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Background and purpose: Although the latest breakthroughs in radiotherapy

(RT) techniques have led to a decrease in adverse event rates, these

techniques are still associated with substantial toxicity, including xerostomia.

Imaging biomarkers could be useful to predict the toxicity risk related to each

individual patient. Our preliminary work aims to develop a radiomic-based

support tool exploiting pre-treatment CT images to predict late xerostomia

risk in 3 months after RT in patients with oropharyngeal cancer (OPC).

Materials and methods: We performed a multicenter data collection. We

enrolled 61 patients referred to three care centers in Apulia, Italy, out of

which 22 patients experienced at least mild xerostomia 3 months after the

end of the RT cycle. Pre-treatment CT images, clinical and dose features,

and alcohol-smoking habits were collected. We proposed a transfer learning

approach to extract quantitative imaging features from CT images by means

of a pre-trained convolutional neural network (CNN) architecture. An optimal

feature subset was then identified to train an SVM classifier. To evaluate

the robustness of the proposed model with respect to different manual

contouring practices on CTs, we repeated the same image analysis pipeline

on “fake” parotid contours.
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Results: The best performances were achieved by the model exploiting the

radiomic features alone. On the independent test, the model reached median

AUC, accuracy, sensitivity, and specificity values of 81.17, 83.33, 71.43, and

90.91%, respectively. The model was robust with respect to diverse manual

parotid contouring procedures.

Conclusion: Radiomic analysis could help to develop a valid support tool for

clinicians in planning radiotherapy treatment, by providing a risk score of the

toxicity development for each individual patient, thus improving the quality of

life of the same patient, without compromising patient care.

KEYWORDS

deep learning, xerostomia, oropharyngeal cancer, CT images, CNN–convolutional
neural network

Introduction

Oropharyngeal squamous cell carcinomas (OPCs) are
tumors that could be located in the soft palate, the pharyngeal
wall, the tonsils, or the base of tongue (1).

Treatment-related toxicity is a significant problem due to
the close proximity of the tumor mass to normal tissues and
organs. Modern radiotherapy techniques, such as volumetric
modulated arc therapy (VMAT) or intensity modulation
radiotherapy (IMRT), have overcome the conventional
techniques, in attempting to reduce the toxicities induced by
radiation (2).

Nonetheless, RT treatments are still associated with severe
toxicity, including dysphagia, mucositis, and xerostomia. In
particular, xerostomia, i.e., dryness of the oral cavity caused
by reduced or absent saliva flow, is common late toxicity that
negatively affects patients’ quality of life either by impairing
speech or swallowing or even chewing (3). This toxicity occurs
especially when median doses above 26 Gy are applied to both
parotids with the volume irradiated above a patient-individual
threshold which is probably the most relevant predictive
parameter (4, 5).

An accurate and personalized prediction of radiation-
induced toxicity could support clinicians in planning an optimal
treatment path. Although radiation-induced xerostomia mainly
results from damage to the major salivary glands that
are usually included in radiation fields, other factors are
notoriously associated with the likelihood of developing
toxicity in the parotids, such as parotid volume, parotid
eccentricity heterogeneity, salivary gland density, amount of
predisposed fat, etc. Recently, several radiomic-based models
have been proposed for the prediction of late xerostomia in
patients with head and neck cancer, also achieving promising
performances. They showed that there is a personal risk factor
for developing toxicity related to the texture of the organs at

risk (OARs). Typically, most of these methods are based on
the designing of the so-called handcrafted features, which have
a physical meaning of the measure being considered. More
recently, cutting-edge deep learning models have been used
to automatically extract more sophisticated and higher-level
hierarchical characteristics (6–9). These features can be lost
in interpretation because they are extracted from images that
undergo many processing and convolution steps, but allow the
evaluation of finer and informative characteristics that cannot
be quantified on the original image. Models trained on radiomic
features extracted from computed tomography (CT)/magnetic
resonance imaging (stocktickerMRI) and combined with clinical
and dose characteristics have recently been proposed for
predicting toxicity in head and neck tumors (10–14).

