of
specifying partitioned-error ANOVA models in neuroimaging
software. Based on the discussions in the preceding sections, four
generic steps for correctly specifying these models are:

1. Calculate the EMS for the complete model. The number of
error terms corresponds to the number of separatemodels that
need to be estimated.

2. For each model, identify which within-subject factors are not
tested under that error term. Those factors that are missing
must be averaged over.

3. Use contrasts at the 1st-level to average-over the various
factors identified above.

4. Specify the 2nd-level models using the 1st-level contrasts
created in the previous step and then derive the contrast
weights using the design matrices.

These steps can be used with any software implementing
the mass-univariate GLM approach to modeling group-level
neuroimaging datasets. Tomake these steps clear, an example will
now be provided of specifying a 3-way mixed-measures ANOVA
using the Flexible Factorial module in SPM12.

4.1. Example Data Set
The example data set comes from a previously reported fMRI
study by Trotter et al. (2016) investigating the role of serotonin
in discriminatory and affective touch perception. Subjects were
scanned whilst experiencing gentle stroking of either the arm
or the fingers using brushes of different textures. Sixteen of
the subjects were administered a tryptophan-depleting amino
acid drink prior to the scan, with the remaining 14 subjects
receiving a balanced (control) amino acid drink. The design
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was therefore a 2 × 3 × 2 factorial design with a within-
subject factor of Location (arm/fingers), a within-subject factor
of Texture (soft/medium/coarse) and a between-subjects factor
ofDrink (balanced/tryptophan-depleting). It is worth noting that
Trotter et al. (2016) conducted the analysis appropriately using
the sandwich estimator (SwE) toolbox (Guillaume et al., 2014),
however for the purpose of the current paper we shall explore
how the data could have been modeled using SPM12 instead.

4.2. Example Analysis
The model we wish to fit is given in Equation (6) and is
repeated below

yijkl = µ + αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk

+ (αβγ )ijk + Sl(k) + (Sα)il(k) + (Sβ)jl(k) + ǫijkl

In the context of the example dataset, αi is the ith level of Location
(i = 1, 2), βj is the jth level of Texture (j = 1, 2, 3) and γk is the
kth level ofDrink (k = 1, 2). The indices for the subjects run from
l = 1, . . . , nk where n1 = 14 and n2 = 16. As discussed earlier,
the Subject effects are nested within Drink and are considered
random-effects.

4.2.1. Step 1: Calculate the EMS and Identify the

Number of Models
The EMS for this design have already been derived using Table 5
and are listed in Equation (7). Although the method of Kutner
et al. (2004), used to calculate these expressions, is designed for
balanced models, it can be applied to unbalanced designs for the
purpose of deriving the necessary error terms for each F-ratio.
The final ANOVA table for this dataset is given in Table 7. The
degrees of freedom can be calculated using the rules given in
Appendix D.2 of Kutner et al. (2004) and provide one of several
ways of checking that each model has been specified correctly in
the analysis software. It is also worth mentioning that the EMS
can be calculated automatically using the algorithms available in
software such as the R package EMSaov (Choe et al., 2017).

4.2.2. Step 2: Identify the Factors to be

Averaged-Over
Based on the tests given in Table 7, we can see that there are 4
models needed. The model with the Subject(Drink) × Location
× Texture error term uses the original dataset. The model with
the Subject(Drink) × Texture error term requires a data set with
the Location factor averaged over. Similarly, the model with the
Subject(Drink) × Location error term requires a data set with
the Texture factor averaged over. Finally, the dataset with only
the Subject(Drink) error terms requires both the Location and
Texture factors averaged-over for each subject.

To understand why averaging over different effects produces
the correct error term, consider the model where we wish
to enforce Subject(Drink) × Texture as the error term.
After averaging over the Location factor, we can specify
the following model

y.jkl = µ + βj + γk + (βγ )jk + Sl(k) + ǫ.jkl (21)

TABLE 7 | ANOVA table for the example 3-way mixed-measures model.

