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Simple Summary: The effect of vitamin D3 on the development of breast cancer (favorable, ineffec-
tive, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The
immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression.
The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was
to summarize the data available and to find indications of vitamin D treatment failure or success.
Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in
breast cancer.

Abstract: Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role
in various cellular processes. It regulates the proliferation and differentiation of several normal cells,
including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and
apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3

in breast cancer development has been observed in numerous clinical studies. However, not all studies
support the protective effect of vitamin D3 against the development of this condition. Furthermore,
animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis
in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th)
17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein
we present a literature review on the existing data according to the interplay between vitamin D,
Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in
various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and
breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development
depends on many factors, such as age, menopausal status, or obesity. According to that, more
extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer,
especially when no correlations seem to be obvious.

Keywords: vitamin D; calcitriol; Th17 lymphocytes; dendritic cells; breast cancer

1. Introduction

Despite great advances in science and medicine over the last few decades, breast cancer
remains the most frequently diagnosed cancer among women around the world. The factors
favoring breast cancer development include hormonal disorders, early menstruation, an
abnormal number of menstrual cycles during life, pregnancy, obesity, diet, hormonal
replacement therapy, lack of physical activity, and lifestyle or genetic disorders (the latter
accounting for up to 10% of all cases) [1,2]. Throughout her life, the body of a woman
constantly experiences changes in the concentration of hormones, which regulate many
processes in a single cell as well as in tissues. Due to irregular menstrual cycles, early
menstruation, late motherhood or absence of pregnancies, or the supply of exogenous
estrogens via food or hormonal replacement therapy, tissues are exposed to excessive
levels of estrogens, which results in cell cycle dysregulation and excessive cell proliferation,
leading to the development of cancer. On the other hand, after menopause, when estrogen
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synthesis by ovaries stops and the process is taken over by other tissues due to the aromatase
found in their cells, this enzyme involved in estrogen production may be excessively
activated by external factors, promoting the development of breast cancer [3,4].

The development of breast cancer, as with all cancers, is a complex and long-term
process. The cell consolidates successive genetic changes in each stage, and eventually
transforms from an originally healthy, normal state into a malignant, invasive neoplastic
one [4]. Breast neoplasms are very diverse. During each stage of disease development,
the expression level of various proteins changes, which is often related to the variable
sensitivity of these tumors to the applied treatment. Breast cancers are classified, inter alia,
based on the expression of receptors such as estrogen receptor α (ERα; often referred to
as ER), progesterone receptor (PR), and human epidermal growth factor receptor (EGFR;
also known as ErbB2/HER2) with tyrosine kinase activity [3–6]. The beta form of the
estrogen receptor (ERβ) is also known; however, only the expression of ERα is considered
in the clinical classification of cancer due to the understanding of the function of this
receptor and its significance in the development of breast tumors. The role of ERβ in breast
cancer development is not fully understood [6,7], although researchers have been showing
increasing interest in studying its functions in recent years [8–12] because of its potential
of novel therapies in ERα negative-BCa and TNBC [5]. Reports also indicate the use of
ERα-36, an isoform of ERα, as a diagnostic marker in breast cancer. The presence of this
receptor in neoplastic cells, apart from the “proper” ERα (Erα-66), causes disturbances
in signal transmission. ERα-36, similarly to GPR-30 (G protein-bound estrogen receptor),
performs signal transduction bypassing the genomic pathway, while blocking signaling in
the cell via ERα. In patients diagnosed with hormone-dependent cancer, ERα-36 interferes
with hormonal therapy and reduces its effectiveness [13,14].

Approximately 60–70% of breast cancers may express ER and/or PR and are called
luminal A subtype (ER+ and/or PR+, HER2−, Ki-67 low) and luminal B subtype (ER+
and/or PR+, HER2+ or HER2−but high Ki-67), approximately 20–30% overexpress HER2
(HER2 enriched), and approximately 10% do not express any of the three receptors and
are classified as “triple negative” (basal-like tumors) [6,15]. During diagnosis of these
neoplasms, the expression levels and activity of aromatase, an enzyme from the cytochrome
P450 (CYP) group, which is involved in a stage of estrogen synthesis, are also assessed.
In patients with ER+ cancer, aromatase is strongly overexpressed to provide cells with
adequate estrogens for their interrupted growth [5–7]. On the other hand, in patients with
triple-negative breast cancer (TNBC), aromatase present in other tissues (such as ovary)
promotes metastasis of cancer cells to different organs [16].

The expression of ER, PR, and HER2 is altered in both early and later stages of the
development of breast cancer. At the early stage, the neoplasm is referred to as in situ
tumor, which forms proliferating neoplastic epithelial cells. Breast cancer can be classified
at the in situ stage: ductal carcinoma in situ (DCIS) and lobular carcinoma in situ. In the
further stages of cancer development, the tumors infiltrate the surrounding tissues and
become invasive cancers, metastasizing to distant organs [2,17].

In addition to proteins that are directly involved in the regulation of endocrine
metabolism and growth factor production, breast cancer cells also overexpress proteins
related to vitamin D metabolism and signaling via the vitamin D receptor (VDR) or calcium-
sensing receptor (CaSR). Studies on the expression of CYP27B1, CYP24A1 (vitamin D-
metabolizing enzymes), and VDR in sections of mammary gland tissues taken from women
suffering from breast cancer of various stages and healthy women have shown that im-
balance between the expression of these CYP enzymes and decreased VDR expression
promote invasiveness and metastasis of tumor [18,19]. Impaired regulation of calcium
and phosphate metabolism, and disturbances in the related signal transduction pathways,
leads to the development of many diseases, including abnormal changes in the mammary
gland tissue and subsequently cancer [20–22]. However, these observations from scientific
research are yet to be applied in the clinical classification of tumors.
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2. Vitamin D and Breast Cancer Prevention and Treatment

In the 1920s, sunbathing and consumption of fish oil were prescribed to children
who were at risk of developing rickets. Several observations highlight the wide range
of effects of vitamin D on the human body. The influence of sunlight, latitude, and a
vitamin D-rich diet on the development of many civilization diseases, including breast
cancer, has been studied [23]. Numerous epidemiological studies have shown a direct
relationship between geographic location and decreasing UV-B exposure as the distance
from the equator increases. Low vitamin D levels due to low exposure to UV radiation, as
well as consumption of a vitamin D-deficient diet, are associated with an increased risk of
colon, breast, ovary, and prostate cancers [17–20,24].

A study analyzed the serum level of 25-hydroxyvitamin D (25(OH)D; the main metabo-
lite used to assess the vitamin D status in the body) in pre- and postmenopausal women,
as well as genetic predisposition, such as VDR gene polymorphism and expression of
vitamin D-metabolizing enzymes at various stages of cancer development [25].

The study revealed that higher serum 25(OH)D is strongly associated with better
prognosis. Moreover, it was supposed that lower vitamin D serum levels in the summer-
time may speak for low vitamin D levels during the whole year. This in turn is of great
importance according to the crucial role of vitamin D in various cellular processes, apart
from maintaining calcium homeostasis, such as the regulatory processes of proliferation
and differentiation of many normal and neoplastic cells, influence on the cell cycle, and
stimulation of cell maturation and apoptosis through a mechanism dependent, among
others, on VDR [26–28]. Vitamin D controls angiogenesis, influences signaling pathways,
that are involved in migration and metastasis of cancer cells to distant tissues and or-
gans, for example, by regulating the expression of adhesion molecules on the surface of
these cells [7,10,29–33]. Therefore, vitamin D is considered an important regulator of life
processes in the human body.

2.1. Role of Vitamin D in Development of Breast Cancer
2.1.1. The 25-Hydroxyvitamin D Level and Cancer Correlations

Some clinical studies have analyzed the role of vitamin D in the pathogenesis of breast
cancer, but not all of them support the protective role of vitamin D against breast cancer
development. Women diagnosed with breast cancer revealed a significantly lower 25(OH)D
level than healthy women. Patients with advanced or metastatic breast cancer showed
significantly lower 25(OH)D status than patients with early-stage disease [21–23,26,27].

On the other hand, a recent meta-analysis indicated that high serum level of 25(OH)D
has a significant protective effect only in premenopausal women [31] or at the time of
diagnosis. The European population-based cohort studies conducted among older adults
confirmed that the risk of breast cancer increased with the concentration of 25(OH)D [32].
Recently, Kanstrup et al. showed poorer breast cancer survival among women with high
levels of 25(OH)D (above 110 nmol/L) [33].

2.1.2. Studies on VDR and Other Vitamin D-Related Molecules

Studies on VDR expression revealed that low VDR expression in tumor was corre-
lated with aggressive characteristics of breast cancer [28]. What’s more, a favorable tumor
characteristic included smaller size, lower grade, estrogen receptor positivity and proges-
terone receptor positivity, and lower expression of Ki67 (overall better prognosis). Also, the
nuclear and cytoplasmic VDR expression were associated with a low risk of breast cancer
mortality, with hazard ratios 0.56 (95% CI 0.34–0.91) and 0.59 (0.30–1.16), respectively [29].
Moreover, the VDR expression in circulating tumor cells (CTCs) can be suggested as a
potential prognostic biomarker of breast cancer [30].

Some studies that analyzed the relationships between exposure to sunlight, intake of di-
etary vitamin D, serum levels of 25(OH)D and calcitriol (1,25(OH)2D3, the active metabolite
of vitamin D3), and expression and genetic variations of VDR and other vitamin D-related
molecules are summarized in Table 1.
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Table 1. Examples of clinical/epidemiological data regarding the impact of vitamin D on breast cancer incidence/progression/metastasis.

Factor Studied Type of Studies Observed Effects References

Sunlight exposition Case–control Sunlight measures are not associated with breast cancer risk but may
depend on timing of exposure and genetic background [34]

Prospective UV radiation has no association with breast cancer risk [35]
Systematic review and meta-analysis Exposure to sun for longer than an hour a day during the summer could decrease the risk of breast cancer [36]

Cancer database analysis Breast cancer is diagnosed more often in spring and fall; breast cancer seasonality is latitude-dependent [37]
Retrospective analysis Sunlight exposure may be associated with more prevalent TNBC [38]

Population-based Spending more daylight hours outdoors in a year was associated with lower risk of ER+, ER−, and TNBC [39]
Population-based case–control Factors suggestive of increased cutaneous production of vitamin D are associated with reduced breast cancer risk [40]

Death certificate based case–control Breast cancer was negatively associated with residential and occupational sunlight [41]

Vitamin D dietary intake Population-based
In the pooled analysis, dietary vitamin D and calcium were not associated with risk of breast cancer subtypes.

Vitamin D: possible inverse associations between intake of ≤800 IU/d (compared with nonuse) and risk of several
subtypes, with strongest effects observed for TNBC; no association was found for >800 IU/d

[39]

Prospective Higher intakes of calcium and vitamin D may be associated with lower risk of
premenopausal breast cancer, but not among postmenopausal women [42]

Nutrition cohort Women with the highest intake of dietary calcium (>1250 mg/d) were at a lower risk of breast cancer than
≤500 mg/d; but neither use of supplemental calcium nor vitamin D intake was associated with breast cancer risk [43]

Double-blind, placebo-controlled
clinical trial and cohort study

Only some evidence for a reduction in breast cancer risk and total invasive
cancer risk among calcium and vitamin D users [44]

Case–control High calcium, phosphorus, and vitamin D nutrient intake pattern was
associated with a significant decrease in breast cancer risk [45]

Case–control Supplementation with vitamin D, fatty acids EPA, and DHA was inversely associated with breast cancer [46]

Case–control

The risk of breast cancer was lower by 67% if the serum level of 25(OH)D was ≥24.6 ng/mL and lower by 68% if
the serum level of calcium was ≥9.6 mg/dL; higher (than-normal) calcium serum level, considered separately, and
a slightly lower-than- normal vitamin D serum level may protect against breast cancer among postmenopausal

women, independent of dietary patterns and supplements

[47]

25(OH)D plasma level Observational Low 25(OH)D serum levels, alone and in combination with BsmI VDR genotype, may increase
the risk of breast cancer in a UK Caucasian population [48]

Cross-sectional analytical study 25(OH)D deficiency is widespread among breast cancer patients [49]

Nested case–control
No overall association was found between plasma 25(OH)D and breast cancer risk; women with high,

compared with low, plasma 25(OH)D levels in the summer have a reduced breast cancer risk,
and plasma 25(OH)D may be inversely associated with risk of tumors expressing high levels of VDR

[50]

Case–control Low serum 25(OH)D levels, high tissue VDR levels, and high ERα gene expression were
associated with increased risk of breast cancer [51]

Unmatched case–control
Severe vitamin D deficiency (<25 nmol/L) was significantly

higher in chemotherapy-naïve (41.1%) than in TAM-treated (11.2%) patients;
vitamin D deficiency was not significantly associated with tumor characteristics or VDR genotype

[52]
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Table 1. Cont.