To the best of our knowledge, the xerostomia predictive
models proposed in the literature are designed for head and
neck tumors which include several locations anatomical sites
of the primary tumor. There is a lack of models tailored for
patients with OPC (15, 16). Compared to treatment in other
areas of the head and neck, the oropharynx represents the most
frequently treated site for which the definition of a plan that
preserves the functionality of the parotid is more complex (17,
18). Therefore, in this work, we proposed a transfer learning
approach for the definition of an accurate radiomic-based model
trained on pre-treatment CT with the goal of predicting late
xerostomia in patients with OPC. The radiomic features were
extracted by using a pre-trained convolutional neural network
(CNN) and subsequently processed by different state-of-the-art
machine learning algorithms (19–21).

We also evaluated the predictive power of dosimetric
parameters and clinical features, both separately and in
conjunction with radiomic features. Furthermore, since the
contouring of both OARs and the target is an operator-
dependent process, we have investigated the strength of the
model with respect to the manual contouring processes of the
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parotid. The results obtained were achieved on a multicenter
dataset and validated both in cross-validation and on an
independent set.

Materials and methods

Enrolled patients and collected data

For this study, we performed a multicenter data collection.
We enrolled 61 patients from Apulia, Italy, out of which 32
patients were referred to Istituto Tumori “Giovanni Paolo II” in
Bari (Apulia, Italy), 15 patients to Casa Sollievo della Sofferenza
Hospital in San Giovanni Rotondo (Apulia, Italy), and 14
patients to “Monsignor Raffaele Dimiccoli” Hospital in Barletta
(Apulia, Italy). Patients were enrolled according to the following
criteria:

• histologic diagnosis of squamous cell carcinoma of the
oropharynx

• treatment with primary radiotherapy, with or without
concomitant chemotherapy or cetuximab,

• follow-up period (with the evaluation of xerostomia) of at
least 3 months,

• availability of pre-treatment CT.

All patients were consecutively included in a data
registration program as part of routine clinical practice.
The study was approved by the Institutional Review Board of
Istituto Tumori “Giovanni Paolo II” Bari, Italy (Approval Code:
24269/21). All the centers involved in the study signed a data
transfer agreement.

The collected clinical features were: age at diagnosis, tumor
size (T: T1a, T1b, T1c, T2, T3, T4), lymph nodes stage (N: 0,
1, 2, 3), surgery (Yes/NO), induction chemotherapy (induction
CHT: Yes, No), concurrent CHT during RT (concurrent CHT:
Yes, No), platinum-based CHT (Yes/NO), weight pre-RT (Kg),
smoking history (Yes, No, Ex), and alcohol history (Yes, No,
Ex). Hereinafter, this dataset consisting of 11 characteristics is
referred to as the Clinical Feature Set (abbr. Clin_FS).

Among the enrolled 61 patients, 34 patients were treated
with the VMAT RT technique, while 27 patients were treated
with IMRT RT technique. All treatment plans included a
simultaneous integrated boost and tried to spare a dose to the
parotid glands without compromising the dose to the target
volumes. For both parotids, the mean dose (left and right
mean dose), volume receiving 20 and 40 Gy of radiation (left
and right V20, left and right V40), and dose received by 20
and 40% of the volume (left and right D20, left and right
D40) were extracted from dose-volume histograms (DVHs).
Figure 1 shows the contouring of the parotids and how the
dose map was overlaid to illustrate the calculation of the dose
features set. Previous studies have shown that these dose features

were the most important parameters in the prediction of long
xerostomia after RT (22). Hereinafter, this dataset consisting
of 10 dose features is referred to as the DVH Feature Set
(abbr. DVH_FS).

Moreover, for each patient, a planning pre-treatment CT
was acquired and used to extract radiomics features, as described
in the following section.