Effect Df

Drink 1

Error: Subject(Drink) 28

Location 1

Location × Drink 1

Error: Subject(Drink) × Location 28

Texture 2

Texture × Drink 2

Error: Subject(Drink) × Texture 56

Texture × Location 2

Texture × Location × Drink 2

Error: Subject(Drink) × Location × Texture 56

Clearly we cannot include any of the terms containing αi from
the full model, but notice that we cannot include (Sβ)jl(k) either.
This is because this term would now be perfectly collinear with
the errors. Because of this, we know that the error term is (Sβ)jl(k).
This connects directly with the EMS from Equation (7) where the
averaged model has effectively removed the σ 2 term from EMSB
and EMSBC, leaving only σ 2

sβ as the overall error. Thus the F-
ratios from the averaged model allow for the effective isolation
of the effects of interest.

4.2.3. Step 3: Create the 1st-Level Contrasts for Each

of the 2nd-Level Models
The basic 1st-level models for this dataset contain boxcar
regressors for each of the Location × Texture cells of the
design. To create the raw data for the Subject(Drink) model a
single contrast per-subject was specified to average across all
the cells. For the Subject(Drink) × Location model 2 contrasts
per-subject were specified, one for each level of Location
averaged over the levels of Texture. For the Subject(Drink)
× Location model 3 contrasts per-subject were specified, one
for each level of Texture averaged over the level of Location.
Finally, for the Subject(Drink) × Location × Texture model 6
contrasts per-subject were specified, one for each of the Texture
× Location cells. Of note is the fact that all the condition
effects in these contrasts were specified as subtractions from
preceding rest periods. This was done to make all images
taken to the group-level readily interpretable. This is an
important point when implementing repeated measures models
with neuroimaging data, given that generally the images taken
to the group-level represent within-subject averages, rather
than contrasts per-se.

4.2.4. Step 4: Specify the Models and Derive the

Contrast Weights From the Design Matrices
Example design matrices for the different models, as specified
in SPM12 using the Flexible Factorial module3, are given in
Figure 1. Once the models have been specified, contrasts for

3For the current release of SPM12, it is necessary to alter the

spm_cfg_factorial_design.m file (inside /spm12/config) and change the line
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the ANOVA effects can be derived from the design matrix
by averaging over the rows after the removal of the subject
blocks and reduction to unique-row form4. As an example,
deriving the weights for testing the Location × Drink effect from
the Subject(Drink) × Location error model can be achieved in
MATLAB using

load(’SPM.mat’);

% Get design matrix, remove subjects and

reduce to unique rows

X = SPM.xX.X;

X = X(:,1:8);

X = unique(X, ’rows’, ’stable’);

% Get weights for the cell means

A1B1 = mean(X(X(:,1) == 1 & X(:,3) == 1,:));

A2B1 = mean(X(X(:,2) == 1 & X(:,3) == 1,:));

A1B2 = mean(X(X(:,1) == 1 & X(:,4) == 1,:));

A2B2 = mean(X(X(:,2) == 1 & X(:,4) == 1,:));

% Create interaction weights

L = (A1B1 - A2B1) - (A1B2 - A2B2);

where columns 1 and 2 code the levels of Location and columns 3
and 4 code the levels of Drink.

4.2.5. Results
The results from this model for a single voxel are shown
in both SPM and SPSS version 23 (http://www.ibm.com) in
Figure 2. Note that to make this comparison valid, all non-
sphericity corrections were switched off in SPM (see section 6
for more on this). On the left are the tables from SPSS under
the assumption of sphericity and on the right are the test statistic
values reported by SPM. The equivalency of the F-ratios and
degrees of freedom demonstrate how the correct error terms have
been selected in SPM and that the contrast weights derived from
the design matrix have resulted in the calculation of the correct
Type III test statistics.

It is worth noting that although the F-ratios are equivalent
in Figure 2, the sums-of-squares derived from the models
containing averaged datasets will not be the same as those
calculated by other statistical software. For instance, consider the
Texture×Drink effect from the Subject(Drink)× Texturemodel.
In SPSS the sums-of-squares are given as 0.264 for the interaction
effect and 4.522 for the error. In SPM these same sums-of-squares
are given as 0.132 for the interaction effect and 2.261 for the error.
Notice how these both differ by a factor of 2 due to averaging over
the two levels of Location before fitting the model. Similarly, all
the sums-of-squares for the Subject(Drink)× Locationmodel will
be out by a factor of 3, and for the Subject(Drink) model will be

fnums.num = [2 1] to fnums.num = [Inf 1] to allow for interactions

higher than a two-way.
4Removal of the subject blocks allow for derivation of Type III sums-of-squares in

unbalanced designs by reducing the design matrix to a balanced unique-row form.