Factor Studied Type of Studies Observed Effects References

Nested case–control
No association was found between plasma level of free 25(OH)D and overall risk of breast cancer; no association
was found for plasma vitamin D binding protein (DBP) as well; neither the total nor the calculated free 25(OH)D

and breast cancer association substantially varied by plasma DBP levels
[53]

Cross-sectional Significant correlation was observed between low vitamin D levels and advanced stage of breast cancer,
particularly in postmenopausal patients [22]

Prospective Maintaining an optimal 25(OH)D status at diagnosis and during the 1-year follow-up period is important for
improving breast cancer patient survival [21]

Prospective Serum levels of 25(OH)D were significantly higher in patients with early-stage breast cancer than in those with
locally advanced or metastatic disease [23]

Case–control Women with low levels of 25(OH)D, as compared to women in the middle tertile, had a high risk of breast cancer
with an unfavorable prognosis [26]

Case–cohort In women with elevated risk of breast cancer, high serum 25(OH)D levels and regular vitamin D supplement use
were associated with lower rates of postmenopausal breast cancer over 5-year follow-up [54]

Cross-sectional Low and decreased level of vitamin D might correlate with progression and metastasis of breast cancer [27]

Retrospective cohort study 25(OH)D serum level < 16 ng/mL was associated with poor survival in breast cancer patients, regardless of age,
lymph node status, stage, or breast cancer subtype [55]

Single-center prospective cohort study Low 25(OH)D status is associated with better breast cancer survival; high 25(OH)D levels (>110 nmol/L) are
associated with poorer breast cancer survival [33]

Meta-analysis Lower 25(OH)D concentrations were not significantly associated with increased incidence of most cancers assessed;
increased risk of breast cancer and decreased risk of lymphoma were noted with higher 25(OH)D concentrations [32]

Systematic review and meta-analysis Association of low levels of vitamin D with increased risk of recurrence and death
was noted in early-stage breast cancer patients [56]

Meta-analysis A protective relationship was observed between circulating vitamin D (measured as 25(OH)D)
and breast cancer development in premenopausal women [31]

Genome-wide association studies No evidence was found supporting the association between 25(OH)D and risk of breast cancer [57]

Retrospective Vitamin D deficiency was associated with inability to achieve complete pathological response
following neoadjuvant chemotherapy [58]

Pooled cohort Higher 25(OH)D concentrations, ≥60 ng/mL, were associated with a dose–response decrease in breast cancer risk. [59]

1,25(OH)2D3 plasma level Prospective breast cancer patients have lower 1,25(OH)2D3 (40 ± 21) levels than healthy women (53 ± 23 pg/mL) [60]

VDR tumor tissue expression Observational VDR expression inversely related to aggressive tumor characteristics (large tumor size, hormonal receptor
negativity, and triple-negative subtype); VDR expression did not influence any patient survival outcomes [28]

Retrospective VDR expression was negatively associated with tumor size and lymph node involvement.
High VDR expression speaks for better patient outcome [61]

Prospective cohort study High VDR expression in invasive breast tumors was associated with favorable prognostic factors
and lower risk of breast cancer death [29]

Case–control VDR was upregulated in breast cancer tissues especially in hormone-negative breast cancer [51]
State-of-the-science review The role of VDRs in cancer etiology is still equivocal [62]
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Table 1. Cont.

Factor Studied Type of Studies Observed Effects References

VDR CTCs expression Observational VDR+ CTCs were detected in 46% of CTC+ patients [30]

CYP27B1/CYP24A1 tumor
tissue expression Observational mRNA expression of CYP27B1 was downregulated in tumor tissues, compared with normal tissues;

the mRNA expression of CYP24A1 was significantly upregulated in the tumor tissues [63]

Observational Expression of CYP24A1 mRNA was reduced by about 58% in breast cancer tissues [64]

Observational
CYP27B1 expression was lower in invasive carcinomas (44.6%) than in benign lesions (55.8%).

In contrast, CYP24A1 expression was inreased in carcinomas
(56.0% in in situ and 53.7% in invasive carcinomas) compared to benign lesions (19.0%)

[18]

Prospective No correlation was observed between 24-hydroxylase, 1α-hydroxylase, and VDR expression in tumor tissue [60]

Vitamin D-binding protein Meta-analysis Borderline decrease in cancer risk was noted for subjects with high levels of DBP [65]

Vitamin D-related gene
polymorphism Case–control

Two CYP24A1 polymorphisms (rs34043203, rs2762934) were associated with increased breast cancer risk; one with
reduced breast cancer risk (rs1570669); minor alleles for the VDR Bsm1 polymorphism (rs1544410) but not Fok1

(rs2228570) were inversely associated with breast cancer risk
[34]

Population-based, case–control
None of the analyzed polymorphisms (FokI and TaqI) were associated with overall risk for postmenopausal breast
cancer; TaqI polymorphism–a significantly increased risk for ER+ tumors but not for ER–tumors; haplotype FtCA
was associated with a significantly greater breast cancer risk as compared with the most frequent haplotype FTCG

[66]

Large population-based case–control Increased risk for breast cancer was found in postmenopausal Caucasian women with the BsmI bb genotype [67]
Case–control The VDR Tru9I “uu” genotype may increase the risk of premenopausal breast cancer [68]
Case–control VDR FokI ff (rs2228570) polymorphism was significantly associated with an increased risk of breast cancer [69]

Unmatched case–control VDR common variant alleles rs7975232 (ApaI), rs2228570 (FokI), and rs731236 (TaqI) were analyzed;
rs2228570 GG genotype was associated with increased risk of breast cancer [52]

Case–control GG genotype of Cdx2-VDR gene polymorphism may increase the risk of developing breast cancer
in young female patients in South Pakistan [70]

Observational VDR gene polymorphisms (BsmI and ApaI) may contribute to breast cancer risk among postmenopausal women [71]

Case–control Significantly increased risk of breast cancer was associated with BsmI bb or even Bb genotype.
Significant association between FokI genotypes and breast cancer risk was not observed [72]

Comparative Early-onset patients revealed an association between rs10735810 and increased breast cancer risk;
rs1544410, rs731236, and rs4516035 showed no association with disease [73]

Case–control BsmI polymorphism in VDR gene may be associated with an increased breast cancer risk
in Pakistani women negative for BRCA1/2 germline mutations [74]

Multicenter, prospective Odds ratio for the rs2228570 (FokI) ff versus FF genotype in the overall population was statistically significantly
elevated; no association; BB genotype was associated with a significantly lower risk of advanced breast cancer [75]

Case–control correlative Vitamin D levels were not significantly associated with development of AI-induced arthralgia (AIA);
patients with FokI VDR genotype were less likely to develop AIA [76]

Systematic review and network
meta-analysis

Recessive polymorphism model with the rs2228570 (FokI) polymorphism is the best predictor of breast cancer in
Caucasian patients; homozygote model with the CDX2 polymorphism is the best predictor of breast cancer in

African-American patients
[77]

State-of-the-science review VDR polymorphisms may affect the risk and mortality of breast cancer, according tomenopausal status,
vitamin D level, and breast cancer risk and mortality [62]

Systematic review of the literature VDR polymorphisms Fok1, Bsm1, Taq1, Apa1, and Cdx2 were analyzed, but no; conflicting data were obtained [78]
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Apart from the studies concerning the relationships between the expression and poly-
morphism of vitamin D-associated molecules (including VDR, CYP24A1, and CYP27B1)
and breast cancer, those focusing on CaSR, which regulates the release of parathyroid
hormone (PTH) and calcitonin in response to changes in blood calcium levels, seem to be
of great importance [79–81]. Together with PTH, calcitonin, and calcitriol, CaSR contributes
to maintaining the calcium homeostasis in the body. This receptor is found not only in cells
involved in the regulation of calcium levels, such as thyroid C cells, kidney cells, colon
epithelial cells, osteoclasts, and osteoblasts, but also in cells of the brain, pancreas, and stom-
ach [82]. Furthermore, the presence of CaSR has been observed in neoplastic cells of the
breast, prostate, and colon as well as in parathyroid neoplasms; however, the level of CaSR
expression in neoplastic tissues significantly differs from that in normal tissues [83–85]. In
normal mammary tissue, CaSR is found in epithelial cells, and its expression changes as
a result of changes occurring in the breast. The level of CaSR remains lower before and
during pregnancy, but during the lactation period it significantly increases due to changes
in the concentration of calcium ions [85,86]. CaSR expression at the mRNA and protein
level has been studied in breast cancer cells. In normal breast tissue, the secretion of PTH is
inhibited by an increase in the calcium level. In prostate and breast tumors, an increase in
calcium enhances the secretion of PTH-related protein (PTHrP) by influencing G protein
activation, as demonstrated in the MCF-7 model, which often results in hypercalcemia [87].
The release of a high concentration of calcium from bone during breast cancer metastasis
is believed to activate multiple CaSR signaling pathways that regulate the growth, pro-
liferation, and migration of cancer cells to bone [86,88,89]. It was found that increased
CaSR expression and increased PTHrP level in breast cancer cells correlate with higher
predisposition of these cells to metastasize and colonize bones compared to other tissues
and organs, such as the brain. Mamillapalli et al. have shown that the use of anti-PTHrP an-
tibodies in mice bearing the MDA-MB-231 human mammary carcinoma xenograft reduced
the number of bone metastases [87]. In response to an increase in calcium concentration,
CaSR stimulates the activation of choline kinase and the production of phosphocholine,
thereby accelerating the proliferation of cancer cells and enhancing their invasiveness and
resistance [90]. Moreover, observations indicate that CaSR can regulate the proliferation of
tumor cells by activating EGFR [91,92]. In MCF-7 human breast cancer cells, calcitriol was
found to activate apoptosis via a nongenomic pathway involving CaSR [93–95].

The presence of CaSR in breast cancer cells and in bones, as well as in metastases,
opens up new possibilities of applying the knowledge about this receptor to regulate the
disorders caused by changes in bone structure and the course of cancer, as well as to reduce
the risk of developing malignant tumors.

2.1.3. Importance of Vitamin D Supplementation in Breast Cancer Treatment

Gnagnarella et al. indicated in their review that data collected from various published
studies do not allow for drawing unequivocal conclusions about the influence of vitamin D
supplementation on mortality in cancer patients, and more randomized clinical trials are
therefore needed [96]. A study by Lin et al. on premenopausal women showed that
simultaneous intake of increased doses of calcium and vitamin D in the diet or in the form
of dietary supplements reduces the risk of developing breast cancer [42]. This finding
was also confirmed in other studies, which demonstrated a significant correlation between
a diet rich in calcium and vitamin D and the incidence of ER+ breast cancer [42,43,47].
However, other randomized controlled trials did not show any substantial relationship
between the intake of calcium and vitamin D and the risk of developing breast cancer
(Tables 1 and 2) [39,44,97].