Radiomic feature extraction

All pre-treatment CT images were acquired at the time
of simulation, prior to the beginning of the treatment. Pre-
treatment CT was used for contouring and RT planning. All
CT images were acquired using dedicated and customized
immobilization and reproducibility systems (SIRs) (versaboard
and 9-point thermoplastic mask). The pre-treatment CT series
is generated by an area subtended between the keel bifurcation
and the vertex of the head, using an acquisition spiral with a
thickness of 3 mm with pitch equal to 1 (contiguous scans),
120 kV, and 350 mAs. The FOV used is the maximum one
(600 mm) with a standard brain acquisition filter and a 512
× 512 matrix.

The parotids are contoured by expert radiotherapists of
the involved Institutes. The parotids were then automatically
segmented by extracting a binary mask for the structures of
interest. For each patient, radiomic features were extracted by
a transfer learning approach from both left and right parotids.
Transfer learning approach is usually used when relatively
small-size datasets are analyzed. Specifically, we made use of the
high-performing pre-trained CNN, called AlexNet, as a feature
extractor. AlexNet is a CNN with eight deep layers (23, 24).
It has previously been trained on more than a million images
to solve image classification tasks. Such a network constructs
a hierarchical representation of input images: deeper layers
contain higher-level features, constructed using the lower-level
features of earlier layers.

The knowledge learned by the network during the training
phase was here transferred to our images to extract features
useful to train a classification model for predicting late
xerostomia. Since AlexNet requires an image input size of 227-
by-227, parotids segmentation has previously been resized to
patches of this size to be given as input to the network. The
radiomic features were extracted from planning DICOM files.

In this work, we extracted features from the “pool1” layer of
the network architecture which corresponds to the first pooling
layer. The “pool1” layer had an output with dimensions of
27 × 27 × 96 that was flattened to a single 69984-length
features vector. The “pool1” layer is one of the initial layers
of the network. Thus, the corresponding extracted features are
low-level features, namely, representations of local details of an
image, such as edges, dots, and curves. We extracted the features
not directly from a convolution layer that returns the feature
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FIGURE 1

Contouring of the parotids on CT images and the related dose map. In this explanatory case, both the left and right parotid showed a D20 equal
to 26.8 Gy (A). The D40 of the right parotid was equal to 14.88 (B) the left one was 15.62 (C). Panels (D,E) show the volume covered by an
isodose of 20 and 40 Gy, respectively.

maps but after the application of pooling that, as well-known
in deep learning theory, makes features invariant to truncation,
occlusion, and translation (25).

The CT image of each patient is made up of a different
number of 2D slides. From each slide, radiomic features were
extracted by transfer learning approach, i.e., using a pre-trained
network. As a result, several vectors of radiomic features, as
many as the number of slices that make up the CT, are associated
with each patient. To obtain only one vector radiomic feature
in correspondence to each single patient, we computed the
maximum value of each feature. Hence, the final vector was
composed of the maximum values for each feature.

Although multicenter studies are necessary to
demonstrate the potential clinical value of radiomics as
a prognostic tool, the variability factors introduced by
scanner models, acquisition protocols, and reconstruction
settings need particular attention. Indeed, it is well-
known that radiomic characteristics are very sensitive to
these factors. We then applied a statistical harmonization
method called ComBat which was first developed to treat
the “batch effect” in gene expression microarray data
and is also effectively used in radiomics-based studies
(26–28).

During the analysis and evaluation of the collected data,
a discrepancy was found in the contouring of the volumes

of interest (targets and OARs) and the related geometric
expansions of the radiotherapy planning target volume (PTV)
which may depend on the extent of the disease, on partial
discretion within the expansion limits defined by the guidelines
and the type of pre-treatment checks adopted by the various
centers (29–32).

In order to evaluate the robustness of the proposed model
with respect to different manual contouring practices, we
repeated the image analysis pipeline on “fake” parotid contours.
To obtain these “fake” parotid contours, we changed the contour
of the segmented parotids from each of the three centers,
called center 1, center 2, and center 3, by applying dilation or
erosion processes by 10% of the volume of interest compared to
the original one.