This is based on assuming that the effect in question is being testing within an

appropriate model and thus the weights on the subject effects will be zero. If this is

not the case, then a non-estimable contrast will be returned.

out by a factor of 2× 3. Because these differences only amount to
a constant in both the numerator and denominator, the F-ratios
remain the same. As such, this discrepancy is of little concern.

5. USE OF CONTINUOUS COVARIATES IN
REPEATED MEASUREMENT MODELS

In the previous sections we have seen how complex mixed-
measures models can be specified using the GLM framework,
as implemented in standard neuroimaging software packages.
However, the discussion has so far neglected the formation of
ANCOVA models by the inclusion of continuous covariates.
Putting aside issues of whether it is meaningful to use
certain covariates to “control” for concomitant factors in quasi-
experimental situations (see Miller and Chapman, 2001, for
discussion), the use of covariates to reduce error variance is
an attractive and useful means of increasing the sensitivity
of an analysis. This is particularly pertinent for neuroimaging
given the general noisiness of the data. Despite this, the use of
continuous covariates in classical mixed-measures designs had
received limited attention in both the literature and statistical
textbooks. Notable exceptions include Federer (1955), Winer
(1962), Federer and Meredith (1992), and Federer and King
(2007). In particular, the text by Federer and King (2007) contains
extensive coverage of this issue and will be used as the basis for
the discussion in this section.

5.1. The Mixed-Measures ANCOVA Model
The extension of the basic mixed-measures ANOVAmodel from
Equation (3) to a mixed-measures ANCOVA model is given by
Federer and King (2007) as

yijk = µ+αi+βj+ (αβ)ij+β1x̄.k(j)+β2xik(j)+ Sk(j)+ ǫijk (22)

where xik(j) is the raw covariate value for repeated measurement
i from subject k in group j and x̄.k(j) is the average covariate
value for subject k in group j. In this parameterization, β1

gives the between-subject regression slope and β2 gives the
within-subject regression slope. The inclusion of both regression
coefficients is in-line with the recommendations of Federer and
King (2007) who state that “in an analysis of covariance...there
are as many...regression coefficients as there are error terms in an
analysis of variance...” (p. 240). Using this approach, the between-
subjects effects are adjusted for β1 and the within-subject effects
are adjusted for β2. The model in Equation (22) is therefore the
basis for any mixed-measures model that contains a continuous
covariate. Implementation will largely depend on whether the
covariate in question is measured between-subjects or within-
subject, as will be discussed below.

5.1.1. Between-Subjects Covariates
A between-subjects covariate (also known as constant or time-
invariant) is defined based on having a single value per-subject
that does not depend on the within-subject manipulation. The
inclusion of a between-subjects covariate in Equation (22)
renders the xik(j) term redundant and the model can be simplified
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FIGURE 1 | Comparison of the design matrices produced by SPM12 for the different error terms.

FIGURE 2 | Comparison of the results produced by SPM and SPSS 23 for data from a single voxel. Equivalence of the F-statistics and the degrees of freedom

confirms that the correct error terms have been selected and that correct Type III weights have been derived.

to only contain the x.k(j) term. Note that when using the multiple-
model approach advocated in the previous section, the covariate
must be tested within the same model as the other between-
subject effects and interactions (i.e., the Subject(Drink) model
from the previous example). All other models should contain
the covariate (by replicating the per-subject values), but should
not be used for testing the effect. The only exception is when an
interaction between the covariate and a within-subject factor is
included. In this instance, the interaction effect would be tested
within the same model as the test of the interacting within-
subject factor. Inclusion of these interactions is a modeling
choice that provides equivalence with the repeated measurement
models generated by software such as SPSS, as well as providing

equivalence with the multivariate approach to repeated measures
(see McFarquhar et al., 2016, for details).