Antineoplastic treatment of hormone-dependent breast cancer is based on the use of se-
lective estrogen receptor modulators (SERMs), such as tamoxifen (TAM). However, if used
for a long term, TAM may exert an agonistic effect on estrogens, stimulating endometrial
tissue to express high levels of ER, thus leading to the development of endometrial diseases
including cancer [98–100]. In addition, the use of TAM can result in acquired resistance in
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many patients, which may depend on the presence of ERβ, as well as increased expression
of EGFR, HER2, or insulin-like growth factor 1 receptor [101]. Due to the numerous side
effects and resistance related to the use of SERMs, the treatment strategy was changed from
restricting access to ERs to reducing or blocking estrogen synthesis. Aromatase inhibitors
(AIs) were developed to prevent the conversion of androgens to estrogens, by binding to
the active site of the enzyme. Currently, apart from SERMs, third-generation AIs, such
as anastrozole or letrozole, are used in the treatment of breast cancer. These inhibitors
outperform compounds of previous generations in the specificity of binding to the enzyme.
They also have a higher efficacy and produce less intrusive side effects. Long-term use of
anastrozole, as well as other AIs, leads to almost complete inhibition of estrogen synthesis,
thus inhibiting the development of breast cancer. However, AIs also exert undesirable
effects on the body. They are not tissue-specific and inhibit the activity of aromatase in each
cell where it occurs. Complete elimination of estrogens results in abnormal functioning
of the bone tissue, bone decalcification, reduction in bone density, greater bone fragility,
and appearance of pain and aggravation of osteoporosis in patients suffering from this
condition [102,103]. Since estrogens are also vital for the proper functioning of skeletal and
smooth muscles, people treated with AI experience muscle pain due to estrogen deficiency.
To overcome the side effects of AI on the skeleton, as well as to reduce the formation of bone
metastases, bisphosphonates are used [104–106]. These compounds prevent bone resorp-
tion and metastasis by inhibiting the adhesion and proliferation of cancer cells in the bone,
as well as hypercalcemia associated with cancer development. However, the use of bispho-
sphonates also causes side effects, including nephrotoxicity and hypophosphatemia [106].
Moreover, studies have demonstrated vitamin D deficiency among breast cancer patients
with metastatic bone disease who were treated with bisphosphonates and recommend
vitamin D supplementation for these patients [107–110]. It was also proven that in patients
treated with AIs for ER+ breast cancer the proper management of osteoporosis with the
use of bisphosphonates and vitamin D allows reducing the risk of relapse and death by
50% [111]. In addition, some studies have indicated that anticancer therapy can be sup-
ported with the intake of high doses of vitamin D3 and calcium, omitting bisphosphonates,
due to their side effects [112,113]. The results of these studies are summarized in Table 2.
The use of high concentrations of vitamin D3 and calcium seems to be justified due to the
fact that the development of breast cancer is accompanied by a decrease in the vitamin D3
concentration in the serum [109,114] and its synthesis in the cancer and surrounding tis-
sues [18]. Recently published studies showed that de novo postdiagnosis supplementation
of vitamin D (n-5417) caused a reduction in breast cancer-specific mortality [115,116]. Not
only patients with ER+ breast cancer and treated with endocrine therapies may benefit from
vitamin D. A retrospective review analyzing the effect of trastuzumab treatment in non-
metastatic HER2+ breast cancer patients revealed that high vitamin D intake during therapy
improved disease-free survival but not overall survival [117]. The literature also includes
interventional studies. The results of a randomized, placebo-controlled trial carried out for
5 years on a large number of participants highlighted that supplementation with 2000 IU of
vitamin D had no effect on the incidence of invasive breast cancer [118] (Table 2). But on the
other side, a 20 years of follow-up study in cancer-free postmenopausal women with daily
supplementation of calcium (1000 mg) and vitamin D (starting from 400 IU/day) was asso-
ciated with lower risk of Ductal Carcinoma in Situ (DCIS), which may raise the possibility
that consequent supplement intake may provide long-term benefits in the prevention of
DCIS [119]. Patients with nonmetastatic HER+ breast cancer supplemented with vitamin D
during neoadiuvant chemotherapy revealed improved disease-free survival [117]. Another
cohort study revealed that everyday supplementation with vitamin D and calcium by
menopausal hormone therapy users is associated with decreased postmenopausal breast
cancer risk [120].
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Table 2. Interventional studies in breast cancer patients and healthy volunteers.

Vitamin D Dosage
Used for Treatment Patient Characteristics; Trial Type Results References

Healthy people

2000 IU/d of vitamin D3 and
1500 mg/d of calcium for 4 years

2303 healthy postmenopausal women, 55 years or older;
4-year, double-blind, placebo-controlled, population-based

randomized clinical trial

Among healthy postmenopausal older women a mean baseline serum
25(OH)D level of 32.8 ng/mL, vitamin D3 and calcium supplementation
didn’t decrease significantly the risk of all-type cancer in a 4 years study

[97]

2000 IU/d for 5 years
1617 participants (793 in the vitamin D group and 824 in the

placebo group); randomized, double-blind, placebo-controlled
trial, with a two-by-two factorial design

Treatment did not reduce the incidence of breast cancer [118]

Breast cancer patients

4000 IU vitamin D3 daily
for 12 weeks

168 breast cancer survivors; single-arm nonrandomized
before-and-after trial has been registered in the Iranian Registry of

Clinical Trials (IRCT) under the identification code:
IRCT2017091736244N1

The association between the VDR SNPs (ApaI, TaqI, FokI, BsmI, and Cdx2)
and changes in response was assessed. Cdx2 genotypes AA and GA,
compared to GG, showed higher plasma levels of MMP9; BsmI bb

genotype showed a greater decrease in circulating TNF-α levels after
vitamin D3 supplementation; VDR genetic polymorphisms were not

associated with longitudinal changes in the remaining cancer biomarkers.
In breast cancer survivors with low 25(OH)D plasma levels and vitamin
D3 supplementation changes in certain inflammatory biomarkers may be

affected by VDR SNPs and haplotypes

[121]

4000 IU vitamin D3 daily
for 12 weeks

176 breast cancer survivors who had completed treatment protocol,
including surgery, radiotherapy, and chemotherapy; trial has been

registered on the IRCT under the identification code:
IRCT2017091736244N1

85% of women had insufficient and inadequate levels of plasma
25(OH)D at baseline; aa genotype of ApaI showed a greater increase in

muscle mass and higher decrease in low-density lipoprotein cholesterol
levels; Bb genotype of the BsmI VDR showed a higher increase in waist
circumference following vitamin D3 supplementation; haplotype score
analyses showed a significant association between inferred haplotypes

from BsmI, ApaI, TaqI, and FokI, BsmI and Cdx2 VDR polymorphisms, and
on-study visceral fat changes

[122]

50,000 IU/week for 8 weeks
56 breast cancer patients; 2 treatment arms: placebo and vitamin

D3 through a 2-month intervention period; double-blind,
placebo-controlled trial

Supplementation with vitamin D3 increased the total antioxidant
capacity (TAC) in breast cancer women; no effect was found on

inflammatory markers. Serum TAC in the TT/Tt and Ff genotypes was
more responsive to vitamin D supplement

compared with FF/ff and tt genotypes

[123]

40,000 IU/d of vitamin D3 or placebo
for 2–6 weeks prior to breast surgery

120 newly diagnosed breast cancer patients; prospective,
randomized, phase 2, double-blinded presurgical window of

opportunity trial; trial registration: NCT01948128.

Significantly higher levels of serum 25(OH)D in the vitamin D-treated
group were not associated with any significant effects on tumor

proliferation and apoptosis
[124]

10,000 IU daily in the interval
between biopsy and surgery

29 breast cancer patients; controlled, and blinded trial in women
with core needle biopsies positive for breast cancer, but without

the presence of metastatic lesions; ancillary study of a breast
cancer trial (NCT01472445)

Vitamin D supplementation can decrease circulating
27-hydroxycholesterol in breast cancer patients, likely by CYP27A1
inhibition. This suggests a new and additional modality by which

vitamin D can inhibit ER+ breast cancer growth; a larger study is needed
for verification

[125]
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Table 2. Cont.

Vitamin D Dosage
Used for Treatment Patient Characteristics; Trial Type Results References

10,000 IU vitamin D3 and 1000 mg
calcium each day for 4 months

40 patients with bone metastases treated with bisphosphonates;
single-arm, phase 2 study

Treatment was safe, and reduced inappropriately elevated PTH levels
caused by long-term bisphosphonate use; no significant palliative benefit

or any significant change in bone resorption was observed
[126]

2000 IU/1000 mg and 4000 IU/1000
mg based on baseline serum

25(OH)D for 12 weeks
82 breast cancer patients treated with letrozole Vitamin D3 supplementation significantly improved serum 25(OH)D

concentrations and decreased letrozole-induced arthralgia [113]

50,000 IU/week for 12 weeks 60 breast cancer patients treated with letrozole Vitamin D3 supplementation is safe, and may reduce disability from
AI-induced arthralgias [112]

30,000 IU oral vitamin D3/week
for 24 weeks

160 women with stage I–III breast cancer starting adjuvant
letrozole and 25(OH)D level ≤ 40 ng/mL

Treatment was safe and effective in achieving adequate vitamin D levels,
but not associated with a decrease

in AI-associated musculoskeletal symptoms
[127]

800 IU/d with calcium but women
with baseline 25(OH)D < 30 ng/mL

also received 16,000 IU of vitamin D3
every 2 weeks for 3 months

290 breast cancer patients starting AI, prospective cohort
40 ng/mL 25(OH)D may prevent development of AI-induced arthralgia

but higher loading doses are required to achieve this level in women
with deficiency at baseline

[128]
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2.2. Impact of Vitamin D on Animal Models of Breast Cancer (Pre-Clinical Studies and Signal
Transduction Data)

Clinical findings concerning the progression of tumor growth and metastasis via
vitamin D deficiency are supported by studies performed using transgenic mouse models
of spontaneous mammary gland cancer [129] or xenografts of human breast cancer cell
lines [130] and allografted mouse tumors [131–134]. In addition, a study on a breast cancer
bone metastasis model showed that vitamin D deficiency resulting from 1α-hydroxylase
(Cyp27b1) knockout increased the growth of TM40D mammary gland tumor in bone and
accelerated tumor-induced bone destruction [132]. Moreover, in a mouse breast cancer
model, targeted Cyp27b1 gene ablation in the mammary epithelium of polyoma middle T
antigen-mouse mammary tumor virus (PyMT-MMTV) led to the initiation and acceleration
of spontaneous mammary tumorigenesis [135]. The anticancer and antimetastatic activity
of calcitriol and its analogs have been observed in various breast cancer models [136–138].
Furthermore, VDR knockdown was found to significantly accelerate the metastasis of
MDA-MB-231 human breast cancer cells to bone [139], as well as increase primary tumor
growth and metastasis of 168FARN mouse mammary gland tumors to the liver [131].
Additionally, the loss of VDR signaling in MMTV-Ron VDR−/− mice caused an increase in
spontaneous breast tumorigenesis and enhanced metastasis to the lungs and liver [140].
On the other hand, Trivedi et al. indicated that ablation of VDR (in the absence of ligand)
reduced MCF-7 tumor growth in mammary fat pad and in bone [141]. Furthermore, the
authors observed protumoral [142] or prometastatic activity of calcitriol in prostate [143]
and breast cancer models [144,145].