All the analyses were performed by using MATLAB R2022a
(MathWorks, Inc., Natick, MA, USA) software.

Classification model design

The primary objective of the present work was the
prediction of xerostomia 3 months after RT in patients with
OPS. As schematically illustrated in Figure 2, the classification
method was developed in three phases: (i) for each dataset,
a feature reduction or selection was performed, (ii) different
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FIGURE 2

Workflow of the proposed classification approach. Three sets of features were considered: radiomic features extracted from parotid images by
means of a pre-trained CNN, dose features extracted from DVH, and clinical features before RT beginning. Feature reduction and selection
techniques were applied to the three sets of features to identify three subsets of significant features. SVM classifier was trained both on the
individual feature subsets and using all the feature kinds jointly.

classification models were trained on each subset of features,
and (iii) finally, a classifier was trained using the selected
subsets jointly.

First, a subset of the clinical feature set was selected by
a sequential forward feature selection algorithm: it identified
a feature subset by sequentially adding one feature at a time
during a fivefold cross-validation procedure until adding more
features decreases the misclassification rate of the classification
model used over the same training set. Specifically, we used
a discriminant analysis (33). The selected features (Clinical
Feature Subset, Clin_FS) were used to train the classification
model. In order to further reduce the number of selected
features, we implemented a nested feature reduction technique
by principal component analysis (PCA) in cross-validation (34).
Only the principal components with explained variance greater
than 1 were chosen (DVH Feature Subset, DVH_FS) and used to
train the classification model.

A subset of radiomic feature extracted from the CT
images (see section “Radiomic feature extraction”) was selected
according to their discriminant power which was assessed
through the computation of the area under the receiver
operating curve (AUC) (35). Features whose AUC value was less
than 80% were dropped from the feature radiomic set. However,
these features showed a strong correlation between them.
Therefore, after standardizing each feature, we implemented

a nested feature reduction technique by principal component
analysis (PCA) and selected the principal components with
explained variance greater than one (Radiomic Feature Subset,
Rad_FS) and used them to train the classification model.

The feature subsets identified are used to train a well-
known machine learning algorithm, i.e., support vector machine
(SVM). Specifically, we used SVM with the linear basis
kernel function (36). Other classifiers known to the state
of the art have been implemented but have not shown a
significant performance improvement. In order not to burden
the discussion, these results have not been reported either.

Finally, in order to evaluate the overall performance of all
identified subsets of features, we jointly used them and trained a
classification model.

A double validation of the model was carried out: (i) 20
ten-fold cross-validation rounds on 43 patients, equal to about
70% of the entire sample available and (ii) independent sample
consisting of 18 patients (equal to about 30% of the entire sample
available) randomly drawn and stratified with respect to the
number of individual centers. The classification performances
related to the iterated cross-validation procedure were evaluated
in percentage terms of AUC, F-score, and accuracy, sensitivity,
and specificity calculated by identifying the optimal threshold
using Youden’s index on the ROC curves (37). The feature
reduction or selection procedure implemented for each feature
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set has been nested\into the iterated cross-validation procedure.
In order to evaluate the robustness of the model when the
training set changes, we have calculated the same performance
metrics of the same independent test set on each round of the
cross-validation procedure.

Statistical analysis and performance
evaluation

The association between parotid volume of two different
centers was evaluated by means of the Wilcoxon–Mann–
Whitney non-parametric test (38). The same non-parametric
test was used to evaluate the association between continuous
features and toxicity at 3 months, whereas we used Chi-
square test for those features measured on an ordinal scale
(39). Correlation between continuous features was measured by
Pearson’s correlation coefficient (40).

Due to the relatively small size of the sample population, a
result was considered statistically significant when the p-value
was less than 0.10 (41).

Results

Patients’ characteristics are summarized in Table 1. A total
of 61 patients with a median age at diagnosis of 59 years afferent
to three different care centers was collected. Among them, 22
patients (36.07%) have shown xerostomia 3 months after RT.
None of the collected clinical characteristics was statistically
associated with the manifestation after 3 months from the end
of the RT of the considered toxicity, except for Induction CHT
(p-value < 0.10).