5.1.2. Within-Subject Covariates
A within-subject covariate (also known as time-varying or
time-dependent) is defined based on having multiple values
per-subject that depend on the within-subject manipulation.
Unlike a between-subject covariate, there are no redundancies
in Equation (22) and both terms are therefore necessary.
Furthermore, when implementing the multiple-model approach
from the previous section, it is important to include as many of
the covariates as possible in each model. For some of the models,
averaging over certain factors will create redundancies across
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the covariates that can be removed. For instance, the model
used to test the between-subject effects will only contain x̄.k(j),
whereas the model used to test the within-subject main effect and
interaction can contain both x̄.k(j) and xik(j). In a similar vein to
testing the traditional ANOVA effects, the parameter associated
with x̄.k(j) should be tested using the between-subject error term
and the parameter associated with xik(j) should be tested using the
within-subject error term.

As a more involved example, consider an ANCOVA for the
complete 2 × 3 × 2 mixed-measures design from section 4.
Assuming there is a covariate value per-cell of the design,
extension of the split blockANCOVAmodel presented in Federer
and King (2007) provides the model form

yijkl = µ + αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk

+ β1x̄..l(k) + β2x̄i.l(k) + β3x̄.jl(k) + β4xijl(k) (23)

+ Sl(k) + (Sα)il(k) + (Sβ)jl(k) + ǫijkl

where xijl(k) is the raw covariate value, x̄..l(k) is the average
covariate value for subject l from group k, x̄i.l(k) is the average
covariate value for subject l from group k from level i of the first
within-subject factor and x̄.jl(k) is the average covariate value for
subject l from group k from level j of the second within-subject
factor. The ANOVA table for this model, indicating the most
suitable error terms for testing the covariates, is given in Table 8.

An additional complication arises when one of the covariates
in Equation (24) is associated with one within-subject factor,
but is constant over the other. In this situation there will
be redundancies in the definitions of the four covariates. For
instance, if one of the within-subject factors was time and a value
was measured only once per-visit, the value would be constant
across any other within-subject variables. Implementation of this
design would then be similar in spirit to the use of between-
subject covariates in Equation (22), insofar as all covariates terms
would attempt to enter each model, but would then be dropped
wherever redundancies are found.

6. THE ASSUMPTION OF SPHERICITY

One final important issue to discuss is the much-maligned
sphericity assumption of the traditional repeated-measures
ANOVA. In brief, the validity of the F-ratios, in terms of
following an exact F-distribution under the null, is predicted on
assuming a spherical structure to the variance-covariance matrix.
This can be expressed as

Var(yi − yj) = σ 2
i + σ 2

j − 2σij = λ ∀i 6= j (24)

which indicates that for all pairs of measurements the variance of
their differences are identical. This is therefore a similar (but less
restrictive) case of compound symmetry (Davis, 2002).

Traditionally, departures from sphericity are assessed using
hypothesis tests, such as described by Mauchly (1940). If
significant departures from sphericity are found then corrections
to the degrees of freedom, such as those after Greenhouse and
Geisser (1959) or Huynh and Feldt (1976), can be applied.
Generally speaking, neuroimaging software does not implement

TABLE 8 | ANOVA table for the example 3-way mixed-measures model including

a within-subject covariate.