Experimental studies also show that combined use of vitamin D or its analogs with
chemotherapy agents has potential benefits. As reported by Krishnan et al. in a MCF-7
xenograft study the aromatase mRNA was reduced in the tumor and surrounding mam-
mary adipose tissue after calcitriol treatment, but there was no change in aromatase mRNA
noticed in the ovary. This selective aromatase gene regulation by calcitriol results from/is
dependent on the presence of different promoters in these tissues. Calcitriol acts through
the vitamin D response element present in the aromatase promoter II and, on the other
way, suppresses the aromatase gene transcription by reducing the level of prostaglandins
involved in estrogen synthesis in the breast tissue [146].

Thus, combined use of calcitriol with one of three different AIs, namely exemestane,
letrozole, or anastrozole, caused enhanced inhibition of MCF-7 cell growth [146]. Our
studies confirmed these findings in human MCF-7 xenografted mice demonstrating tumor
growth inhibition after treatment with new vitamin D analogs, PRI-2191 and PRI-2205,
either alone or in combination with anastrozole [147]. In addition, Swami et al. revealed
that calcitriol acted as a selective aromatase modulator in mice, decreasing aromatase
expression in the mammary adipose tissue and increasing it in bone marrow cells, but not
altering the enzyme expression in the ovaries and uteri [148]. Some studies have shown
that the EB1089 analog, when used in combination with low doses of clinically used AIs,
also decreased the expression and activity of aromatase, which led to the growth inhibition
of breast cancer cell lines [149].

Other in vivo studies that have analyzed the use of vitamin D or its metabolites and
analogs in breast cancer treatment, either alone or in combination with other anticancer
treatment strategies, are summarized in Table 3. A recent review extensively discussed the use of
calcitriol and its analogs in combination with other therapeutic strategies in breast cancer [150].
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Table 3. Summary of animal experiments in breast cancer models with the use of vitamin D, calcitriol, or its analogs, alone or combined with anticancer therapies.

Animal Model Vitamin D Metabolite/Analog Used Schedule of Treatment Monotherapy/Combined Treatment/Other Effect Observed References

4T1 mouse mammary gland cells Vitamin D3 (VD) Day 17 after tumor inoculation,
5 µg/kg of VD/d, 7 days treatment - Increase in tumor growth [142]

4T1, 67NR, E0771 mouse mammary
gland cancers

Calcitriol (Cal) 1 µg/kg
three times a week p.o. or

5000 IU of vitamin D3/kg of diet

Cal: 7 days
after implantation till day 21;

Diet: 6 weeks before
transplantation and continued

-
4T1: increased metastasis;

67NR: no effect; E0771:
decreased tumor growth

[145]

4T1 mouse mammary gland cells
Calcitriol, PRI-2191, and PRI-2205
0.5, 1, and 10 µg/kg, respectively,

three times a week s.c.
7 days after implantation till day 33 Postmenopausal OVX model Transiently decreased

metastasis [151]

4T1 mouse mammary gland cells
Calcitriol, PRI-2191, and PRI-2205
0.5, 1, and 10 µg/kg, respectively,

three times a week s.c.
7 days after implantation till day 33 - Increased metastasis [144]

E0771 mouse mammary gland cancer Cholecalciferol gavage
40 IU/d/mouse

7 days after cell injection
for 2 weeks

Normal mice
Obese mice

Antitumor,
antimetastatic effect

Stimulation of tumor growth
and metastasis

[152]

LM3 mouse breast adenocarcinoma EM1 20 and 50 µg/kg Started when tumors were
50–70 mm3, 7 injections for 2 weeks - Tumor growth—no effect;

decrease in lung metastasis [153]

ER–breast cancer/ER+ breast cancer 24R,25(OH)2D3

HCC38, 2 weeks after inoculation,
24R,25(OH)2D3 100 ng/d,

3 times a week, 10-week treatment
MCF-7: 25 ng or 100 ng per
injection of 24R,25(OH)2D3

from week 5

-

Protumorigenic when breast
cancer was of Erα-66– and

Erα-36 ± status: the
response of breast cancer

cells to 24R-24,25(OH)2D3.
Enhanced or decreased

epithelial-to-mesenchymal
transition

[154]

4T1 mouse mammary gland cells Calcitriol 0.3 µg/kg b.w. once every
other day i.p.

From the day before tumor cells
were injected - Antimetastatic [155]

16/c mouse mammary
adenocarcinoma

Calcitriol or PRI-2191 10 µg/kg
for 5 consecutive days s.c. From day 5 after tumor inoculation

Cisplatin: 3 mg/kg i.p. at day 6 after tumor cell
inoculation; clodronate: days 5 and 8, i.p.,

1.5 mg/mouse/d

54% tumor growth inhibition
by combined treatment with
PRI-2191; 41% inhibition by

treatment with PRI-2191
alone; no effect of calcitriol

[156]
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Table 3. Cont.

Animal Model Vitamin D Metabolite/Analog Used Schedule of Treatment Monotherapy/Combined Treatment/Other Effect Observed References

16/c mouse mammary
adenocarcinoma

PRI-1906 or PRI-2191 1 µg/kg/d
for 9 consecutive days s.c.

Started from day 1 or 5
after tumor cell inoculation

Cyclophosphamide (CY) i.p. 100 mg/kg on day
4 after tumor cell inoculation

Potentiation of CY antitumor
effect by both analogs.

PRI-1906 alone—no effect;
PRI-2191—25% of inhibition

[157]

MDA-MB-231-luc Calcitriol 1 µg/kg 3 days prior to photodynamic
therapy (PT) 5-Aminolevulinate-based PT Increased PT effect * [158]

MMTV-Wnt1 mouse
mammary gland cells

Calcitriol 25 ng/mouse or
5300 IU of vitamin D3/kg of diet

10 weeks after standard (STD) and
high-fat (HFD) diet STD and HFD Decreased tumor volume [159]

MMTV-Wnt1 mouse
mammary gland cells

Calcitriol 50 ng/mouse three times a
week or 5000 IU of

vitamin D3/kg of diet

8 weeks prior to tumor inoculation
and continued - Decreased tumor volume [134]

MCF-7 human breast cancer
Calcitriol 50 ng/mouse three times a

week i.p. or 5000 IU of
vitamin D3/kg of diet

After 6 weeks of tumor growth
continued for 4 weeks - Decreased tumor growth [160]

MCF-7 human breast cancer
Calcitriol 0.025, 0.05, or

0.1 µg/mouse, three times a week i.p.
or 5000 IU of vitamin D3/kg of diet

After 6 weeks of tumor growth
continued for 4 weeks Pre- and postmenopausal (OVX) models Decreased tumor growth

(~60%) [161]

MCF-7 human breast cancer
PRI-2191 and PRI-2205 1.0 µg/kg/d

or 10.0 µg/kg/d, respectively,
three times a week s.c.

From day 39 after tumor cell
inoculation up to day 67 - Decreased tumor growth by

PRI-2205 [136]

MCF-7 (VEGF-transfected) with
MDA-435S human breast cancer cells

Calcitriol 12.5 pmol/d s.c.
(micro-osmotic pumps)/28 days;

next weekly s.c. dose of
12.5 pmol/d 7 times

6 days before cell implantation
and during 8 weeks - Decreased tumor

angiogenesis [162]

MCF-7 human breast cancer
Calcitriol and analogs: TX 522 and

TX 527 5, 80, and 25 µg/kg,
respectively, every other day i.p.

Started 4 days after tumor
transplantation -

Cal: no effect; both analogs:
decrease in tumor volume

and mitotic figures
[163]

MCF-7 human breast cancer EB1089 45 pmol/d (osmotic pumps) Started with 150–200 mm3 tumors
for 8 days

Irradiation after end of EB1089 (2 × 5 Gy)
Delayed tumor growth and

decreased tumor volume
(50%) in combined treatment

[164]

MCF-7 human breast cancer PRI-2191 1.0 µg/kg b.w./d,
PRI-2205 10.0 µg/kg b.w./d

Started 5 days after
tumor cell inoculation

Anastrozole: 5 days/week,
200 µg/mouse in each injection

Significantly decreased
MCF-7 tumor volume after

single or combined treatment
[147]

T47D or TDC human breast cancer Calcitriol 0.03 µg/kg,
2 times a week i.p.

Started when tumors were palpable
during 4 weeks - Decreased tumor growth,

no effect on angiogenesis [165]
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Table 3. Cont.

Animal Model Vitamin D Metabolite/Analog Used Schedule of Treatment Monotherapy/Combined Treatment/Other Effect Observed References

MCF10DCIS.com human DCIS model

BXL0124 0.1 µg/kg,
6 times a week i.p. or

0.03 or 0.1 µg/kg,
6 times a week p.o. or i.p.

Next day after tumor inoculation
for 4 weeks or for 5 weeks -

Inhibition of DCIS to IDC
progression; 43% reduction

in tumor volume
[166,167]

SUM149 human inflammatory
breast cancer cell line

Quantum dots with
calcitriol 40 nM i.v. Started with 80 mm3 tumors

Quantum dots with calcitriol conjugated
with anti MUC-1 Ab

Enhanced concentration
of quantum dots in tumor

and lungs
[168]

Transgenic model of
hormone-induced mammary cancer

(LH-overexpression)
EB1089 0.027 µg per animal s.c. From 3 to 5 weeks of age - Decreased growth to

regression [169]

Freshly collected breast cancer
samples xenografted into animals Calcitriol 0.06 µg intratumoral 6 weeks after transplantation,

weekly (6–11) - No effect [170]

N-methyl-N-nitrosourea
(NMU)-induced mammary tumor

(rats) and MCF10DCIS.com

Gemini 0072 and Gemini 0097 0.1, 0.3,
or 0.03 µg/kg, 5 days a week i.p.

1 week after NMU; day 4 after
MCF10DCIS.com cell implantation

60% inhibition of
NMU-induced mammary
tumor and suppression of

MCF10DCIS.com

[171]

NMU- and DMBA
(7,12-dimethylbenz(a)anthracene)-

induced mammary
carcinogenesis

1α-Hydroxy-24-ethylcholecalciferol
25, 40, 50 µg/kg of diet 2 weeks before carcinogen - Chemopreventive effects [172]

* Calcitriol alone stimulates differentiation and proliferation in MDA-MB-231-luc tumors.



Cancers 2022, 14, 3649 15 of 42

3. Role of Th17 Cells in Breast Cancer

After activation, CD4+ T lymphocytes, which are the central regulatory cells of innate
and adaptive immunity, differentiate into various T helper (Th) subsets to ensure homeosta-
sis. Among these subsets, the well-known ones are Th1 cells producing interferon-γ (IFN-γ)
and Th2 producing interleukin (IL) 4. The other identified Th subset is Th17 producing
IL-17. CD4+ T cells also differentiate into T regulatory cells (Treg) expressing forkhead box
P3 (FOXP3) [173] (Figure 1). Th17 cells are the main source of the proinflammatory cytokine
IL-17; however, the receptor of this cytokine (IL-17R) is distributed ubiquitously. IL-17
(IL-17A) is a member of the IL-17 cytokine family consisting of IL-17A–F (IL-17E is also
known as IL-25) and directly links inflammatory responses and T-cell activation [174,175].
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Figure 1. Differentiation of naïve CD4+ T cells (Tn). Naive CD4+ T cells (stem cell-like cells), under
the influence of different cytokines secreted upon direct contact with antigen-presenting cell (APC), can
differentiate into various types of effector cells: Th1, Th2, Th9, Th17, Th22, and Treg. CD4+ T cell subsets
are defined by the production of specific cytokines and the expression of specific transcription factors.

