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ABSTRACT
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe 
pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of 
Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macro-
phages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse 
genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive 
compartment called the Legionella-containing vacuole (LCV) through the concerted action of 
hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective over-
view of Legionella pathogenicity including infection mechanisms, secretion systems, and translo-
cated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, 
the implications of Legionella genome diversity and future avenues for the field.
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Introduction

Bacteria of the genus Legionella are natural pathogens 
of environmentally free-living eukaryotes that can 
cause respiratory illness in humans termed legionello-
sis. Legionellosis includes a fatal pneumonia called 
Legionnaires’ Disease (LD) and a self-limiting illness 
called Pontiac Fever. LD primarily affects elderly and 
immunocompromised individuals, including those on 
immunosuppressive therapy[1]. Legionella bacteria 
were first isolated from an outbreak of atypical pneu-
monia at the 1976 American Legion Convention in 
Philadelphia, USA[2]. The etiological Gram-negative 
bacillus was identified and named Legionella pneumo-
phila after the disease and its victims[3]. LD accounts 
for 2–9% of total community-acquired pneumonia; 
however, the worldwide prevalence of LD is difficult 
to quantify due to underdiagnosis, variation in diag-
nostic methods, awareness level, and reporting stan-
dards between countries[4]. It is predicted that less 
than 5% of cases are properly reported and diagnosed 
[1,5]. Pontiac Fever is a benign, febrile, non-pneumonic 
disease caused by exposure to Legionella bacteria, which 
is rarely diagnosed and does not require antimicrobial 
treatment[2]. Legionella carry a massive toolbox of 
virulence factors that facilitate its survival and robust 
intracellular replication [6,7]. This review provides an 
overarching discussion of Legionella pathogenicity and 

the interactions of these pathogens with the mamma-
lian immune system.

Human disease is primarily a consequence of 
Legionella colonization of anthropomorphic freshwater 
environments, including air-conditioning cooling 
towers, building water systems and spa pools [8,9]. 
Legionella infection occurs almost exclusively from 
aspiration of contaminated water and person-to- 
person transmission is very rare[10]. The rarity of 
transmission between humans and co-evolution with 
unicellular amoebae has likely resulted in Legionella’s 
susceptibility to innate immune defenses (see below). 
Consequently, Legionella spp. are clinically important 
pathogens that additionally serve as valuable models to 
dissect mechanisms of both host–pathogen interactions 
and innate immune defense.

Approximately half of the 65 identified Legionella 
species have been associated with human disease; how-
ever, the overwhelming majority of clinical infections 
(~90%) are caused by a single species, L. pneumophila. 
The next most common etiological agents of LD are 
L. longbeachae, L. bozemanii and L. micdadei, which 
account for 2–7% of infections worldwide[11]. 
Interestingly, L. longbeachae is the leading cause of 
LD (~30%) in Australia and New Zealand and is the 
only species naturally found in soil [12,13]. In compar-
ison to L. pneumophila, pneumonia caused by non- 
pneumophila Legionella (non-Lpn) species are rare and 
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almost exclusively nosocomial[11]. Interestingly, 
L. pneumophila and non-Lpn species are found in simi-
lar habitats, including built freshwater environments; 
however, non-Lpn species contribute less to overall 
disease burden. This can be attributed to various factors 
such as difficulty in strain recovery from water samples, 
decreased fitness of some species in the sediment of 
aquatic systems, lack of serological test validation of 
non-Lpn spp., and high genetic diversity among 
Legionella species, which makes diagnosis difficult 
[11,14].

Legionella spp. are ubiquitous in the environment 
where they parasitize and replicate within free-living 
eukaryotic phagotrophs, primarily Amoebozoa [15,16]. 
Amoebae including Acanthamoeba castellanii, 
Acanthamoeba polyphaga, Hartmannella vermiformis, 
Dictyostelium discoideum, and Naegleria spp. are nat-
ural hosts of Legionella and are used to investigate 
Legionella host–pathogen interactions[17]. Amoebae 
serve a dual role for Legionella by providing both 
a niche for intracellular replication and protection 
from harsh conditions of the environment including 
antibiotics, chemicals, heat, and osmotic stress [18–21]. 
Legionella’s environmental persistence is also due to 
colonization of interspecies biofilms in natural and 
built freshwater environments [22,23]. Within biofilms 
Legionella are phenotypically heterogeneous, containing 
subpopulations of virulent non-growing bacteria[24]. 
The phenotypic variation in biofilms is controlled by 
Legionella quorum sensing (Lqs) system along with 
a transcription factor, LvbR, and the temperature[24]. 
The nongrowing cells or “persisters” are metabolically 
active, have high tolerance to antibiotics and express 
virulence genes. These virulent sessile persisters are 
highly infectious and replicate efficiently within per-
missive protozoan hosts[24]. Legionella’s extensive 
adaptation to persist and replicate within natural fresh-
water environments has resulted in efficient coloniza-
tion of built environments and consequent human 
disease.

All sequenced Legionella species encode a highly 
conserved type IVB secretion system (T4SS) called 
Dot/Icm (defective for organelle trafficking/i-
ntracellular multiplication) [25,26]. The Dot/Icm T4SS 
is essential for intracellular replication, spans both bac-
terial membranes and functions to translocate hun-
dreds of bacterial virulence factors, termed effector 
proteins, directly into host cells. Dot/Icm-translocated 
effectors have diverse functions and biochemical activ-
ities but broadly act to subvert lysosomal bacterial 
degradation and acquire nutrients from the host cell 
(see below). L. pneumophila encodes over 300 indivi-
dual effector genes, which comprise 10% of open 

reading frames in the genome. Despite conservation 
of the Dot/Icm T4SS and relative abundance of effector 
genes, there is extensive interspecies variation in trans-
located effector repertoires[26]. Legionella spp. encode 
the greatest quantity and diversity of effectors of all 
intracellular pathogens characterized to date [25,26].

Intracellular lifecycle of Legionella

Attachment to host cells

The basic mechanism of L. pneumophila intracellular 
replication is consistent between natural (amoebae) and 
accidental hosts (mammalian macrophages). Following 
initial attachment and phagocytosis, Legionella intracel-
lular replication is contingent on biogenesis and main-
tenance of its replicative niche, the Legionella 
containing vacuole (LCV), and temporal regulation of 
egress (Figure 1)[27].

Initial attachment of L. pneumophila to host cells is 
enhanced by several bacterial factors. The rtxA locus, 
pilEL locus, ladC, and enhC, which encode a type 
I secretion system, type IV pili, an inner membrane- 
associated protein and a periplasmic protein, respec-
tively, facilitate L. pneumophila adherence and entry 
into both amoebae and mammalian cells [28–31]. 
L. pneumophila major outer membrane protein 
(MOMP), a porin, and Lcl, a collagen-like protein 
contribute to mammalian cell adhesion [32–34]. 
However, L. pneumophila also exploits host factors for 
its attachment and internalization, including the com-
plement receptors CR1 and CR3, which are engaged by 
MOMP, and Fc receptors. Complement and Fc recep-
tors are important for L. pneumophila entry into 
macrophages since antibody-mediated neutralization 
of CR1, CR3 or Fc receptors impairs phagocytosis [-
35–38]. Opsonin-independent adherence to macro-
phages and lectin-mediated adherence to A. castellanii 
has been described; however, specific factors involved 
in this process have yet to be definitively characterized 
[37,39–42]. Together, initial attachment of 
L. pneumophila to host cells is facilitated by both host 
and bacterial factors.