Classification performance using the
parotids real contours

As described in section “Materials and methods,” an SVM
classifier algorithm was trained both on the three subsets of
features identified individually (Rad_FS, DVH_FS, and Clin_FS)
and jointly. The performances of the different prediction
models were evaluated both in cross-validation and on an
independent test stratified random sample from the entire
dataset of 61 patients.

The sample used in the cross-validation procedure consisted
of 43 patients, out of which 15 patients (34.88%) had
experienced xerostomia after 3 months from RT.

Figure 3 shows the correlation among the collected DVH
features: the dose features resulted as strongly correlated with
each other, especially when they refer to the same area. The
average number of principal components on radiomic features
and selected DVH features in the different cross-validation

rounds implemented were 4 and 1, respectively. Figure 4 shows
the statistical frequency of the clinical features, which were
selected on 20 ten-fold cross-validation procedures by means of
the feature selection algorithm. The weight at the start of the RT
treatment, induction CHT, and sex is the features selected with
a frequency equal to 100%.

Table 2 summarizes the results achieved in cross-validation.
The clinical features alone did not exceed 50%, the dose features
settled around 60%, while the radiomic-based model achieved
the best performances with a median value of AUC, accuracy,
sensitivity, and specificity of 84.17, 88.37, 66.67, and 100%,
respectively, with an F-score of 80%. The joint use of all three
sets of features allows an improvement in the performance of
over 5 percentage points in terms of sensitivity, reaching 73.33%.

The proposed models were also validated on an independent
sample consisting of 30% of the total sample of 61 patients.
Among the 19 patients in the independent test, seven
(36.84%) had experienced xerostomia 3 months after RT. The
encouraging performances of the radiomic features were also
confirmed on independent tests: the SVM classifier achieves an
accuracy of 83.33%, a sensitivity of 71.43%, and a specificity
of 90.91%. However, the improvement in sensitivity on the
independent test using all three feature sets was not confirmed.

It is emphasized that both Clin_FS and DVH_FS showed
a particularly variable sensitivity on the training set (53.33
and 80.00, and 40.00 and 53.33, respectively, as 1st and 3rd
quantile values) and even more marked on the independent
set (14.29 and 1, and 0 and 57.14, respectively, as 1 st and 3rd
quantiles values).

Classification performance using the
parotid “fake” contours

The contouring of the target and organs is an operator-
dependent operation. The median volume and interquartile
range of the three centers were 19.25 (13.65–27.8), 24.15 (20.4–
27.5), and 23.19 (17.36–29.30), respectively (Figure 5). The
volume distribution of center 1 differs significantly from the
other two centers (p-value 0.097 and 0.015), while center 2 and
center 3 do not show a significant difference in distribution
(p-value 0.575). Since the most performing and stable model
in external validation is the radiomic model, we wanted to
evaluate the robustness of the model with respect to variations
in parotid contouring. Therefore, to obtain these “fake” parotids,
we dilated the volumes of patients in center 1 which showed
smaller volumes on average and eroded those in centers 2 and
3 (which showed larger volumes on average) by 10% of the area
of interest compared to the original one.

We then reposted the same previously proposed analysis
pipeline on the parotid “fake” contours. The performances of
the radiomic features still show their predictive power also
following a variation of the contours of the parotids both in
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TABLE 1 Sample dataset characteristics.