As transforming growth factor β (TGF-β) plays an important role in the differentiation
of both Th17 and Treg cells (Figure 1), IL-6 counteracts the differentiation of Treg cells upon
TGF-β and directs the differentiation of Th17 [176,177]. It has been shown that IL-6 upregu-
lates the expression of IL-21 by activating signal transducer and activator of transcription 3
(STAT3), causing an increase in the expression of retinoid-acid receptor-related orphan
nuclear receptor (ROR) γt, RORα, and IL-23R and ultimately promoting the complete
differentiation of Th17 cells. On the other hand, STAT3 deficiency impaired RORγt expres-
sion and elevated the expression of T-bet (member of T-box family transcription factors)
and FOXP3 [178]. RORγt belongs to the retinol family and regulates the differentiation of
Th17 cells, while RORα promotes the differentiation of these cells. RORγt and RORα can
synergistically induce Th17 differentiation [179]. IL-21 produced by Th17 cells stimulates
their autocrine formation [180]. IL-1 receptor type 1 (Il1r1) gene is also the promoter of Th17
cell differentiation [181]. Moreover, Th17 cells express CD39 and CD73 ectonucleotidases,
leading to the release of adenosine and the suppression of effector T cells.

As Chalmin et al. have shown, during the differentiation of Th17 cells, the ectonu-
cleotidase expression is transcriptionally regulated by IL-6 (STAT3 activation) and by
TGF-β-mediated downregulation of zinc finger protein growth factor independent-1 (Gfi-1).
The expression of CD39 ectonucleotidase in the case of Th17 cells determines their immuno-
suppressive nature in cancer [182].
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In vitro induction of Th17 cells can be achieved directly with the use of anti-CD3/CD28
antibodies and cytokines. However, in vivo priming of Th17 cells requires dendritic cells
(DCs) that present antigen, provide costimulatory signals, and help in the synthesis of
IL-1, IL-6, TGF-β, tumor necrosis factor (TNF) α, and IL-23 cytokines [183–185]. It is
also known that fibroblasts support IL-23 secretion from DCs that are preactivated by
lipopolysaccharide compared to DCs activated by lipopolysaccharide alone. It is realized
via a complex feedback-loop mechanism involving IL-1β/TNF-α (from activated DCs),
which stimulates prostaglandin E2 (PGE2) production by fibroblasts. PGE2, in turn, acts on
activated DCs and increases the release of IL-23 from these cells. Furthermore, compared
to DCs alone, fibroblast-stimulated DCs performed better in promoting the expansion of
Th17 cells in a cyclooxygenase (COX)-2-, IL-23-dependent manner [186] (Figure 2). A recent
review by Pastor-Fernandez et al. broadly described the role of IL-23 in the differentiation
of Th17 cells [187]. The role of IL-33 in maintaining the balance between Treg and Th17
cells has also been emphasized. DCs matured upon IL-33 inhibited the differentiation of
CD4+ Treg cells in favor of Th17, which was realized through IL-6 signaling [188].
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Figure 2. The role of IL-23 in IL-17 gene expression. IL-23R pairs with IL-12Rβ1 forming IL-23R
complex required for IL-23 signaling. This receptor is constitutively associated with Janus kinase 2
(Jak2) and Tyrosine kinase 2 (Tyk2) which are activated after ligand biding, leading to STAT3 phos-
phorylation (P). Other molecules in IL-23 signaling cascade are also identified. MAC—macrophages,
DC—dendritic cells, IL—interleukin, PGE2—prostaglandin E2, TNF-α—tumor necrosis factor
α, STAT3—signal transducer and activator of transcription 3, PI3K—phosphoinositide 3-kinase,
Akt—serine/threonine-protein kinase, NF-κB—nuclear factor kappa-light-chain-enhancer of activated B
cells, IκB—NF-κB inhibitor, and p19 and p40—subunits of IL-23.

Recent studies suggest that osteopontin (OPN) is also required for DCs to induce Th17
differentiation [189] and IL-17 production [190]. In addition, studies on acute coronary
syndrome showed that OPN is involved in inflammation through its direct effect on
IL-17-producing cells [191]. Moreover, the direct effect of OPN on the differentiation of
Th17 cells is exerted through interaction of these cells with its receptors [192]. OPN contains
an Arg-Gly-Asp (RGD) sequence, which is common to many extracellular matrix proteins
and mediates the interaction of OPN with multiple integrins such as αvβ1, αvβ3, αvβ5,
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and α5β1 [193]. CD44, which is another important receptor of OPN, is involved in T cell
activation [194]. Studies have shown that blocking of CD44 and, to a lesser extent, β1
integrin subunit (CD29), resulted in a significant reduction in Th17 cell differentiation,
while the addition of a CD51 (integrin αv)-blocking antibody did not result in such effect,
indicating that the effect of OPN was mediated through CD44 and CD29. Furthermore, the
production of IL-17 from OPN-stimulated CD4+ T cells was inhibited by CD44 or CD29
antibodies in a dose-dependent manner [195]. Other studies have also pointed out the role
of CD61 (β3 integrin), another OPN receptor, in Th17 cell differentiation [192].

Estradiol (E2) is also a factor that affects Th17 cells. Th17 cells express both ERα and
ERβ. Studies have reported various effects of E2 on Th17 cell differentiation. In mouse
splenocytes, E2 inhibits Th17 cell differentiation and IL-17 production by inhibiting the
expression of RORγt [196]. Similarly, in E2 deficiency-induced bone loss, the differentiation
of Th17 cells was increased, accompanied by upregulation of STAT3, RORγt, and RORα
and downregulation of FOXP3 [197]. However, studies performed by Andersson et al. on
in experimental autoimmune arthritis (AA) have shown that estradiol treatment increases
the amount of Th17 cells in lymph nodes during the early stage of arthritis development.
In the advanced stage of the disease, estradiol acts in the opposite way, diminishing the
number of Th17 cells in joints. The authors of the studies suggest the observed effect of
estradiol action may be caused by the interference of E2 with CCR6-CCL20 (C-C chemokine
receptor 6–C-C motif chemokine ligand 20) pathway, which is important for the migration
of Th17 cells. E2 increased the expression of CCR6 on Th17 cells in lymph nodes as well as
the expression of the corresponding CCL20 within lymph nodes [198]. Other studies on
mice splenocytes demonstrated that ERα signaling increased IL-17A production in Th17
cells by upregulating the expression of IL-23R and promoting mitochondrial respiration
and proliferation [199]. Deletion of ERα, but not ERβ, caused a significant decline in the
production of IL-17A and surface expression of IL-23R on Th17 cells. These effects are
realized through an increase in the relative expression of Let7f microRNA in Th17 cells.
The findings of these studies show that ERα signaling regulates Th17 cell differentiation
by influencing the Let7f/IL-23R pathway [200,201]. Thus, it seems that the influence of E2
on Th17 cells may depend on the environment in which the study is conducted and the
type of disease analyzed, and the surrounding environment moderates the direction of E2′s
influence on these cells.

It is known that the subset of Th17 cells is transient in nature. For example, in
specific experimental conditions, CD4+ T cells may exhibit diminished IL-17 expression
and upregulated IFN-γ expression [202]. In addition, Th17 lineage exhibits plasticity and
can transdifferentiate into Treg cells [203]. FOXP3-expressing Treg cells, mostly represented
by CD4+ T cells that express CD25 (IL-2 receptor α-chain), are important for controlling
self-tolerance and immune homeostasis, but also suppress antitumor immune responses
and favor tumor progression [204]. Th17 cells can act as a source of tumor-induced FOXP3+
cells, as it was shown by Downs-Canner et al. In addition to natural Treg and induced Treg
cells formed from naïve precursors, suppressive IL-17A+ FOXP3+ and ex-Th17 FOXP3+
cells are converted from IL-17A+ FOXP3− cells in tumor-bearing mice [204]. Moreover,
Th17/Th1 cells produce both IL-17 and IFNγ and Th17 cells stimulated by IL-12 can shift
to Th17/Th1 [205,206]. Activated Th17 cells can produce IL-22 along with IL-17 [207],
and represent a distinct population apart from Th22 cells [208]. Intestinal Th17 cells can
differentiate into T follicular helper (Tfh) cells in Peyer’s patches [209]. The plasticity of
Th17 cells has been described in detail elsewhere [210–213] (Figure 3).
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The phosphoinositide 3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signal-
ing pathway is involved in the processes of cell growth, differentiation, and apoptosis,
and its activation is critical for the completion of cell cycle and cell differentiation. In
addition, T cells proliferation and migration is also regulated by PI3K/AKT pathway. It
has been shown that Th17 cell differentiation (both in vitro and in vivo) can be regulated
by mTORC1 and mTORC2, mammalian targets of rapamycin (mTOR) complexes (via
PI3K/AKT in different ways) [192,214]. Activation of PI3K and/or mTORC1 enhances the
Th17 cell differentiation, but on the other hand, the inhibition of PI3K and/or mTORC1 in
CD4+ T cells causes an increase in the differentiation of Treg cells [215].

Th17 cells can play both protective and pathogenic roles in immunity. The protective
action of these effectors is related to the suppression of pathogens including Candida albicans
and Staphylococcus aureus. However, it is believed that Th17 cells also induce inflammation
and tissue damage [216].

Importance of Th17 Cells in Breast Cancer

A number of studies have confirmed the presence of Th17 cells in various types of
cancers (e.g., breast, ovarian, colorectal, cervical cancer, and melanoma) and the significance
of these cells in these diseases [217–219]. However, it is difficult to provide a clear descrip-
tion of the role played by Th17 cells in tumor development due to complex interactions
occurring between cancer cells and the components of the host microenvironment [213].
Inflammation is often associated with cancer progression and actively contributes to the
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survival of cancer cells, angiogenesis, and metastasis [220]. It is known that tumor cells
and cancer-associated fibroblasts (CAFs) create an inflammatory environment favorable for
the recruitment of Th17 cells [221].

Although many studies have been carried out on Th17 cells, the role of these cells in
breast cancer remains undefined [222]. Nevertheless, the majority of evidence indicates
that Th17 cells exhibit prooncogenic properties in breast cancer. Clinical analyses have
shown that the level of Th17 cells/IL-17 cytokine is usually altered in patients with breast
cancer [217,223]. Compared to healthy donors, the level of Th17 cells is higher in the blood
of breast cancer patients and correlates with elevated levels of C-X-C motif chemokine lig-
and (CXCL) 1. CXCL1, a proinflammatory chemokine produced by breast cancer cells, can
promote cancer growth and development [224]. A positive correlation between the levels
of IL-17 and macrophage infiltration inhibitory factor (MIF) has also been observed, and
both IL-17 and MIF were linked with a high risk of developing breast cancer of aggressive
molecular subtypes [225]. In breast tumors characterized by matrix metalloprotease (MMP)
11 expression by intratumoral mononuclear inflammatory cells, the level of expression of
inflammatory factors, associated with distant metastasis development, such as IL-17 and
NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), was shown to be
significantly higher [226]. Infiltration by IL-17+ T cells in TNBC patients was associated
with a poor recurrence-free survival [227]. Moreover, infiltration by Th17 cells is prefer-
ably observed in ER−, PR−, and TNBC tumors and is a poor prognostic factor [228]; it
also correlates with failure of complete pathological response [229,230]. Another study
demonstrated that an increased number of IL-17A-producing cells are found mainly in
ER– and triple-negative/basal-like breast tumors [231]. On the other hand, high levels
of ER suppress Th17 cell infiltration and IL-17 signal transduction, causing a reduction
in PD-1/PD-L1 expression and CD8+ T cell infiltration in breast cancer [232]. In turn, a
study by Horlock et al. showed that the number of circulating Th17 cells was the lowest in
patients with HER2+ breast cancer compared to healthy controls and HER2– patients. An
inverse relationship was also observed between the frequencies of Treg and Th17 cells in
metastatic breast cancer with a significant reduction in the level of Treg cells during treat-
ment with trastuzumab, whereas the level of Th17 cells was concomitantly increased [233].
On the other hand, a study investigated the distribution of IL-17-producing CD4+ T-cells
in relation to Treg cells in tumor-infiltrating lymphocytes (TILs) and peripheral blood
mononuclear cells (PBMCs) collected from breast cancer patients. The frequency of Th17
cells was found to be significantly higher in TILs than in PBMCs obtained from early breast
cancer patients. In the TILs collected from advanced breast cancer patients, the frequency of
Th17 cells was also significantly higher compared to that in PBMCs but lower compared to
PBMCs from patients with early disease. Based on these findings, the authors concluded that the
accumulation of Th17 and Treg cells in the tumor microenvironment of breast cancer occurred
during the early stage of the disease. It was also indicated that Th17 cell infiltration gradually
decreased but Treg cells continued to accumulate as the disease progressed [234]. However,
studies on mice showed that the Th17 subpopulation was dominant in CD4+ T cells from TILs,
and the population was also higher in the late tumor stages [235].