Phagocytosis of Legionella

After attachment, L. pneumophila enters the host cell 
by either traditional phagocytosis or a specialized pro-
cess called coiling phagocytosis [43,44]. In contrast to 
traditional phagocytosis, a symmetrical and circumfer-
ential uptake processes, coiling phagocytosis involves 
encircling of extracellular bacteria by unilateral pseu-
dopods making this as an asymmetrical engulfment 
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process (Figure 1)[45]. However, the biological rele-
vance of coiling phagocytosis is unclear since it is 
neither necessary for intracellular replication nor 
a pathogen-driven process as heat-killed bacteria are 
also internalized by this mechanism [20,43,46].

Phagocytosis of L. pneumophila is an active process 
relying on phosphatidylinositol 3-kinase (PI3K)- 
mediated actin polymerization. Chemical inhibition of 
either PI3K (LY294002 or wortmannin) or actin poly-
merization (cytochalasin-D) impair L. pneumophila 
phagocytosis [39,47–49]. Actin binding proteins called 
coronins are also important for L. pneumophila phago-
cytosis. Coronins are transiently recruited to the pha-
gocytic cup of U937 macrophage-like cells harboring 
live, but not dead, L. pneumophila, which supports 
a role for directed atypical phagocytosis in 
L. pneumophila pathogenicity[50]. Furthermore, the 

Dot/Icm T4SS is important for efficient 
L. pneumophila uptake by phagocytes and at least one 
translocated effector (SdeA/LaiA) contributes to this 
process[51]. Thus, L. pneumophila phagocytosis is 
a directed uptake process and is conserved at the mole-
cular level among diverse host cells.

LCV biogenesis: Evasion of endocytic trafficking 
and vacuole acidification

L. pneumophila utilizes a myriad of virulence mechan-
isms to escape the endocytic pathway and establish the 
LCV. Canonically, phagocytosed bacteria are delivered 
to early endosomes where the early sorting process 
occurs. While some receptors are recycled back to the 
surface, the remaining cargo is transported to late 

Figure 1. The life cycle of Legionella pneumophila within eukaryotic host cells. Bacterial uptake takes place by either coiling 
(shown) or conventional phagocytosis. Early after entry into the host cell, L. pneumophila loses its flagella and the Legionella 
containing vacuole (LCV) escapes the endocytic pathway via effector-mediated recruitment of endoplasmic reticulum (ER)-derived 
vesicles and transient association with mitochondria. Subsequently, the LCV becomes studded with ribosomes and effectors and 
exponential replication occurs (replicative phase; see text). Upon exhaustion of host nutrients, L. pneumophila become flagellated 
(transmissive phase; see text) and egress the host cell.
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endosomes and lysosomes for degradation [52]. Thus, 
phagosomes rapidly undergo endocytic maturation and 
conversion to a phagolysosome. The acidic microenvir-
onment of phagolysosomes along with lysosomal 
hydrolases efficiently degrade internalized particles, 
including bacteria[53]. However, the LCV evades endo-
cytic maturation through effector-mediated subversion 
of vesicular trafficking, ribosomal localization, the ubi-
quitin-proteasome system, phosphoinositide metabo-
lism and vacuolar acidification.

Rapid molecular remodeling of Legionella- 
containing phagosomes is essential for LCV biogenesis 
and bacterial intracellular replication (Figure 1)[54–56] 
L. pneumophila temporally regulates the pH of the 
LCV. Despite the importance of lysosomal evasion 
and maintenance of near neutral vacuolar pH at early 
stages of infection [<6 h post-infection (p.i.)] [55,56], 
vacuolar acidification at late time points is important at 
late stages. Concomitantly, at late time points during 
infection (>18 h p.i.), LCVs acidify and acquire late 
endosomal and lysosomal markers such as lysosomal- 
associated membrane protein 1 (LAMP-1)[56]. 
Treatment of infected macrophages with bafilomycin, 
a vacuolar(v)-ATPase inhibitor, which prevents acidifi-
cation, impairs bacterial replication[56]. Dot/Icm- 
translocated effectors also temporally regulate LCV 
pH through subversion of the v-ATPase. The effector 
SidK is expressed at early stages of infection and pre-
vents acidification through binding v-ATPase VatA, 
which impairs v-ATPase function[57]. WipB, 
a lysosome-targeted phosphatase, also interacts with 
components of the host v-ATPase but the influence of 
these interactions on v-ATPase function are unknown 
[58]. This suggest that regulation of v-ATPase activity 
is a key feature for intracellular replication of 
L. pneumophila in macrophages.

Initial studies imaging fixed L. pneumophila-infected 
cells revealed Dot/Icm-mediated recruitment of at least 
one mitochondrion to the LCV [59,60]. However, 
recent live-cell imaging revealed that mitochondrial 
association with the LCV is transient, highly dynamic 
and independent of the Dot/Icm T4SS [59,61–63]. Dot/ 
Icm-dependent subversion of mitochondrial metabo-
lism at early time points contributes to 
L. pneumophila intracellular replication. The effector 
LegG1 induces dynamin 1-like protein (DNM1L)- 
dependent mitochondrial fragmentation. The abrupt 
halt in mitochondrial respiration leads to a Warburg- 
like metabolism in macrophages, which favors bacterial 
replication [61,64].

Multiple L. pneumophila effectors modulate vesicu-
lar and organelle trafficking [65–69]. Many effectors 
that subvert host vesicular trafficking have been 

identified through yeast secretion assays and localiza-
tion to either the Golgi apparatus or ER [66,68,70–72]. 
While the molecular mechanisms by which these effec-
tors function have not been fully elucidated, recent 
advances have revealed a critical role for host phos-
phoinositide metabolism (reviewed in [73]), small 
GTPases (see below and reviewed in [74,75]) and the 
retromer complex [76,77].

Subsequently, ER-derived vesicles are replaced by 
ribosomes and the LCV transitions into a replication- 
permissive a rough-ER-like compartment [59,78]. 
Recruitment of ribosomes to the LCV is a conserved 
process in both amoeba and macrophages; however, the 
mechanism by which it occurs is still not clear [79,80]. 
Legionella effectors likely play a role in this process as 
dot/icm mutants do not establish an LCV [59,62]. 
Moreover, establishment of the LCV is conserved 
between Legionella species. Despite genomic differ-
ences, [81] the L. longbeachae LCV is similar to the 
L. pneumophila LCV as it avoids lysosomal fusion and 
Rab1 and Sec22b are recruited [81,82]. These findings 
highlight the conservation of essential pathways and 
phenotypic similarities among Legionella species.

L. pneumophila effectors regulate the function of 
several host small GTPases to facilitate LCV biogenesis 
[75,83]. Modulation of small GTPases is central to LCV 
biogenesis and several comprehensive reviews have 
been published on this topic [74,75,84,85]. 
Immediately following L. pneumophila entry, Rab1 
and Arf1 are recruited to the LCV [54,86]. In macro-
phages, recruitment of Rab1 and Arf1 to LCVs is 
mediated by the effectors SidM/DrrA (defect in Rab1 
recruitment) and RalF, respectively. LidA binds to the 
cytoplasmic face of the LCV and synergizes with SidM 
to recruit Rab1 [87,88]. The effector, VipD, has Rab5- 
dependent phospholipase A1 activity that inhibits 
endosomal fusion of LCV by catalyzing removal of PI 
(3)P from the endosomal membrane[89]. Rab5 and 
Rab7 play an important role in phagosome maturation 
and are required for cargo transition from early to late 
endosomes. These small GTPases also play a role in 
retrograde trafficking of endosomes to the Golgi- 
complex [90,91].