Effect Df

Covariate (x̄..l(k)) 1

Drink 1

Error: Subject(Drink) 27

Covariate (x̄i.l(k)) 1

Location 1

Location × Drink 1

Error: Subject(Drink) × Location 27

Covariate (x̄.jl(k)) 1

Texture 2

Texture × Drink 2

Error: Subject(Drink) × Texture 54

Covariate (xijl(k)) 1

Texture × Location 2

Texture × Location × Drink 2

Error: Subject(Drink) × Location × Texture 54

such corrections. For instance, use of the OLS algorithm in FSL
means assuming sphericity for the validity of the F-tests at every
voxel. Use of permutation tests via Randomize (Winkler et al.,
2014) do not have such restrictive assumptions, although the
exchangeable structure of the data is more complex and must
be accommodated for accurate derivation of the null distribution
(see Winkler et al., 2015, for details). SPM, on the other-hand,
implements a correction for departures from sphericity, but
there are some caveats. Firstly, the covariance matrix used to
derive the correction comes from a subset of pooled voxels,
rather than being applied at each voxel individually. As discussed
by McFarquhar et al. (2016), the method used to select voxels
to enter this pool can have a dramatic effect on the number
of voxels that subsequently survive correction. Secondly, the
impact of this correction on the specification of repeated
measurement models remains unclear. According to Glaser
and Friston (2007), the non-sphericity correction employed
by SPM is essentially a whitening procedure that renders the
covariance structure a scalar multiple of an identity matrix. This
is therefore equivalent to the method of generalized least-squares
(e.g., Faraway, 2016), which can be used to specify a marginal
model that accommodates a variety of covariance structures
without the need for random effects (see Guillaume et al., 2014).
The implication here would seem to be that when the non-
sphericity procedure is employed the inclusion of the random
subject blocks is unnecessary. However, the current default SPM
implementations of both the paired t-test and one-way within-
subject ANOVA make use of the non-sphericity correction with
random subject blocks. At present it is unclear why this is the case
and requires further clarification from the SPM authors.

7. CONCLUSIONS

This paper has discussed the modeling of group-level repeated
measurements in neuroimaging, using the traditional GLM
framework. The core statistical concept of the EMS has
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been discussed and from these discussion a set of steps for
implementing these forms of models in software have been
given. Additional considerations, such as covariates and the
assumption of sphericity, have also been discussed. The main
conclusion from this paper is that if one wishes to use traditional
neuroimaging analysis tools for this purpose, great care must
be taken to correctly derive the tests from the EMS and then
to carefully implement the multiple models necessitated by the
GLM framework. In doing so, it is important to carefully consider
the contrasts used and the error-terms employed, especially for
follow-up tests from interaction effects. To that end, the oft-
quoted advice given by Gläscher and Gitelman (2008) should
no longer be relied-upon for deriving contrast weights as it may
lead to inappropriate tests of the model effects. Furthermore,
the example given in this paper has highlighted how tedious
and complicated the implementation of these models can
be in standard software. Ultimately, there are much better
alternative tools available for this purpose. Examples include
the author’s own multivariate and repeated measures (MRM)
toolbox (McFarquhar et al., 2016), the previously mentioned
SwE toolbox (Guillaume et al., 2014), the AFNI tool 3dMVM
(Chen et al., 2014), and the mixed-effects approaches discussed
by Chen et al. (2013). There are also tools available which seek
to simplify the specification of the traditional partitioned-error
ANOVA, such as GLMFlex (McLaren et al., 2011), although
the limitations of the traditional ANOVA framework should be
enough for researchers to consider the more modern alternatives
mentioned above. McFarquhar et al. (2016) provides comparison
between several of these tools (including MRM, SwE, and
GLMFlex) noting that largely their differences come down
to assumptions about the covariance structure of the data,
available methods for multiple-comparison correction, the ability
to accommodate certain features of the data (e.g., missing
data, within-subject covariates) and the user-friendliness of the
implementation.

In terms of a more general conclusion from this paper, it
is important for developers of neuroimaging analysis packages
to recognize that the onus of correctly specifying these models
should not be placed on the users. Indeed, considering the
methods outlined in this paper it would seem wholly unfair
to expect that users would know to perform the given steps
without any clear guidance. Instead, software developers should
strive for improved usability and clarity in their implemented
methods. Although usability is not always considered as carefully
compared with commercial software, it is hopefully clear
that only by providing user-friendly and well-documented
software can the neuroimaging community be confident in
the accuracy of their methods. This is particularly true given
recent concerns about the accuracy of common neuroimaging
analysis approaches (Eklund et al., 2016) as well as more general
concerns about the replicability of behavioral research (Open
Science Collaboration, 2015). At present it is unclear how
many published neuroimaging analyses were conducted using
inappropriate methods of analysing repeated measurements.
What is clear is that neuroimaging needs a renewed focus
on the methods and software that are readily employed to
analyse brain imaging data. This is the only way for the
neuroimaging community to have faith that published analyses
have been implemented correctly and provide results that can be
interpreted accurately.
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