A meta-analysis of IL-17A estimation by immunohistochemistry, overall survival, and
disease-free survival in patients with solid tumors indicated that in most of the cases these
parameters were worse with higher levels of IL-17A. IL-17A was also associated with an
advanced stage of cancer [222]. However, the association between the level of intratumoral
Th17 cells and blood level of IL-17 was not clear. In addition, their effects did not seem to
be unequivocal; thus, when Th17 cytokines (IL-17A and IL-17F), which were upregulated
in TNBC, specifically in T cell noninflamed tumors, were exploited by the METABRIC
transcriptomic dataset, a high expression of Th17 metagene was identified as an indicator
of good prognosis of T cell noninflamed TNBC [236].

In addition to IL-17A, other IL-17 family members and their receptors have been
analyzed in breast cancer patients. Mombelli et al. reported that mRNA expression of
IL-17A and IL-17E receptor subunits was upregulated in breast cancers in comparison
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to normal samples. Furthermore, it seems that IL-17E, which is usually undetectable in
normal breasts, is overexpressed in cancerous tissues [237]. It can also promote resistance
to antimitotic and anti-EGFR therapies. In the breast cancer cell lines IJG-1731, BT20,
and MDA-MB-468, EGFR phosphorylation is stimulated by epidermal growth factor and
IL-17E. IL-17E also activates kinases that are crucial for EGFR signaling, such as PYK-
2, Src, and STAT3 [238]. IL-17E and IL-17A induce cell proliferation and survival by
activating pathways including c-RAF, ERK1/2, and p70S6 kinase, which also leads to
docetaxel resistance [237]. Cochaud et al. authenticated that in human breast cancer cell
lines recombinant IL-17A recruits the mitogen-activated protein kinases (MAPK) pathway
by upregulating phosphorylated ERK1/2 which results in stimulation of cell proliferation,
migration and invasion, and resistance to commonly used chemotherapeutic agents such
as docetaxel [231].

A high level of IL-17B was found in patient biopsies, which was associated with a
decrease in overall survival and with poor prognosis. Moreover, overexpression of IL-17RB
was associated with reduced disease-free survival. Both overall and disease-free survival
were reduced in patients with overexpression of IL-17B and IL-17RB [239]. In another study,
the overexpression of IL-17RA and IL-17RB is associated with poor prognosis and shorter
survival rate [240]. In breast cancer cell lines BT20, MDA-MB-468, and MCF-7, IL-17B
induced resistance to paclitaxel, and activation of the extracellular signal-regulated kinase
1/2 (ERK1/2) pathway, leading to the upregulation of B-cell lymphoma 2 (Bcl-2) [239].
Moreover, IL-17RB and IL-17B amplification can promote tumorigenicity in breast cancer
via the activation of NF-kB and Bcl-2. It has been shown that depletion of IL-17RB in
tastuzumab-resistant cell lines ceased colony formation and retarded tumor growth in
mice [240]. Recently, Bastid et al. comprehensively described the role of IL-17B and IL-17RB
signaling pathways in cancer [241].

Kiyomi et al. reported that tumor tissues resected from breast cancer patients produced
Th17 cytokines when cultured in three-dimensional gelatin polymer culture system [242].
Tumor cells and CAFs produce microenvironmental factors, such as RANTES (Regulated on
Activation, Normal T-cell Expressed and Secreted) and monocyte chemoattractant protein-1
(MCP-1/CCL-2) chemoattractants, which mediate the recruitment of Th17 cells, and IL-23
and TGF-β, which are important factors of Th17 cell differentiation and generation. They
also allow cell contact, inducing the generation and expansion of Th17 cells. Colony of Th17
cells in TILs obtained from patients produced high levels of IL-8, IL-17, and TNF and a low
level of IL-6. Th17 clones expressed chemokine receptors such as CCR2, CCR4, CCR5, CCR6,
CCR7, and CXC chemokine receptor (CXCR) 3, which are homeostatic chemokine receptors
as well as trafficking receptors found commonly in other T cell lineages, including Treg
cells [221]. Tumor production of IL-6 and TGF-β stimulated the differentiation of Th17 cells
into CD25high/CD39/CD73 Th17 cells. Th17 CD25high cells accumulate in breast cancer
tissue by recruitment via CCL20/CCR6. Intratumoral Th17 cells, which are also known
as memory CD25high/CCR6+ Th17 cells, express IL-17, RORγ, FOXP3, CD39, and CD73.
CD39 and CD73 are ectonucleotidases, which catalyze the transformation of ATP, and can
lower T cell response. When these enzymes accumulate, they can weaken T cell immunity
in breast cancer patients by suppressing CD4+ and CD8+ T cells, which worsens relapse-
free and overall survival [243]. In blood samples and invasive ductal carcinoma (IDC)
tissue collected from breast cancer patients, Th17-related molecules (IL-17A, RORC, and
CCR6), produced by tumor-infiltrating CD4+ and CD8+ T lymphocytes, were observed to
be upregulated. Angiogenic factors CXCL8, MMP-2, and MMP-9 and vascular endothelial
growth factor (VEGF)-A were detected within the tumor and shown to be induced by IL-17,
which correlated with poor prognosis. The accumulation of Treg and Th17 cells within an
invasive breast tumor may promote the growth and survival of the tumor cells, and the presence
of Treg cells and high levels of TGF-β may also favor the development of Th17 cells [244].

The genetic factors involved in the regulation of Th17 cell differentiation are currently
being investigated. Numerous long noncoding RNAs (lncRNAs) are reported to regu-
late immune response in breast cancer patients [245]. One epigenetically dysregulated
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lncRNA (LINC01983) and four lncRNA regulators (UCA1, RP11-221J22.2, RP11-221J22.1,
and RP1-212P9.3) were identified to act as prognostic biomarkers of luminal breast cancer by
controlling the TNF signaling pathway, Th17 cell differentiation, and T cell migration [246].

Single-nucleotide polymorphisms (SNPs) of the IL-17 gene have been shown to be
correlated with susceptibility to cancer [247]. Wang et al. analyzed SNPs of IL-17A and F
genes and reported that rs2275913 polymorphism of IL-17A gene was associated with an
increased risk of breast cancer in Chinese women [248]. However, Naeimi et al. indicated
that polymorphisms of IL-17A and IL-17F genes have no significance in the susceptibility
of women from southern Iran to breast cancer [249].

In addition, studies on animal models showed protumoral, prometastatic, and proan-
giogenic activity of IL-17 as well as the impact of this molecule on chemoresistance. A
number of studies were conducted in the 4T1 mouse mammary gland tumor model, the
growth of which is associated with high immune response including large leukocytosis,
and lung and tumor infiltration by neutrophils [250]. Th17 lymphocytes were shown
to be increased in the peripheral blood, spleen, and tumor tissue of 4T1 tumor-bearing
mice [251,252]. PGE2 secreted by this tumor induced the production of IL-23 in the tumor
microenvironment, leading to the expansion of Th17 cells [252]. In another study, the au-
thors characterized T cells specific for 4T1 cancer and described them as receptor activator
for nuclear factor κB ligand (RANKL)+ IL-17F+ CD4+ T cells [253]. Such cells arrive in the
bone marrow before metastatic cells and build a premetastatic niche, which in effect leads
to premetastatic osteolytic disease and bone metastases. 4T1-conditioned media support
the differentiation of DCs to mature and activated multinucleated giant cells expressing
TRAP and IL-23. These cytokines are involved in the activation of 4T1 tumor-specific T
cells determined by RANKL and IL-17 production [254]. Moreover, the production of
IL-17F and RANKL was only observed in cells derived from mice bearing 4T1 metastatic
tumors, and not in cells from mice bearing 67NR nonmetastatic cells [254]. Administration
of IL-17 in 4T1 tumor-bearing mice resulted in an increase in tumor size and a higher
microvascular density [251]. Furthermore, a decrease in the levels of IL-17A caused by
treatment with endothelin-1 receptor dual antagonist led to the slowdown of the growth of
4T1 tumor. In immunocompetent mice implanted with 4T1 cells, such treatment resulted in
a reduced tumor growth and a decrease in the concentrations of proinflammatory TNF-α
and IL-17 cytokines [255]. Similarly, knockdown of IL-17R in 4T1 mouse mammary gland
cancer cells caused a reduction in tumor size and enhanced apoptosis [256]. Inhibition of
IL-17 significantly reduced the metastases of spontaneously developing mammary gland
carcinoma in MMTV-PyV MT mice with induced AA. In these mice, AA as well as lung
and bone metastasis correlated with a high level of IL-17 [257]. In MCF-7, MDA-MB-157,
MDA-MB-361, and MDA-MB-468 human breast cancer cell lines, high levels of IL-17RB as
well as high IL-17RB mRNA expression have been observed. Depletion of IL-17RB resulted
in inhibited colony formation and retarded MDA-MB-361 tumor growth in mice [240].
Inhibition of IL-17 also reduced the proliferation and colony formation as well as tumor
growth, as revealed by chorioallantoic membrane assay (CAM) using MCF-7 cells [258].
At the same time, when stimulated with Th17 cells, MCF-7, MDA-MB-435, T47D, and
MDA-MB 231 cells showed increased matrigel invasion [259].

In a murine study on mice bearing parental Cl66 murine mammary tumors and Cl66
cells resistant to doxorubicin (Cl66-Dox) or paclitaxel (Cl66-Pac) Wu et al. revealed the role
of IL-17, CXCR2 ligands, and cancer-associated neutrophils in chemotherapy resistance
and metastasis of breast cancer [260]. In tumor tissue of resistant models increased levels
of IL-17R, CXCR2 chemokines, and CXCR2 were observed in comparison to C166 tumor
tissue. What speaks for the significance of Th17 cells in chemoresistant cancer cells is the
higher infiltration grade by Th17 and neutrophils in C166-Dox and C166-Pac models.

In addition, CD8+ T cells (splenocytes) from 4T1 tumor-bearing mice expressed IL-17,
which promoted cell survival and reduced apoptosis. Addition of TGF-β and IL-6 caused
a threefold higher IL-17 expression in CD8+ T cells from tumor-bearing mice than from
naïve mice. A significant decrease in tumor size was also noted after blocking TGF-β and
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after depletion of CD8+ T lymphocytes. A similar reduction effect was observed on lung
metastases [256].

It was shown that IL-17-producing γδ T cells and neutrophils synergistically promoted
breast cancer metastasis in the mouse model of spontaneous metastasis [261]. IL-17+ γδT
cells played an important role in oxidative metabolism, with increased mitochondrial
mass and activity. Protumoral IL-17+ γδT cells selectively showed high lipid uptake and
intracellular lipid storage and expanded in the tumors of obese mice [262].