Effector-mediated subversion of the host retromer 
complex is important for LCV biogenesis. The effector 
RidL impedes retrograde trafficking pathway by bind-
ing to the retromer subunit Vps29 and the lipid phos-
phoinositol-3-phosphate [PI(3)P], which localizes 
retromer components to the LCV membrane [76,92]. 
This, in turn, modulates retromer function and pro-
motes intracellular replication of L. pneumophila, likely 
through LCV acquisition of retrograde transport vesi-
cles [77,93].
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Biphasic lifecycle of Legionella

Legionella have a biphasic lifecycle that alternates 
between an infectious transmissive phase and a non- 
infective replicative phase. In nutrient-rich conditions, 
such as within host cells, Legionella undergoes expo-
nential replication (replicative phase) and under scar-
city of nutrients the bacteria enter into stationary 
(transmissive) phase. After exit from the nutrient 
deprived host, Legionella disperse into the environment 
and reestablish infection into a new host cell, which 
offers a protective intracellular niche favorable for 
replication[94].

The transition between growth phases is accompa-
nied by major transcriptomic changes. Nearly half of 
L. pneumophila’s predicted genes have a drastic shift in 
expression from replicative to transmissive phase[95]. 
In the replicative phase, genes related to metabolism, 
amino acid degradation/breakdown, sugar assimilation, 
cell division and biosynthetic processes are upregulated. 
During transmissive phase, genes associated with host 
entry, virulence and survival, which include Dot/Icm- 
translocated effectors, motility machinery (flagellar and 
type IV pilus genes), enhanced entry proteins (Enh) 
and cyclic-di-GMP regulatory proteins are upregu-
lated[95].

Legionella’s transition from replicative to transmis-
sive phase is a highly coordinated process that is 
initiated upon nutrient limitation. Amino acid starva-
tion triggers synthesis and accumulation of guanosine 
3,5-bispyrophosphate (ppGpp), which initiates station-
ary phase and consequent up-regulation of virulence 
genes[96]. Similar to other microbes, L. pneumophila 
ppGpp synthetases, RelA and SpoT, are activated when 
uncharged tRNAs bind to ribosomes[97]. Moreover, 
transition from replicative to transmissive phase is con-
trolled by the sigma factors RpoS and FliA, activator 
protein LetE, and the LetA/S two-component system 
[98–100]. LetA/S signaling results in upregulation of 
two small non-coding RNAs, RsmY and RsmZ, which 
facilitate phase switching by repressing the global 
repressor CsrA [101–103].

Following differentiation into transmissive phase, 
L. pneumophila must egress the host cell. Mechanisms 
by which L. pneumophila temporally regulate egress are 
poorly understood. However, current data support 
a role for pore-formation and subsequent necrotic 
host cell death when L. pneumophila egress from 
macrophages and amoebae [104,105]. The Dot/Icm 
component IcmT contributes to pore-formation- 
dependent lysis of host cells; however, the mechanism 
by which IcmT functions is unknown[106]. The 
Legionella translocated effectors LepA and LepB also 

contribute to egress through non-lytic exocytosis from 
amoebae[107]. However, the mechanism by which Lep 
proteins facilitate release of L. pneumophila from pro-
tozoa is still unclear.

Genome diversity and conserved proteins in 
Legionella virulence

Variation in Legionella genomes and effector 
repertoires

A high degree of plasticity and diversity exists in the 
genomes of Legionella species. Recently, Gomez-Valero 
and colleagues sequenced the genomes of 58 Legionella 
species and performed a comparative analysis of gen-
omes across 80 strains of Legionella[26]. Legionella 
genomes are highly diverse in size and content with 
genome size and GC content varying from 2.37 Mb to 
4.88 Mb and 32.82% to 50.93%, respectively. The GC 
content of Legionella genomes is inversely correlated 
with genome size, suggesting that horizontal gene 
transfer, which results in AT-rich regions, drives 
Legionella genome size[26]. Moreover, out of 17,992 
identified orthologous gene clusters, 5,832 (32%) were 
strain specific and only 1,008 genes (6%) comprised the 
core genome[26].

Despite diversity between Legionella genomes, the 
Dot/Icm T4SS is highly conserved and present in all 
species. However, the size and composition of 
Legionella effector repertoires is highly variable. For 
example, there is only a 50% overlap in effector reper-
toires of L. pneumophila and L. longbeachae[81]. No 
common set of effectors exists between strains that 
either cause human disease or replicate robustly in 
human macrophages[26]. Moreover, 18,000 unique 
translocated effectors are encoded by Legionella spp., 
which reflects the diversity of hosts and environmental 
adaptations evolved by Legionella[26].

Extensive co-evolution with diverse environmental 
phagotrophs has conferred on Legionella the ability to 
replicate within mammalian macrophages and cause 
human disease [7,35,108–110]. Using high-throughput 
genetic screening, Park and colleagues demonstrated 
that replication in L. pneumophila within mammalian 
cells is a consequence of combinatorial selection of 
virulence factors required for replication with phylo-
genetically diverse protozoan hosts[111]. The authors 
identified a subpopulation of effectors that are univer-
sally important for L. pneumophila replication within 
A. castellanii, A. polyphaga, H. veriformis and 
N. gruberi, and additional subpopulations important 
for replication within a single host genera or phylum. 
This study elegantly demonstrates how 
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L. pneumophila’s broad host tropism has (1) driven 
evolution of the largest known repertoire of effector 
virulence factors discovered to date; and (2) how an 
environmental pathogen gained the ability to cause 
accidental human disease.

Eukaryotic-like domains and motifs in Legionella 
genomes

Legionella species encode genes containing 137 distinct 
eukaryotic domains/motifs [26]. Ankyrin repeats are 
most prevalent eukaryotic motifs present across 
Legionella effectors; however, eukaryotic F-box, 
U-box, small GTPase, Rab, and SET domains are also 
abundant. The SET domain, present in histone methyl-
transferases, is present in 46 out of 58 species of 
Legionella. The effector RomA contains a SET domain 
and represses host gene expression via methylation of 
host histone proteins. Thus, the prevalence of SET 
domains among Legionella spp. suggests that host chro-
matin manipulation is a common mechanism 
employed by this genus [26,112].

Another motif prevalent in the genomes of multi-
ple Legionella species is the ergosterol reductase 
ERG4/ERG24 motif. Ergosterol is present in the cell 
membranes of yeast, mitochondria, filamentous fungi 
and amoeba and 31 species encode one or two genes 
with the ERG4/ERG24 motif. Further sequence ana-
lysis revealed high similarity among Legionella pro-
teins containing ERG domain with amoeba 
suggesting that Legionella has acquired this domain 
and others from amoebae[26]. However, the role of 
the ERG4/ERG24 motifs in L. pneumophila patho-
genicity are poorly understood.

Legionella species encode 184 predicted small 
GTPases and 149 of these are present exclusively in 
eukaryotes and Legionella[26]. Homology was uncov-
ered by BlastP analysis of Legionella Rab domain- 
containing proteins against protozoans in the NCBI 
database. Moreover, a subset of Legionella Rab 
GTPases possessed additional domains such as U-box, 
F-box and ankyrin repeats. Notably, 16 of these Rab 
GTPase motif-containing proteins were translocated by 
the Dot/Icm T4SS suggesting that these proteins are 
actual substrates of T4SS and function in the host cell 
[26]. While modulation of GTPase function is critical 
for intracellular replication, the functions of the major-
ity of these genes is elusive. However, it is tempting to 
speculate a role for these proteins in subversion of host 
vesicular trafficking.