Characteristic Distribution P-value

Xerostomia at 3 months after RT

Yes (abs. %) 22 (36.07)

No (abs. %) 39 (69.93)

Sex 0.52

Male (abs. %) 47 (77.05)

Female (abs. %) 14 (22.95)

Age at diagnosis 0.31

Median (1th–3th quantile) 59.00 (54.00–68.25)

T 0.84

T1 2 (3.28)

T2 21 (34.43)

T3 25 (40.98)

T4 10 (16.39)

NaN 3 (4.92)

N 0.37

N0 6 (9.84)

N1 13 (21.31)

N2 35 (57.38)

N3 3 (4.92)

NaN 4 (6.56)

Surgery 0.31

Yes 53 (86.89)

No 8 (13.11)

NaN –

Induction CHT 0.07

Yes 26 (42.63)

No 35 (57.38)

NaN –

Current CHT 0.31

Yes 55 (90.16)

No 6 (9.84)

NaN –

Platinum based CHT 0.36

Yes 52 (85.25)

No 7 (11.48)

Nan 2 (3.28)

Weight pre-RT (Kg) 0.26

Median (1th–3th quantile) 69.50 (60.35–80.40)

Smoking history 0.61

Yes 25 (40.98)

No 13 (21.31)

Ex 16 (26.23)

NaN 8 (13.11)

Alcohol history 0.62

Yes 15 (24.59)

No 33 (54.10)

Ex 1 (1.64)

NaN 10 (16.39)

For categorical variables, absolute (abs.) and percentage (%) counts are reported. For continuous values, the median value and interquartile range (1st–3rd quantiles) are indicated. P-value
related to the association test between each feature with xerostomia at 3 months after RT is shown.
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FIGURE 3

Correlation and p-value matrix plot of DVH features. The left panel (A) depicts the Pearson’s coefficients among DVH features considered in this
study, while the right panel (B) shows the corresponding p-values. The DVH-extracted parotid-related dose features considered in this study
show strong positive correlations.

FIGURE 4

Feature selection. Statistical frequency of the clinical features selected on 20 ten-fold cross-validation rounds by means of the sequential
feature selection algorithm.

cross-validation and on the independent test with a median
accuracy value of 81.40 and 94.44% in cross-validation and on
the independent test, respectively (Table 3). It should be noted
that on the independent test set, the accuracy reached using the
adjusted ROI was greater than that obtained when we used the
original ROI by more than 10 percentage points.

Discussion

Radiotherapy, possibly joined with chemotherapy,
represents the standard of care in patients with locally
advanced oropharyngeal cancer (OPC) (42). However, RT
is often associated with substantial acute and late toxicity,

including xerostomia (43). Xerostomia is a frequent side effect
of RT for head and neck cancer and is due to damage to the
irradiated salivary glands with a relevant impact on patient s’
quality of life (44).

The latest advancement in radiotherapy techniques has
improved the rate of acute adverse events in long-term
survivors, yet there is a need for better identification of patients
with higher risk of toxicity. In order to minimize the toxicity
burden for patients with OPC, an individual toxicity risk
assessment is required to adequately plan radiation treatment
and any supportive therapy. Recently, computational models
based on the quantitative analysis of biomedical images, i.e.,
radiomic analysis, have been effectively proposed to address
unmet clinical needs, mainly in the field of oncological imaging
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TABLE 2 Classification performances of the late xerostomia predictive models in terms of median percentage and interquartile range (1st–3rd
quartiles) AUC, accuracy, sensitivity, and specificity evaluated on real parotid counters.

20 ten-fold cross-validation rounds

AUC f-score Accuracy Sensitivity Specificity

Clin_FS 48.57 (45.00–54.76) 50.00 (48.10–50.95) 48.85 (41.86–55.81) 73.33 (53.33–80.00) 35.71 (21.43–57.14)

DVH_FS 59.40 (55.95–61.43) 50.33 (44.45–55.17) 69.77 (65.12–72.09) 43.33 (40.00–53.33) 80.36 (78.57–85.71)

Rad_FS 84.64 (84.29–86.66) 80.00 (78.57–80.00) 88.37 (86.05–88.37) 66.67 (66.67–73.33) 100 (92.86–100)

All FS 84.17 (82.38–85.71) 76.92 (75.86–78.57) 86.05 (83.72–86.05) 73.33 (66.67–73.33) 92.86 (89.29–96.43)

Independent test set
Clin_FS 50.00 (42.86–56.49) 51.08 (38.75–56.00) 50.00 (38.89–61.11) 42.86 (14.29–1) 50.00 (0–72.73)