IL-17E was also found to exhibit antitumor effects in mice lacking various T lymphocytes-
bearing tumors, including breast cancer, but not in mice lacking both T and B lymphocytes.
Treatment with IL-17E resulted in a significant increase in IL-5 serum levels and increased
numbers of eosinophils in peripheral blood of tumor bearing mice. Also a significant increase
in eosinophils was observed in spleens isolated from IL-17E-treated mice, which correlated
with the antitumor activity of IL-17E in a dose-dependent manner. Moreover, B cells play
also an important role in IL-17E-mediated antitumor activity. IL-17E activated signaling
pathways in B cells in vitro [263]. In addition, breast cancer cells treated with IL-17E
obtained from nonmalignant mammary epithelial cells-conditioned medium showed de-
creased colony formation [264]. Myeloid-derived suppressor cells (MDSCs), which are
found at increased levels in breast cancer patients, were purified from mice bearing MCF-7
tumors and treated with IL-17. This treatment significantly induced the differentiation
of MDSCs, inhibited their proliferation, and triggered apoptosis as well as inhibited the
activation of STAT3 in these cells (Ma, Huang, and Kong, 2018).

The pro- and anti-cancer effect of Th17 cells and their cytokines has been reviewed by
Fabre et al. [265] and Qianmeni et al. [266] and is summarized in Figure 4.
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Figure 4. The anti- and pro-tumor effects of Th17 cells. The recruitment and differentiation of
Th17 cells in the tumor environment is influenced by factors produced by dendritic cells (DCs),
macrophages (MAC), fibroblasts, and cancer cells. Th17 cells differentiated in this way may
show various effects on tumor development. CCL—C-C motif chemokine ligand, TNF-α—tumor
necrosis factor α, TGF-β—transforming growth factor β, CXCL—C-X-C motif chemokine ligand,
MMP—matrix metalloproteinase, STAT3—signal transducer and activator of transcription 3,
VEGF—vascular endothelial growth factor, PGE2—prostaglandin E2, IFN-γ—interferon γ,
IL—interleukin, CTLs—cytotoxic T lymphocytes, and NK—natural killer cells.



Cancers 2022, 14, 3649 23 of 42

4. Action of Vitamin D on the Immune System in Cancer

Vitamin D may affect the growth and progression of tumors by directly influencing
tumor cells or their microenvironment. Figure 5 summarizes the direct effects of vitamin D
compounds observed on breast cancer cells [267–269]. The tumor microenvironment, which
includes vascular endothelial cells, immune cells, and fibroblasts, is an important element
affecting the progression, metastasis, and sensitivity of cancer to clinical therapies. Vitamin
D, and its hormonally active form—calcitriol, can affect almost every cell in the body,
including the tumor-building cells [269].
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retinoblastoma, CDK—cyclin-dependent kinase, c-Myc—c-myelocytomatosis, C/EBPα—CCAAT-
enhancer-binding protein α, p21 and p27—cyclin-dependent kinase inhibitors, BRCA—breast cancer
susceptibility gene, ROS—reactive oxygen species, TNF-α—tumor necrosis factor α, Bcl-2—B-cell
leukemia/lymphoma 2, MMP—matrix metalloproteinase, ECM—extracellular matrix, Id1—inhibitor
of DNA binding 1, VEGF—vascular endothelial growth factor, and NFκB—nuclear factor kappa-
light-chain-enhancer of activated B cells.

CAFs are the main component of cancer stroma. Studies indicate that CAFs promote
the development of tumors; however, evidence also suggests that these cells have tumor-
suppressing effects [270]. A gene expression study, performed on human CAFs isolated
from tumor biopsies of five breast cancer patients, identified a total of 123 genes that are
regulated by calcitriol (100 nM). The identified genes include NRG1 (neuregulin 1), WNT5A
(Wnt family member 5A), PDGFC (platelet-derived growth factor C), and other genes
promoting proliferation, which were downregulated in the CAFs, and genes involved in
immune modulation such as NFKBIA (NFκB inhibitor α) and TREM-1 (triggering receptor
expressed on myeloid cells 1) which were upregulated, as well as DUSP1 (dual specificity
phosphatase 1; a phosphatase that inactivates MAPKs) which was also upregulated. In
paired normal fibroblasts, calcitriol modulated the expression of 126 genes (55% of them
were also regulated by calcitriol in CAFs), including a few genes involved in proliferation,
apoptosis, and differentiation processes [271,272], which were upregulated.

Apart from suppressing VEGF expression and hypoxia inducible factor 1α (HIF-
1α) signaling in breast cancer cells [273], studies analyzing the effects of vitamin D on
tumor angiogenic processes revealed the direct effects of calcitriol or its analogs on tumor-
derived endothelial cells [274] or VEGF-induced bovine aortic endothelial cells [162]. In
addition, in vivo studies on nude mice xenotransplanted with human breast cancer cell
lines showed weaker vascularization of tumors upon calcitriol treatment [162]. Our studies
on 4T1 mammary gland cancer model showed that calcitriol and its two analogs, PRI-2191
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(tacalcitol) and PRI-2205, increased blood flow in tumors growing in young mice [144],
whereas no such effect was observed in aged mice [151]. In general, vitamin D and its
derivatives exert an intense effect on vascular endothelial cells, which is not just observed
in the case of neoplastic diseases, as detailed in an interesting review by Kim et al. [275].

Adipose stroma plays an important role in the progression of breast cancer. Especially
in obese individuals, the adipose tissue is inflamed, which leads to an unfavorable microen-
vironment, and along with increased estrogen production, promotes the progression of
breast cancer [276]. In their study on the model of MMTV-Wnt1 mouse mammary gland
cancer transplanted into ovariectomized (OVX) mice, Williams et al. observed that in
mice on high-fat diet a vitamin D-supplemented diet or calcitriol injections slowed down
tumor growth and influenced the pathways dysregulated by obesity in both tumor cells
and the surrounding breast adipose tissue. Among others, vitamin D suppressed estrogen
synthesis and signaling as well as leptin signaling, enhanced phosphorylation of AMP-
activated protein kinase (pAMPK) and adiponectin signaling which were dysregulated in
response to diet-induced obesity in both breast tumor cells and the surrounding adipose
tissue [159,268]. On the other hand, Karkeni et al. performed a study on E0771 mouse mam-
mary gland tumors and observed that gavage with cholecalciferol decreased or increased
tumor growth and metastasis in normal and obese mice, respectively [152]. These authors
reported that the effect of vitamin D on the studied inflammatory markers was similar in
normal and obese mice: vitamin D decreased the mRNA expression of Il6, Ccl5, and Cx3cl1
in isolated adipocytes. In the adipocytes of normal mice, the mRNA levels of adiponectin,
peroxisome proliferator-activated receptor γ (Pparg), PPARγ coactivator 1α (Pgc1a), and
CCAAT enhancer-binding protein α (Cebpa) were also decreased. However, the infiltration
of tumor tissue by CD8+ cells was decreased in obese mice, whereas an increased level of
these cells was observed in normal mice [152]. Moreover, in normal mice bearing E0771
tumors and treated with cholecalciferol, the spleen and lymph nodes showed decreased
infiltration by M1 (F4.80+ CD11b+) macrophages.

Vitamin D has immunosuppressive properties, which, as suggested by some authors,
may be beneficial for the treatment of cancers [277]. However, some authors argue that
these immunosuppressive effects of vitamin D may adversely affect the efficacy of cancer
therapies [278]. Immune cells express VDR and can metabolize vitamin D. In lymphocytes,
the expression of VDR is induced after their activation, while DCs and macrophages
constitutively express this receptor. These findings indicate the principal role of vitamin D
in the modulation of immune and inflammatory responses [278–280]. On the other hand,
the immune response may be affected by vitamin D direct actions on breast cancer cells.
Natural killer (NK) cells form the first line of defense of the innate immune system, but
also exhibit direct and indirect antitumor effects through cytotoxic and immune-regulatory
properties. In MDA-MB-231 and MCF-7 breast cancer model calcitriol supports NK cells
to fight against breast cancer cells partly by reducing miR-302c and miR-520c expression
in breast cancer cells and consequently upregulating the activating receptor natural killer
group 2, member D (NKG2D) ligands, major histocompatibility complex class I chain-
related proteins A and B (MICA/B), and unique long UL16-binding protein 2 (ULBP2) [281].

In our studies on the 4T1 murine mammary gland tumor model, calcitriol and its
two low calcemic analogs, PRI-2191 and PRI-2205, increased the metastatic spread in
tumor bearing young mice [144,145] while in aged, OVX mice, they revealed transient
antimetastatic effects [151] (Table 3). 4T1 tumor cells are not sensitive to proliferation
inhibition by calcitriol or its analogs in vitro, and our studies indicated that the growth of
4T1 primary tumor was not affected by treatment with these compounds [144,151]. Other
authors have shown that calcitriol stimulated the growth of 4T1 primary tumor [142].
These findings indicate that the prometastatic [282] or protumoral [142] effect of calcitriol
is mediated through its impact on immune response, particularly the prevalence of Th2
and Treg cells [142,282]. Moreover, in our studies on mice bearing 4T1 mouse mammary
gland cancer, administration of calcitriol or its analogs increased the percentage of Ly6Clow

anti-inflammatory monocytes in the spleen of young mice. An opposite effect was ob-
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served in aged OVX mice [283]. Further in vitro studies were performed on murine bone
marrow-derived macrophages (BMDMs) which differentiated into M0, M1, or M2 in the
presence or absence of conditioned media from 4T1 (metastatic), 67NR (nonmetastatic),
and Eph4-Ev (normal) mouse mammary gland cells under the influence of calcitriol. The
results showed that calcitriol enhanced the differentiation of M2 macrophages (increased
Cd206 and Spp1 (OPN) mRNA expression and CD36, Arg, and CCL2 protein level in M2
BMDMs and decreased Cd80 and Spp1 mRNA expression and IL-1, IL-6, OPN, and iNOS
protein in M1 BMDMs). 4T1-conditioned media showed a higher effect on gene and protein
expression in macrophages after calcitriol treatment, with the greatest effect observed on
M2 cells, when compared to 67NR- and Eph4-Ev-conditioned media. This resulted in in-
creased differentiation and properties characteristic of alternative macrophages. Moreover,
calcitriol differentiated M2 macrophages stimulated the migration of 4T1 cells through
fibronectin [284] (Figure 6).
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Figure 6. Summary of the effects of vitamin D on various cells in tumor microenvironment and on
immune system in breast cancer. CAFs—cancer-associated fibroblasts, iTh17—induced Th17, EC—
endothelial cell, Treg—regulatory T lymphocytes, CD8+—CD8+ T lymphocytes, Ly6C—lymphocyte
antigen 6 complex, NRG1—neuregulin 1, WNT5A—Wnt family member 5A, PDGFC—platelet-
derived growth factor C, DUSP1—dual specificity phosphatase 1, NFKBIA—NFκB inhibitor α, TREM-
1—triggering receptor expressed on myeloid cells 1, Il6—interleukin 6, Ccl5—C-C motif chemokine
ligand 5 (RANTES—Regulated on Activation, Normal T-cell Expressed and Secreted), Cxcl1—C-X-
C motif chemokine ligand 1, Pparg—peroxisome proliferator-activated receptor γ, Pgc1a—PPARγ
coactivator 1α, Cebpa—CCAAT enhancer-binding protein α, VEGF—vascular endothelial growth
factor, OVX—ovariectomized, AMPK—5′-AMP-activated protein kinase, E0771, 4T1, Mmtv-Wnt—
mouse mammary gland cancer cell lines.

These findings are important considering the evidence that through various molecules
released by cancer cells, such as chemokine CCL2, peripheral monocytes and local macrophages
are recruited to the primary tumor and transformed into tumor-associated macrophages [285].
M1 classical macrophages exhibit antitumor activity. However, during cancer progression, a
predominance cell similar to M2 alternative macrophages with immunosuppressive properties is
observed. These macrophages support the growth of primary tumor, increase the metastatic
potential, promote vascularization and remodeling of tumor stroma [286]. In breast cancer,
similarly to other cancers, a high infiltration rate by tumor-associated macrophages is
associated with poor prognosis [287]. It was shown that in breast cancer patients the
disease-free survival and overall survival correlated with the M2 markers expression,
namely CD163, CD204, or CD206 [288].
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Figure 6 summarizes the published data concerning the impact of vitamin D on breast
cancer stromal cells.