Legionella eukaryotic-like proteins

In addition to proteins containing eukaryotic-like 
domains/motifs, Legionella additionally encode eukar-
yotic-like proteins [26,113]. Many of these proteins are 
confirmed or predicted Dot/Icm-translocated effectors. 
Legionella contains 2,196 eukaryotic-like proteins, 
representing 400 different orthologous groups with 
high similarity to eukaryotic proteins. The majority of 
these genes were likely acquired directly from protozoa, 
emphasizing the importance of host–pathogen interac-
tions on Legionella genomes[26]. For example, L. anisa 
LanA0735 belongs to a FAD-dependent oxidoreductase 
family. This protein has a similarity to thioredoxin 
reductase, found in higher eukaryotes as two major 
isoenzymes: cytosolic and mitochondrial. In 
Caenorhabditis elegans, the cytosolic form has been 
reported to impede the lysosomal compartment acid-
ification indicating a plausible role for LanA0735 in 
evasion of vacuole acidification during Legionella repli-
cation[114]. Moreover, L. pneumophila secretes eukar-
yote-like proteins PlcA and PlcB, which are 
phosphatidylcholine-hydrolyzing phospholipase 
C. Phosphatidylcholine is made by bacteria that interact 
closely with eukaryotes, such as Brucella abortus or 
Francisella tularensis. The synthesis of this phospholi-
pid is essential for L. pneumophila virulence[115]. 
Legionella is unable to synthesize choline and these 
eukaryotic-like proteins likely aid in acquisition of cho-
line from the host cell.

Conservation of the Legionella Dot/Icm T4SS and 
effectors

Despite plasticity in the genomes of Legionella spp., the 
Dot/Icm T4SS is highly conserved in all Legionella spp. 
analyzed to date [25,26,109]. Between sequenced 
Legionella strains, Dot/Icm apparatus proteins share 
>50% amino acid identity with DotB and IcmS exceed-
ing 90% identity[25]. Conversely, Dot/Icm-translocated 
effectors share little identity and the predicted number 
of effectors is highly variable between species. Only 8 
core effectors are conserved in all analyzed Legionella 
genomes: Lpg0103 (VipF), Lpg1017 (RavC), Lpg0140, 
Lpg1356/Lpg1310, Lpg2300 (LegA3/AnkH/AnkW), 
Lpg2815 (IroT/MavN), Lpg2832 and Lpg3000 [25,26]. 
Seven additional effectors are present in all strains with 
the exception of a few strains, suggesting important role 
of these effectors in infection. Intraspecies effectors are 
highly conserved (82–97%), further emphasizing the 
influence of the host environment on evolution of the 
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Legionella effector repertoire[25]. Together bacteria of 
the genus Legionella encode at least 18,000 effectors 
spanning 1,600 orthologous groups[26]. Thus, 
Legionella encode the greatest quantity and most 
diverse range of effectors among intracellular bacterial 
pathogens.

Effector translocation by the Dot/Icm type IV 
secretion system

Effector recognition by the Dot/Icm T4SS

The Dot/Icm T4SS is composed of 27 proteins, spans 
both bacterial membranes, and functions to translocate 
effector proteins directly into the host cell cytosol [-
116–120]. Effector translocation by the Dot/Icm T4SS 
involves recognition of effectors and subsequent trans-
location of unfolded effector proteins into host cells 
[121–124]. The Dot/Icm T4SS is composed of two 
major complexes: the core transmembrane complex 
(CTMC) and the Dot/Icm type IVB coupling complex 
(T4CC). The CTMC forms a pore for effector translo-
cation and composed of DotC, DotD, DotF, DotG, 
DotH and DotK. The T4CC functions to recruit effec-
tors for translocation and is composed of DotL (IcmO), 
DotM, DotN (IcmJ), IcmS, IcmW, LvgA, DotY, and 
DotZ. Six hetero-pentameric units (DotLMNYZ) of 
the T4CC form an inner membrane channel for the 
delivery of effectors [123,125–130]. Effector recognition 
by the T4CC is essential for translocation through the 
core transmembrane complex and cryo-electron tomo-
graphy studies have revealed the molecular architecture 
of this structure and how effectors are recognized as 
translocation substrates [125,130].

Effector translocation through the T4CC occurs 
either through interaction with DotL-IcmSW or DotL- 
IcmSW-LvgA complexes or by DotM-mediated recog-
nition of a C-terminal secretion signal, termed the 
E-block motif. DotL is a VirD4 homolog with an 
N-terminus ATPase domain and a C-terminal exten-
sion (CTE) that binds effectors in complex with IcmSW 
or IcmSW-LvgA [125,126,129,131]. The current model 
for IcmSW-mediated translocation is that effectors 
bound to IcmSW are delivered to the DotL channel 
where DotL ATPase activity may direct both effector 
unfolding and transport [125,126]. Some effectors are 
additionally recognized by LvgA, which binds IcmSW 
and copurifies together with the T4CC. Although many 
effectors are translocated independently of IcmSW or 
IcmSW-LvgA, L. pneumophila intracellular replication 
is severely attenuated by loss-of-function mutation in 
either icmS, icmW or lvgA [128,132]. DotM engages 
effectors that are translocated independently of 

IcmSW through recognition of a C-terminal Glu-rich 
region (E-block motif) [125,133]. While the C-terminal 
~25 amino acids comprising the E-block motif are 
generally rich in Glu residues, residues with similar 
biochemical properties contribute more to transloca-
tion than Glu residues at specific positions[134]. Basic 
patches on DotM engage E-block-containing effectors 
through electrostatic interactions. This interaction is 
hypothesized to alleviate the requirement for IcmSW 
effector recognition [133]. Interestingly, the effector 
SidJ possesses an internal translocation signal, in addi-
tion to a C-terminal translocation signal, that aids in 
IcmSW-dependent Dot/Icm translocation[135]. 
Multiple signal sequences may provide an additional 
layer of effector translocation regulation. Thus, translo-
cation signals are likely more complex than previously 
appreciated and may contribute to spatiotemporal reg-
ulation of effector translocation. How signal sequences 
and chaperone engagement contribute to translocation 
efficiency and hierarchy has yet to be elucidated.

Spatiotemporal regulation of effector translocation

L. pneumophila effectors are translocated hierarchically 
during specific growth phases. Broadly, effectors are 
expressed either before/upon infection, early in infec-
tion, late in infection or during whole intracellular life 
cycle. Several effectors, including the SidE family, SidC 
and RalF, are accumulated during post-exponential 
phase, suggesting importance very early in infection 
[136–138]. In general, effector translocation hierarchy 
is thought to correlate with gene expression, but reg-
ulation of translocation is likely far more complex. 
Temporal regulation of effector translocation is impor-
tant for Legionella intracellular replication and much 
remains to be discovered about how Legionella regulate 
translocation of effectors.

Effector-mediated modulation of host 
autophagy, protein translation and ubiquitin 
homeostasis

Regulation of host autophagy

Autophagy is an essential cellular process that is central 
to cellular survival and cell-autonomous defense against 
intracellular pathogens[139]. Several L. pneumophila 
effectors inhibit host autophagy, likely to subvert the 
lysosomal fusion with the LCV. RavZ disrupts autop-
hagy thorugh irreversibly deconjugation of phosphati-
dylethanolamine from the autophagy-related ubiquitin 
like protein, LC3, which prevent LCV localization to 
autophagosomes[140]. Interestingly, RavZ-mediated 
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LC3 delipidation is sufficient to impair autophagic tar-
geting of other intracellular pathogens, including 
Coxiella burnetii and Listeria monocytogenes [141,142]. 
Autophagy is also impaired through the action of 
a L. pneumophila effectors S1P-lyase (LpSPL; LegS2) 
and Lpg1137, via modulation of sphingolipid metabo-
lism and cleavage of the autophagy-associated SNARE 
syntaxin-17, respectively [143,144]. Paradoxically, the 
L. pneumophila effector LegA9, an ankyrin-containing 
protein, upregulates autophagy and contributes to 
macrophage restriction of L. pneumophila through an 
unknown mechanism[145]. Thus, autophagy is central 
to L. pneumophila intracellular replication and further 
investigation will likely reveal additional sophisticated 
mechanisms employed by L. pneumophila to subvert 
host autophagy.