DVH_FS 75.97 (74.03–79.22) 62.02 (54.55–66.67) 66.67 (61.11–72.22) 42.86 (0–57.14) 90.91 (81.82–90.91)

Rad_FS 81.17 (79.22–81.82) 76.92 (76.92–78.69) 83.33 (83.33–83.33) 71.43 (71.43–71.43) 90.91 (90.91–90.91)

All FS 81.82 (81.82–88.31) 71.43 (71.43–76.92) 77.78 (77.78–77.78) 71.43 (67.14–71.43) 86.36 (81.82–90.91)

The results are evaluated both on 20 ten-fold cross-validation rounds and independent test. The related 1st and 3rd quantiles are reported in round brackets.

(45, 46). Table 3 summarizes radiomic-based research works
addressing the prediction of RT-related toxicity in head and
neck patients. The models proposed at the state of the art
refer in general to head and neck tumors (9–12). However,
compared to treatment in other areas of the head and neck,
the oropharynx represents the most frequent challenge for the
preservation of radio-induced xerostomia. Therefore, the goal
of our research activity was the development of a support

FIGURE 5

Parotids volume distribution of three centers. Center 1 shows a
significantly smaller volume of the parotids than that of the
other two centers (p-value 0.097 and 0.015), while centers 2 and
3 show no significant difference between them (p-value 0.575).

system tailored to give an early prediction of the risk of late
xerostomia after 3 months of radiotherapy treatment in patients
with OPC. Specifically, we developed a deep learning-based
model which exploited pre-treatment CT images. Radiomic
features were extracted by a pre-trained CNN and analyzed
jointly with both clinical and dose features. The usage of a
transfer learning approach was here preferred to a customized
CNN, i.e., to extract features and then give a prediction,
because it provides some benefits especially when, as in our
case, a relatively small amount of data is available. When
a pre-trained network is used as a feature extractor only,
no training phase is required; therefore, a drastic reduction
of the computational time occurs. Moreover, for datasets
counting small samples, pre-trained net allows us to obtain high
generalizability of the results.

Our experimental results show that the radiomic signature
has a predominant predictive potential with respect to both
clinical and dose characteristics. Indeed, in the cross-validation,
the radiomic features alone showed median values of AUC,
accuracy, sensitivity, and specificity, 84.64, 88.37, 66.67, and
100%, respectively. The addition of the clinical and dose
features only contributes to an increase in the sensitivity value
(73.33%). However, this advantage on the independent test is

TABLE 3 Classification performances of the late xerostomia predictive models in terms of median percentage AUC, accuracy, sensitivity, and
specificity evaluated on “fake” parotid counters.

20 ten-fold cross-validation rounds

AUC f-score Accuracy Sensitivity Specificity

Rad_FS 80.24 (78.93–82.14) 71.43 (71.43–74.07) 81.40 (81.40–83.72) 66.67 (66.67–66.67) 91.07 (89.29–92.86)

All FS 68.10 (66.90–73.10) 58.20 (55.56–60.61) 69.77 (67.44–72.09) 60.00 (53.33–66.67) 75.00 (71.43–78.57)

Independent test set
Rad_FS 94.16 (93.51–94.81) 92.31 (83.33–92.31) 94.44 (88.89–94.44) 85.71 (71.43–85.71) 100 (100–100)

All FS 95.86 (88.31–970.81) 74.83 (60.00–80.00) 83.33 (77.78–83.33) 71.43 (42.86–85.71) 95.45 (81.82–100)

The results are evaluated both on 20 ten-fold cross-validation rounds and independent test. The related 1st and 3rd quantiles are reported in round brackets.
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lost, probably due to the high variability of the performances of
these two data sets.

Probably, DVH_FS does not provide an added value to
the prediction performance of radiomic features alone because
clinicians follow the constraints defined by the guidelines in
defining a treatment plan (47, 48). Rather, it seems that there is a
strong predisposition to the risk of toxicity linked to the texture
of the organ at risk.