5. Vitamin D and Th17 Cells

VDR is highly expressed by Th17 cells; calcitriol can modulate the expression of
IL-17A in both mouse and human T lymphocytes. Most studies suggest that calcitriol
decreases the recruitment of Th17 cells and secretion of IL-17 through the VDR-mediated
pathway [289–293]. However, some studies report no correlation between Th17 cells and
the level of circulating 25(OH)D, even after supplementation with vitamin D3. In a multiple
sclerosis study, no correlation was observed between vitamin D3 status and individual T cell
populations in patients (no supplementation at the beginning) despite high level of vitamin
D3. Similar results were observed after 12 weeks of vitamin D3 supplementation [294,295].
There may be several reasons for these conflicting results. All together; the vitamin D3
status in the body, the doses used, and the level of E2, which takes part in Vdr gene
expression in Th17 cells, play a significant role [289].

The inhibition of proinflammatory Th17 cells as a consequence of calcitriol treatment
was observed in a study on young mice with experimental autoimmune encephalomyelitis
(EAE) and was defined as transcriptional repression, mediated by the VDR [296]. Moreover,
Chang et al. discovered a post-transcriptional mechanism of Th17 cytokines inhibition
in EAE by vitamin D, namely induction of the expression of C/EBP homologous protein
(CHOP) [297]. The inflammatory environment that accompanies the improper balance
between Th17/Treg cells could be regulated by vitamin D even in patients with unexplained
recurrent pregnancy loss (URPL) [298]. Vitamin D regulates the expression of genes related
to Th17 and Treg cells, increasing the percentage of Treg cells and expression of FOXP3
gene while diminishing the percentage of Th17 cells and expression of RORγt in women
with URPL who received vitamin D supplementation for 2 months [299]. In another study
in which PBMCs from URPL patients and healthy controls were treated with vitamin D
ex vivo, the expression of FOXP3 and GITR genes, and the ratio of FOXP3/RORγt, were
found to be increased [300]. Proper maternal supplementation of vitamin D could attenuate
the immune system side effects caused by Bisphenol A (BPA), which is widely found
in materials used on a daily basis. Wang et al. showed that exposure of mothers to BPA
increased the proliferation of spleen Th17 cells and the serum level of IL-17 in mice offspring.
However, vitamin D3 supplementation in mothers ameliorated the effects of BPA on the
immune system. For instance, it attenuated the upregulation of Th17 proliferation and the
expression of RORγt, IL-17, IL-6, and IL-23 in the offspring [301].

Expression of Th2 and inhibition of Th17 polarization through calcitriol supplementa-
tion seem to play an important role in suppressing bone destruction induced by periodonti-
tis. Upregulated expression of Treg/Th2-related cytokines (IL-10, IL-4) as well as decreased
level of Th1/Th17-related cytokines (such as IFN-γ and IL-17) and proinflammatory im-
mune cells including Th17 was found to be caused by calcitriol in the animal model of
periodontitis [302]. In vitro studies revealed that in response to calcitriol administration, Th
cells in an inflammatory environment exhibited an enhanced potential for Th2 polarization
along with a decreased potential for Th17 polarization in the presence of DCs. Furthermore,
in RAW264.7 cells after coculture with calcitriol-treated Th17 cells inflammation-induced
osteoclastogenesis was suppressed [303].

The above-mentioned studies analyzing the influence of vitamin D on Th17 cells
have generally reported the inhibitory effect of vitamin D on the differentiation of these
cells. Similarly, Chen et al. revealed that in vitro facilitated proliferation, migration and
invasion of MCF-7 human breast cancer cells co-cultured with Th17 cells could be reversed
by calcitriol. In these studies, calcitriol inhibited the differentiation of Th17 cells [304].

However, in our studies on 4T1 model, calcitriol and its analogs (PRI-2191 and
PRI-2205) accelerated the metastatic potential of 4T1 tumor in young mice [144]. The
mRNA screening showed increased expression of some genes associated with Th17 cells in
the mononuclear splenocytes of young mice: IL-17a (Il17a), IL-17 receptor E (Il17re), Il1r1,
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Il21, RAR-related orphan receptor α (Rora), and RAR-related orphan receptor γ (Rorc) [282].
In parallel, we observed that in old OVX mice bearing 4T1 tumors, the same scheme of
treatment leads to temporal decrease in lung metastases [151]. In the early stages after the
4T1 cells inoculation, calcitriol stimulated the expression of almost all genes tested related
to Th17 differentiation in spleens of aged OVX mice. The effect of the tested compounds
on the expression of Th17 cells associated genes in the advanced stage of the disease was
not so significant, except for the Il17re gene. Interestingly, the expression of Rorc was
diminished in calcitriol-treated aged OVX mice [305]. Analyses performed on unstimulated
splenocytes showed some differences between young and old OVX mice. However, for
detailed analysis of Th17 response, we stimulated CD4+ splenocytes harvested from young
and aged OVX mice bearing 4T1 tumors, which were treated with calcitriol and its analog
with TGF-β and IL-6 to induce Th17 cells ex vivo. The induced Th17 (iTh17) cells from
young mice splenocytes treated with PRI-2191 expressed significantly higher levels of
Il17a mRNA as compared to iTh17 splenocytes obtained from control tumor-bearing mice.
Furthermore, PRI-2191 mice treatment resulted in higher expression of transcription factors
Rora and Rorc and IL-17R (Il17re) as well as IL-21 (Il21) mRNA in iTh17 cells. Also VDR
mRNA (Vdr) as well as OPN (Spp1) was significantly increased in iTh17 cells obtained from
young mice after PRI-2191 treatment. On the other hand, aged OVX mice did not show any
significant changes in the expression of the analyzed genes [305].

iTh17 cells from young, calcitriol analog-treated mice released higher levels of IL-17A
than control, nontreated mice, while the opposite effect (decreased IL-17A secretion) in old
OVX mice was observed [305]. IL-17 is a proinflammatory cytokine with proven pleiotropic
effect. Its effect may vary depending on the stage of tumor development. The protumor
effect of IL-17, supporting tumor angiogenesis, increases during the chronic phase of
cancer and inflammation development, and overpowers anticancer effects, promoting the
expansion of cytotoxic T lymphocytes and other immune cells fighting cancer [175,306].
In the 4T1 mouse model (young mice), in which calcitriol and its analog increased the
IL-17A secretion of iTh17 cells [305], increased blood perfusion within the tumor was
observed [144]. On the other hand, we didn’t observe any effect on tumor blood perfusion
in aged OVX mice [151].

There is evidence of synergistic effect between E2 and vitamin D3. As it has been shown
that vitamin D3 increases the synthesis of estrogens which are essential for the expression
and function of VDR in the inflammation of the central nervous system [307]. Interestingly,
our results according to studies on 4T1 mouse mammary gland cancer revealed an increase
in plasma estrogen levels after calcitriol treatment only in young, tumor bearing mice [144],
whereas both tested analogs (PRI-2191 and PRI-2205), and to a lesser extent, calcitriol
decreased estrogen level in plasma of aged OVX mice bearing 4T1 tumors [305]. However,
varying estrogen regulation in both groups of mice was not directly related to the expected
impact on Th17 cells, as it has been previously reported that estrogen inhibits Th17 cell
differentiation and IL-17 production inhibiting RORγT expression [196]. As we have shown,
young mice treated with calcitriol analogs revealed increased plasma estrogen levels as well
as increased Rorc (encoding RORγT) mRNA in iTh17 splenocytes. However, in old mice no
such changes in expression were observed [305]. It is supposed that the hormonal status of
the tumor-bearing organism did not have a direct effect on Th17 cells in our experimental
conditions. However, after treatment with PRI-2191, iTh17 lymphocytes isolated from the
spleens of young mice showed increased expression of Vdr, while an opposite trend was
observed in aged OVX mice model. Therefore, it can be assumed that the hormonal status
of the host organism in the 4T1 model influences the action of calcitriol and its analogs
on Vdr expression in iTh17 cells, and that the expression of genes involved in Th17 cell
formation by these compounds correlates with the level of Vdr expression [144,305]. In
addition, after PRI-2191 treatment, an increased expression of the Spp1 gene (encoding
OPN) was observed in young 4T1 tumor-bearing mice [305]. According to the current
knowledge, OPN is required by DCs for inducing Th17 cell differentiation [189] and IL-17
synthesis [190]. In acute coronary syndrome studies, OPN has been shown to correlate
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positively with inflammation, through a direct effect on IL-17-producing cells [191]. This
direct effect of OPN on Th17 cell differentiation is the result of the interaction with its
receptors [192]. Our studies revealed increased Spp1 expression in iTh17 cells in young
mice which correlated with the intensity of expression of the genes associated with the
phenotype of these proinflammatory cells [305]. In addition, a significant increase in the
OPN level after calctriol or its analogs treatment was observed in tumor tissue of young
mice bearing 4T1 tumor in our previous studies [144], whereas in aged OVX mice its
level in tumor tissue was significantly diminished [151]. Calcitriol directly stimulates the
expression of OPN in various cells through VDR-responsive elements in Spp1 gene [308,309].
Therefore, its increase in 4T1 tumor tissue [144], lymph nodes [282], or iTh17 cells from
young mice may have contributed to the enhanced iTh17 cell differentiation and IL-17A
production observed in young mice [305].

The actions of vitamin D analogs and metabolites are mediated through VDR. When
occupied by a ligand, VDR heterodimerizes with the retinoid X receptor (RXR) and, together
with coregulatory proteins, interacts with specific DNA sequences (vitamin D response
elements) in the promoter regions of target genes, modulating their transcription [310]. We
hypothesized that vitamin D could indirectly regulate Th17 cell differentiation through
the impact of VDR on OPN (OPN is known to regulate the expression of IL-17 through its
receptors [192] and OPN gene possesses VDR-responsive elements [309]), and this could
affect the progression of the tumor (Figure 7).
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Figure 7. The effect of calcitriol or its analogs on Th17 cells in young and aged mammary gland
tumor-bearing mice. Young (~8 weeks old) or aged ovariectomized (~50 weeks old) BALB/c mice
were transplanted orthotopically (ort.) with 4T1 mouse mammary gland cancer cells, and then
injected s.c. with calcitriol or tacalcitol. Increased metastatic potential was observed in young mice
treated with calcitriol or tacalcitol, whereas in aged mice decreased metastasis count was noticed. In
young mice, lung tissue showed increased osteopontin gene (Spp1) expression with increased osteopontin
(OPN) protein level and plasma level of 17β-estradiol and TGF-β, which may contribute to increased
Th17 cell differentiation and increased metastatic spread of 4T1 tumors. In aged mice, OPN level in tumor
tissue, as well as plasma level of OPN and 17β-estradiol, was decreased with lower IL-17A production by
induced Th17 cells (iTh17), leading to decreased metastatic potential of 4T1 cells.
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6. Conclusions

Although many studies on vitamin D have been performed so far, it is unclear whether
vitamin D (or its derivatives) reveals a beneficial or harmful effect in breast cancer treatment,
and how useful vitamin D-containing diets and supplements really are. Therefore, it is
necessary to investigate in-depth about the action of vitamin D, which, through its effect
on the entire host organism, may indirectly influence tumor development and metastasis
formation, even in the case where cancer cells are not themselves sensitive to vitamin D.
Moreover, more attention should be paid to several receptors expressed by breast cancer
cells (especially isoforms of both ER receptors) at different stages of tumor development.
This should always be compared with the results for patients vitamin D and OPN blood
status and the level of expression for enzymes metabolizing vitamin D in tumor tissue
for all breast cancer cases, to make the knowledge most helpful in personalizing cancer
patient treatment.
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