Inhibition of host protein synthesis

Seven L. pneumophila effectors, Lgt1-3, SidI, SidL, 
LegK4 and RavX, are capable of inhibiting eukaryotic 
protein synthesis (reviewed in [146]). Lgt1-3 are glyco-
syltransferases that modify eukaryotic GTPase elonga-
tion factor 1A (eEF1A), an essential component of the 
eukaryotic protein translation elongation complex. 
Lgt1-3 glycosylate eEF1A at Ser-53 through covalent 
addition of a glucose moiety. Ser-53 is conserved in 
eukaryotes and located in the GTPase domain of 
eEF1A. Ectopic expression of Lgt1 in yeast is cytotoxic 
due to inactivation of eEF1A [147–150]. Moreover, 
Lgt1-3 cooperate with the SidE family of effectors to 
facilitate acquisition of essential host-derived amino 
acids (see below)[151].

The effector SidI is a predicted glycosyltransferase 
capable of hydrolyzing GDP-mannose. SidI interacts 
with eEF1A and eEF1Bγ. However, interaction with 
eEF1A is not sufficient for SidI-mediated translation 
inhibition. eEF1A additionally upregulates the eukar-
yotic heat shock response through interaction with heat 
shock regulatory protein 1 (HSF1) [152], and SidI is 
sufficient for induction of the host stress response[153]. 
However, translation inhibition alone is insufficient to 
induce the heat shock response[153]. Since SidI- 
mediated protein translation inhibition is suppressed 
by its metaeffector, MesI, translation inhibition may 
not be the bona fide function of SidI within host cells 
[154]. Although SidI is not individually required for 
L. pneumophila, its enzymatic activity is uniquely dele-
terious to L. pneumophila intracellular replication in 
the absence of MesI [153,155]. The mechanism by 
which SidI prevents L. pneumophila intracellular repli-
cation is currently unknown.

The effector kinase, LegK4 impairs host translation 
through phosphorylation of cytosolic Hsp70. 
Phosphorylated Hsp70 associates with translating poly-
somes but has attenuated ATPase activity, which 
impairs its refolding capacity and, consequently, pro-
tein translation[156]. Detailed molecular mechanisms 
by which SidI, SidL and RavX inhibit host protein 
translation are currently unknown.

Inhibition of host translation is hypothesized to 
facilitate acquisition of essential nutrients from host 
cells[151]. However, inhibition of protein translation 
also contributes to restriction of L. pneumophila via 
effector-triggered immunity infection models (see 
below) [157–160]. Thus, subversion of host translation 
is central to L. pneumophila pathogenicity but also 
facilitates pathogen detection and restriction by 
macrophages.

Modulation of host ubiquitination pathways

L. pneumophila intracellular replication hinges on 
effector-mediated modulation of cellular ubiquitin 
pathways. Subversion of ubiquitin pathways involves 
the concerted action of several effectors, most of 
which are indispensable for intracellular replication. 
Comprehensive and detailed reviews are available on 
subversion of ubiquitination pathways by 
L. pneumophila effectors [161,162]. Ubiquitination is 
regulated by L. pneumophila effectors through novel 
enzymatic activity and molecular mimicry of eukaryotic 
ubiquitin ligases and deubiquitinases [163–170]. Of 
note is the recent discovery of novel effector-mediated 
ubiquitin modulation mechanisms. The SidE family of 
effectors (SidE/SdeABC) and their metaeffector, SidJ, 
cooperate to facilitate LCV biogenesis. The SidE family 
of effectors are mono-ADP-ribosyltransferases that 
ligate ubiquitin to ER associated Rab GTPases indepen-
dently of host E1 and E2 enzymes [166,171]. The SidE 
family ubiquitinate ER-associated Rab GTPases, Rag 
GTPases and host reticulon 4 to regulate tubular ER 
dynamics for biogenesis of the LCV and activity of the 
mechanistic target of rapamycin complex 1 (mTORC1; 
see below) [151,166,171]. SidJ utilizes host calmodulin 
as a co-factor to polyglutamylate and inactivate SidE 
effectors [165,172,173]. SidJ-mediated regulation of the 
SidE family is critical for intracellular replication in 
natural and accidental hosts [174,175].

The effector deamidases MavC and MvcA are func-
tional antagonists that temporally regulate ubiquitina-
tion and activity of the host E2 enzyme Ube2N. MavC 
catalyzes E1-independent monoubiquitylation and 
inhibition of Ube2N [176]. However, Ube2N activity 
is restored through the action of MvcA, which 
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deubiquitinates Ube2N-Ub [177]. In mammalian cells, 
Ube2N inactivation impairs ubiquitination and protea-
somal degradation of the host inhibitor of κB03B1 
(IκBα), which restricts NF-κB-mediated gene expres-
sion (see below)[167]. MavC and MvcA are both regu-
lated by a metaeffector, Lpg2149, which binds and 
inhibits the deamidase activity of both effectors [176]. 
Increased expression of mavC in transmissive phase 
bacteria overcomes Lpg2149-mediated restriction and 
facilitates temporal regulation of Ube2N activity [176]. 
MavC and MvcA are individually dispensable for 
L. pneumophila intracellular replication, which is likely 
a consequence of functional redundancy with other 
effectors in the host systems tested.

Effector-mediated nutrient acquisition and 
modulation of host metabolism

L. pneumophila is reliant on host-derived amino acids 
for intracellular replication [178–180]. L. pneumophila 
is auxotrophic for valine, threonine, serine, leucine, 
methionine, arginine, isoleucine and cysteine, which is 
a preferred source of carbon during intracellular repli-
cation [181,182]. The effector AnkB facilitates acquisi-
tion of host-derived amino acids through recruitment 
of host polyubiquitinated (polyUb) proteins to the sur-
face of the LCV. AnkB contains a CaaX motif, which is 
farnesylated and anchors the effector to the LCV sur-
face, ankyrin repeats and an F-box domain. The 
ankyrin and F-box domains facilitate attachment of 
host polyUb proteins to the LCV membrane, which 
are subsequently proteolyzed by host 26S proteasome 
[170,183]. Both genetic deletion of ankB and chemical 
inhibition of 26S proteasomes impair L. pneumophila 
intracellular replication and supplementation of cell 
culture with free amino acids rescues these growth 
defects[184]. Thus, effector-mediated subversion of 
the ubiquitin-proteasome system facilitates 
L. pneumophila nutrient acquisition from host 
cells[186].

L. pneumophila relies on host-derived amino acids, 
but free amino acid levels are tightly regulated in eukar-
yotic cells. mTORC1 is a conserved complex composed 
of mTOR kinase and several regulatory enzymes that is 
regulated in part by availability of amino acids and 
other nutrients (Figure 2)[185]. Upon activation, 
mTORC1 controls several cellular processes including 
repression of autophagy, translation initiation and lyso-
some biosynthesis[186]. The Lgt and SidE effector 
families (see above) act antagonistically toward 
mTORC1. Lgts-mediated translation inhibition results 
in mTORC1 activation whereas the SidE family of 
effectors negatively regulate mTORC1 by 

ubiquitination and inhibition Rag GTPases, which con-
tribute to amino-acid sensing by mTORC1 and libera-
tion of host amino acids for bacterial intake[151].

Intracellular L. pneumophila acquire iron from the 
host cell via the function of the effector MavN/IroT. 
MavN/IroT spans the LCV membrane and functions to 
transport iron into the LCV [189]. L. pneumophila 
strains lacking mavN/iroT are attenuated for intracel-
lular growth and exhibit characteristics of iron starva-
tion [187,188]. MavN/IroT is one of very few 
L. pneumophila effectors universally required for intra-
cellular replication and its activity provides insight into 
mechanisms of iron acquisition by intravacuolar patho-
gens[189].

L. pneumophila effectors also directly modulate host 
cell metabolism. The effector LamA subverts glucose 
metabolism to regulate encystation of amoebae, which 
occurs as a result of environmental stress. Amoebal 
cysts are hypothesized to enhance environmental stabi-
lity of intracellular L. pneumophila. However, although 
retained in a viable state, L. pneumophila is unable to 
replicate within amoebal cysts [189–191]. Price et al. 
recently reported that LamA, an effector amylase, 
induces a “hyper-glucose” state in host cells via degra-
dation of host glycogen. Consequently, amoebae are 
unable to synthesize the cellulose-rich cyst wall[192]. 
In human macrophages (hMDMs), LamA triggers 
a pro-inflammatory response that moderately restricts 
bacterial replication. LamA mediated high glucose 
levels in hMDMs shift the metabolism to aerobic gly-
colysis which directly triggers a rapid M1-like pro- 
inflammatory polarization and pro-inflammatory cyto-
kine production. Moreover, LamA augments IFN-γ- 
mediated IDO1 activity, which depletes cellular trypto-
phan. Although L. pneumophila is not auxotrophic for 
tryptophan, host-derived tryptophan is important for 
L. pneumophila replication within macrophages 
[192,193].

A recent study also revealed that L. pneumophila 
encodes an effector ADP-ribosyltransferase that modi-
fies a class of host NAD+-dependent glutamate dehy-
drogenases (GDH). The effector Legionella ADP- 
ribosyltransferase 1 (Lart1; Lpg0181) ADP-ribosylates 
GDH on a conserved arginine within the nucleotide- 
binding pocket, which renders GDH inactive[194]. 
However, the role of Lart1-mediated ADP-ribosylation 
of GDH during L. pneumophila infection has not been 
fully elucidated. A L. pneumophila ∆lart1 mutant is not 
impaired for replication within A. castellanii, suggest-
ing that within this host, Lart1 functions redundantly 
with other effectors. This study has uncovered an addi-
tional mechanism by which L. pneumophila may sub-
vert host cell metabolism.
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Thus, L. pneumophila has evolved an extensive 
repertoire of effectors that regulate diverse host cell 
processes. This work has collectively shed light on 
mechanism of Legionella virulence and broad themes 
in host–pathogen interactions.

The Legionella type II secretion system

L. pneumophila encodes a type II secretion system 
(T2SS), also called the Legionella secretion pathway 
(Lsp), which is important for virulence and persistence 
in the environment [195]. T2SSs are highly conserved, 
evolutionarily related to bacterial type IV pili, and 

broadly distributed among members of the phylum 
[196–199]. The T2SS plays a crucial role in bacterial 
pathogenicity by exporting various virulence factors, 
toxins, lipases, proteases, chitinases and novel proteins 
outside the bacterial cell [198]. Prior to secretion via 
T2SS, unfolded or folded protein substrates enter the 
periplasm through either the Sec translocon or the 
twin-arginine translocon (Tat), respectively. The T2SS 
machinery is comprised broadly of four subcomplexes 
composed of 12 core proteins: T2S C, D, E, F, G, H, I, J, 
K, L, M and O [200,201]. The first subcomplex is 
a “secretin,” which facilitates substrate translocation 
across the outer membrane and is composed of T2S 

Figure 2. Innate immune signaling initiated by L. pneumophila within macrophages. The schematic represents the activation 
of multiple pathways upon mammalian phagocyte infection with L. pneumophila. Legionella-associated molecular patterns are 
recognized via pattern recognition receptors (PRRs) of the phagocyte. Activation of PRRs and cytosolic sensors triggers downstream 
molecules and processes that eventually lead to restriction of L. pneumophila replication. Specifically, TLR2, TLR5 and TLR9 discern 
bacterial lipoprotein, flagellin and dsDNA, respectively, which activate downstream NF-kB mediated proinflammatory cytokine 
response. Effector-dependent translation inhibition activates NF-κB and MAPK signaling to initiates a proinflammatory transcriptional 
response. Legionella effectors also inhibit the mTORC1 complex which negatively affects the amino acid synthesis and proinflam-
matory cytokine production. Legionella flagellin is recognized by the NAIP5/NLRC4 inflammasome and downstream activation of 
caspase-1 leads to pyroptosis and IL-1β/IL-18 cytokine release. NOD1/2 recognizes degradative products of bacterial peptidoglycan, 
eliciting RIPK2-dependent NF-κB activation and proinflammatory cytokine production. Bacterial DNA/RNA is sensed in the host cell 
cytosol by RIG-I and MDA5 which leads to type I interferon production.
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D oligomers. These T2S D oligomers are associated 
with the second subcomplex, an inner membrane het-
erooligomer comprised of T2S F, L, and M multimers, 
which creates a periplasmic channel. The inner and 
outer membrane complexes are coupled by a “clamp 
protein,” T2S C. The third subcomplex, a periplasmic 
“pseudopilus,” consists of T2G G, H, I, J and 
K components, which may function as a “piston” to 
propel the substrates through the outer membrane sub-
complex. The fourth subcomplex is an ATPase and 
hexamer of T2S E protein. Finally, T2S O, an inner 
membrane prepilin peptidase allows pseudopilin 
maturation [201,202].

The Legionella T2SS is important for both intra and 
extracellular survival of L. pneumophila. It plays 
a crucial role in biofilm formation, intracellular replica-
tion in amoeba and macrophages, suppression of cyto-
kine response from infected cells, growth and 
persistence in the murine lungs [195,199,203–208]. 
Over 25 T2SS substrates have been identified in 
L. pneumophila [199,202]. These substrates include 
ProA, PlaA, Map, PlaC (acetyltransferase), PlcA (phos-
pholipase C), SrnA (ribonuclease), ChiA (chitinase), 
CelA (cellulase), LapA, LapB (aminopeptidases), and 
NttA,B,C,D,E,G [204,209–212]. NttA,C,D,E are 
required for L. pneumophila replication within multiple 
species of amoebae[212]. The T2SS substrates LegP and 
Map contain eukaryotic-like protease motifs [204,213]. 
Interestingly, LegP is a confirmed substrate of the Dot/ 
Icm T4SS [68], but the mechanism by which a single 
protein could serve as a substrate for both secretions 
systems is unknown. The T2SS substrates ProA, PlaC 
and SrnA are necessary for optimal infection in 
H. vermiformis and N. lovaniensis whereas NttA is 
required to replicate in A. castallanii [209,210,214]. 
These observations suggest that T2SS substrates may 
shape the host range of L. pneumophila.

The T2SS contributes to L. pneumophila virulence in 
cultured mammalian cells and mouse models of LD 
[203,215]. Loss-of-function mutation of the T2SS 
genes lspF, lspDE, lspG, lspK, and lspO impairs 
L. pneumophila infection of human macrophage cell 
lines, mouse macrophage cell lines, primary BMDMs 
and alveolar epithelial cells [203,205,215–218]. The 
T2SS substrate, ChiA, is important for survival in the 
mouse lung [204,209]. ChiA is a chitinase that pos-
sesses additional peptidase activity and degrades 
mucin in vitro [208]. Degradation of mucin in vivo 
may enhance L. pneumophila motility in airways and 
enhance access to alveolar macrophages. Another sub-
strate, ProA, causes lung tissue damage and transferring 
degradation that can enhance iron acquisition [204,-
219–221]. The contribution of the full range of T2S 

substrates to L. pneumophila virulence has yet to be 
elucidated, but current data support an essential role 
for this secretion system and its substrates in infection.

The T2SS additionally attenuates the mammalian 
innate immune response. T2SS function decreases cyto-
kine and chemokine levels in the supernatants of 
macrophages and epithelial cells and within the 
mouse lung during L. pneumophila infection 
[205,215]. The T2SS decreases cytokine abundance via 
transcriptional and post-transcriptional mechanisms. 
The metalloprotease ProA dampens cytokine produc-
tion at the post-transcriptional level; however, sub-
strates responsible for attenuation of gene expression 
have yet to be identified[215]. Moreover, a role for the 
T2SS in TNF-α -mediated macrophage defense against 
L. pneumophila was demonstrated by restoration of 
T2SS mutant growth upon antibody neutralization of 
TNF[215]. This suggests that T2SS promotes 
L. pneumophila growth in macrophages and epithelia 
by dampening cytokine response in addition to some 
unidentified mechanisms. The evolutionary basis T2SS- 
mediated attenuation of inflammation is unclear since 
amoebae lack pro-inflammatory genes and signaling 
cascades. Whether the attenuated inflammatory 
response is due to serendipitous function of T2SS sub-
strates or macrophage response to infection is unclear.

Truchan et al. recently observed localization of the 
T2SS substrates ProA and ChiA to the cytoplasmic face 
of the LCV membrane (LCVM)[222]. The authors 
hypothesize that translocation of ProA and ChiA to 
the LCVM is results from LCV permeability, as 
observed by galectin-3 accumulation around the LCV. 
Interestingly, this phenomenon was observed in human 
but not mouse macrophages. ProA and ChiA localized 
to the LCVM in U937 cells and differentiated polymor-
phonuclear cells (PBMCs) but not in BMDMs from 
permissive mouse strains. Mechanisms by which the 
LCV becomes semipermeable and the observed differ-
ences between mouse and human macrophages are 
unclear.

Taken together, T2SS contributes to L. pneumophila 
virulence via environmental survival and persistence in 
the host. Future studies are required to completely 
understand the role of T2SS substrates in disease pro-
gression and to define the underlying mechanisms of 
action.

Host immune responses to Legionella infection

Macrophage detection of L. pneumophila infection

L. pneumophila activates an orchestrated and robust 
inflammatory response during infection of healthy 
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hosts. Inbred mouse models of L. pneumophila infec-
tion and LD have been pivotal defining mechanisms of 
host defense against intracellular pathogens. 
L. pneumophila has therefore emerged as an invaluable 
model pathogen to study host defense mechanism 
including innate immunity, inflammasome activation 
and acute lung inflammation.

Innate immune detection of L. pneumophila 
involves synergistic recognition of pathogen- 
associated molecular patterns (PAMPs) by pattern 
recognition receptors (PRRs) including toll-like recep-
tors (TLRs), nucleotide-binding oligomerization 
domain-like receptor (NLRs), and Rig-like helicases 
(RLH) that results in the activation of immune 
responses and pathogen clearance (Figure 2) 
[223,224]. Pro-inflammatory gene expression through 
NF-κB and AP-1 (Jun/Fos) downstream of TLRs is 
mediated through signal cascades involving the adap-
tors MyD88/TRIF and mitogen activated kinases 
(MAPKs). MyD88 triggers a signaling cascade that 
results in upregulation of pro-inflammatory gene 
expression [225,226]. MyD88-deficient mice are highly 
susceptible to L. pneumophila infection and due to 
severe defects in leukocyte recruitment, proinflamma-
tory cytokine and chemokine secretion [227–230]. 
Intracellular pathogen detection is also facilitated 
through inflammasome activation and effector- 
mediated immunity. Detection of L. pneumophila 
results in upregulation of a complex and highly orche-
strated inflammatory response in vivo that involves 
both myeloid and somatic cells.

Role of PAMP recognition in L. pneumophila 
replication
TLR2, TLR4, TLR5 and TLR9 contribute to innate 
immunity against L. pneumophila through activation 
of signal transduction cascades culminating in NF-κB 
and AP-1-mediated pro-inflammatory gene expression 
[228,230–233] (Figure 2). Interestingly, TLR4, which 
recognizes lipopolysaccharide (LPS), does not play 
a major role in L. pneumophila recognition 
[231,234,235]. TLR2-deficient mice have delayed pro-
duction of proinflammatory cytokines and neutrophil 
recruitment during L. pneumophila infection[228]. 
TLR5 detects bacterial flagellin and enhances neutro-
phil recruitment to the L. pneumophila-infected lung at 
early time points post-infection [230,232]. TLR9 signal-
ing additionally contributes to L. pneumophila but 
likely functions redundantly with TLR5. Interestingly, 
TLR9 signaling is more important for restriction of 
L. pneumophila in Balb/c mice than in A/J mice, likely 
owing to differences in the genetic backgrounds of 
these hosts [230,236]. TLR signaling synergizes with 

intracellular PAMP detection for optimal induction of 
inflammation and restriction of L. pneumophila intra-
cellular replication.

Nucleotide-binding and oligomerization domain 
protein 1 (NOD1) and NOD2 consist of a N-terminal 
interaction domain, a nucleotide binding central 
domain and a leucine-rich repeat (LRR) C-terminal 
variable domain[235]. NOD1 and NOD2 detect cyto-
solic peptidoglycan and initiate signaling through acti-
vation of receptor interacting protein kinase 2 (RIP2), 
which culminates in activation of NF-κB (Figure 2) 
[226,235]. Loss of RIP2-mediated signaling impairs 
Dot/Icm-dependent immune responses but has only 
modest effects on pro-inflammatory cytokine produc-
tion by BMDMs[237]. Loss of RIP2-mediated signaling 
enhances L. pneumophila bacterial burden in the mouse 
lung, likely through impaired neutrophil recruit-
ment[238].

Retinoic-acid inducible gene-I (RIG-I)-like helicases 
(RLHs) melanoma-differentiation-associated gene-5 
(MDA5) and RIG-I also contribute to macrophage 
detection of L. pneumophila through detection of cyto-
solic nucleic acids. RIG-I/MDA5 activation results in 
signal transduction involving multiple adaptor proteins, 
including interferon-β promoter stimulator-1 (IPS-1) 
(Figure 2) [235,239]. This in turn activates NF-κB and 
interferon regulatory factors (IRFs), which enhance the 
production of proinflammatory cytokines and type-I 
interferons (IFN-I), respectively [235,241]. 
L. pneumophila activates this pathway via RNA trans-
location into the host cell[240]. Interestingly, despite 
increased IFN-I during L. pneumophila infection, 
impaired IFN-I receptor (IFNAR) signaling does not 
affect L. pneumophila replication in the lungs [240,241].

Role of inflammasomes in L. pneumophila infection
Inflammasomes are large intracellular protein com-
plexes that recognize pathogens and cellular stressors. 
Generally, pathogen sensing by inflammasomes results 
in activation of effector caspases, caspase-1 and cas-
pase-8, the consequence of which is pyroptosis and 
secretion of IL-1β and IL-18[242]. The NAIP5/NLRC4 
inflammasome detects bacterial flagellin and is respon-
sible for potent restriction of L. pneumophila by wild- 
type C57BL/6 macrophages (Figure 2) [243,244]. 
L. pneumophila has been instrumental in delineating 
structural and functional insights into flagellin detec-
tion by NAIP5/NLRC4 and consequent pathogen 
restriction [245–247]. A comprehensive review detail-
ing mechanisms of inflammasome activation by 
L. pneumophila is available[247]. However, a critical 
role for pyroptosis in host restriction of 
L. pneumophila was recently described. Pyroptosis 
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occurs through caspase-1 cleavage of Gasdermin 
D (GSDMD). Cleaved GSDMD forms pores in the 
plasma membrane and culminates in release of cytoso-
lic components, cytokines and eventual cell lysis[248]. 
NLRC4-mediated restriction of L. pneumophila is facili-
tated through activation of caspase-7 and GSDMD- 
mediated pyroptosis [249,250]. The mechanism by 
which caspase-7 contributes to restriction of 
L. pneumophila has yet to be fully elucidated, but its 
role in cell death further suggests an essential role for 
inflammatory host cell death in NAIP5/NLRC4- 
mediated restriction of L. pneumophila.

Cytokine responses during L. pneumophila 
infection and bystander responses

Pro-inflammatory cytokines are pivotal for host defense 
against L. pneumophila. Of these cytokines, IFN-γ and 
TNFα are primarily responsible for immune clearance 
of L. pneumophila. High concentrations of IFN-γ are 
generated in the mouse lung in response to 
L. pneumophila infection, the majority of which is 
made by natural killer (NK) cells in a MyD88- 
dependent manner[229]. NK cells make IFN-γ in 
response to IL-12 and IL-18; however, loss of IL-18 
only has a modest effect on IFN-γ production and 
bacterial burden in the lung [230,251]. Conversely, 
monocyte generated IL-12 is crucial for IFN-γ produc-
tion by NK cells in the Legionella-infected lung 
[230,252]. IFN-γ-deficient mice are unable to clear 
pulmonary L. pneumophila and, in contrast to wild- 
type strains, will succumb to infection [230,253]. IFN- 
γ facilitates cell-autonomous restriction of 
L. pneumophila through upregulation of interferon- 
stimulated genes, oxidative stress, nutritional remodel-
ing and xenophagy[254]. Interferon-stimulated 
immune responsive gene 1 (IRG1) additionally restricts 
L. pneumophila through the production of itaconic acid 
[255]. Thus, IFN-γ production by non-infected cells 
drives cell-autonomous macrophage restriction of 
L. pneumophila.

In addition to IFN-γ, high levels of TNFα are gen-
erated in response to L. pneumophila infection in the 
lung[256]. Loss of TNF-mediated signaling impairs 
pulmonary bacterial clearance and survival of 
L. pneumophila-infected mice [256,257]. In the lung, 
TNF is produced primarily by uninfected inflammatory 
monocytes and neutrophils but activate antimicrobial 
defenses in infected macrophages[252]. TNFα signals 
through TNFR1 and TNFR2; however, TNFR1- 
mediated signaling plays a more central role in host 
defense against L. pneumophila[258]. Signaling through 
TNFR1 enhances macrophage antimicrobial activity 

through enhanced lysosomal fusion with LCVs. TNFα 
synergizes with IFN-γ and IFN-I to restrict 
L. pneumophila[258].

Several L. pneumophila effectors (Lgt1-3, SidI, SidL, 
LegK4 and RavX; see above) inhibit host protein synth-
esis, which impairs cytokine production during infec-
tion. However, a robust pro-inflammatory response in 
generated. In the L. pneumophila-infected lung, 
infected and uninfected cells produce different sets of 
cytokines. Despite potent effector-mediated translation 
inhibition, L. pneumophila-infected cells secrete IL-1 
through mRNA superinduction[160]. IL-1 receptor 
(IL-1 R)-mediated signaling is required for the produc-
tion of proinflammatory cytokines (IL-12, TNFα, and 
IL-6) by bystander monocytes and neutrophils[159]. 
Recent work from Shin and colleagues revealed how 
IL-1 promotes bystander pro-inflammatory cytokine 
production. IL-1 R signaling stimulates the production 
of granulocyte colony-stimulating factor (GM-CSF) by 
the alveolar epithelium. GM-CSF signaling synergizes 
with TLR-mediated signaling to enhance aerobic glyco-
lysis, which enhances pro-inflammatory cytokine pro-
duction by bystander cells and consequent activation of 
infected alveolar macrophages[259]. Thus, the inflam-
matory response to L. pneumophila in vivo is highly 
orchestrated and involves myeloid and somatic cells.

Interestingly, the L. pneumophila effector LegC4, 
which is important for replication within 
A. castellanii, paradoxically attenuates L. pneumophila 
fitness in the mouse lung. This is likely through exacer-
bation of cytokine-mediated restriction in macro-
phages, but the mechanism by which this occurs is 
unknown [155,260].

The adaptive immune response to L. pneumophila

Adaptive immunity additionally contributes to host 
defense against L. pneumophila. CD4+ and CD8 + T 
cells contribute to host defense against L. pneumophila 
[261]. Following mediastinal lymph node priming with 
L. pneumophila, differentiated Th17 and Th1 T cells 
infiltrate lungs and produce IL-17 and IFN-γ, respec-
tively [262]. Furthermore, Th17-mediated restriction of 
L. pneumophila depends on NLRC4 inflammasome and 
MyD88, whereas the Th1 response is initiated in the 
absence of MyD88[262]. CD8 + T cells are additionally 
a source of IFN-γ and promote M1 macrophage skew-
ing[263].

Mice mount a humoral response to L. pneumophila 
introduced either via intranasal inoculation or intrave-
nous injection[264]. After primary exposure to 
L. pneumophila, mice generate IgA and IgG responses 
in the bronchoalveolar lavage fluid and serum, 
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respectively, followed by the establishment of memory 
B cells in the lung[264]. Thirty novel L. pneumophila- 
specific B cell antigens have been identified and include 
components of bacterial membrane[265]. 
Immunization of guinea pigs with L. pneumophila 
Hsp60 or OmpS results in partial protection from 
L. pneumophila infection [265,266]. However, the adap-
tive immune response to Legionella infection is consid-
erably feeble and does not provide prolonged immunity 
against the pathogen since reinfection has been 
reported [267]. Altogether, these studies demonstrate 
the importance of innate immunity in host restriction 
of L. pneumophila and elaborate challenges associated 
with the development of lasting immunity in suscepti-
ble individuals.

Concluding remarks and future directions

Past four decades of research on Legionella have 
brought important insights into the virulence strategies 
and mechanisms employed by Legionella to replicate 
within environmental and mammalian phagocytes and 
cause disease in humans. To date, the genus Legionella 
has the largest and most diverse effector repertoire 
amongst intracellular pathogens. Despite the diversity 
among Legionella species, there are common themes in 
their virulence strategies including Dot/Icm effector 
translocation and acquisition of eukaryotic-like effec-
tors that have resulted from extensive co-evolution 
with protozoa. Legionella has also emerged as an 
invaluable model pathogen to understand innate 
immunity and major breakthroughs have been made 
using mouse models of LD. Despite these major 
advances, many questions remain open. The study of 
Legionella bacteria is intriguing in many ways and 
future studies will teach us not only about bacterial 
pathogenicity but also eukaryotic cell biology and 
mammalian antimicrobial immune defenses. We are 
excited for what the next four decades will reveal 
about Legionella virulence.
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