The performances of the proposed radiomic model trained
on CT images are encouraging if compared to the state-
of-the-art models, both when trained on the same type of
images (7–9) and on magnetic resonance imaging (10, 11). A
classification performances overview of late xerostomia state-
of-the-art predictive models is provided by Table 4. It should
be emphasized that the comparison with the state of the art

is purely qualitative, since in this work we considered the
prediction of xerostomia at 3 months as an endpoint and the
model is dedicated only to patients affected by OPC. Relevant
studies currently proposed to refer to a different follow-up
time and refer to the larger population of patients with head
and neck cancer.

Moreover, in this article, we also wanted to verify how
robust the model was in relation to strongly operator-dependent
contouring procedures. We have artificially segmented “fake”
contours of the parotids and repeated the process of extracting
the features and training the classification models. To the
best of our knowledge, no studies for this purpose have
been carried out. Even using the “fake” contours, the
performances of the radiomic model are highly performing.
Specifically, the results obtained using the adjusted ROI

TABLE 4 Classification performances of the late xerostomia predictive models in terms of median percentage AUC, accuracy, sensitivity, and
specificity evaluated on “fake” parotid counters.

References Imaging
modality

Study
population
and sample

size

Endpoint Time
of assessment

Statistics and
modeling

Features Results

MEN et al. (10) Pre-treatment
CT

784 H and N
cancer patients

Xerostomia at 12th
months

Model 1: 3D rCNN
Model 2: Logistic

Regression

3D CT
3D dose
D20, V20 parotid
D20, V20 submandibular
Clinical data: sex, age, race,
treatment arm, treatment
technique, tumor site, T, N,
Zubrod performance score

AUC: 0.84
Acc: 0.76
Sens: 0.76
Spec: 0.76

F-score: 0.70
AUC: 0.74
Acc: 0.64
Sens: 0.72
Spec: 0.59

F-score: 0.60

Gabryś et al. (11) Pre-treatment
CT

153 H and N
cancer patients

Xerostomia at
0–6 months

Gradient tree
boosting

Demographic: Age, sex
6 Handcrafted radiomics
features
DVH: Mean, spread,
skewness

AUC: 0.65

Van Dijk et al. (12) Pre-treatment
CT

249 H and N
cancer patients

Xerostomia at
12 months

Logistic regression 142 Handcrafted radiomics
features
DVH: Mean dose
Clinical: age, sex, WHO
stage, weight, length and
BMI, tumor characteristics
(TNM stage, tumor location)
and treatment characteristics

AUC: 0.76

Sheikh et al. (13) Pre-treatment
CT

MRI

249 H and N
cancer patients

Xerostomia at
12 months

Generalized linear
model

2877 Handcrafted radiomics
features (PyRadiomics
software): CT features
MRI features
DVH: 48 features

AUC: CLIN + CT + MR
0.73

CLIN + DVH + CT + MR
0.68

van Dijk et al. (14) T1 weighted
MRI

249 H and N
cancer patients

Xerostomia at
12 months

Logistic regression 64 Handcrafted radiomics
features

AUC: 0.83

The results are evaluated both on 20 ten-fold cross-validation rounds and independent test. The related 1st and 3rd quantiles are reported in round brackets.
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achieved very high performances in the independent test
set. Our intent with the analysis of the “fake” ROI was to
evaluate how much the model was still highly performing with
variations on the contouring which is a notoriously operator-
dependent operation.

In light of the results obtained, it would seem in fact that the
erosion and dilation carried out have led to an improvement in
the forecast results, that is to say, that with too many or too large
contours there is a loss of information.

This result, which we have underlined in the results and
discussions, offers food for thought for future works, e.g., by
evaluating a forecasting model based on optimal automated
segmentation.

The proposed model seems to provide reliable support
regardless of the clinical contouring practice used by the
operator.

Therefore, the model could accurately support clinicians in
the decision-making process by providing a personal risk score
for the development of toxicity, to improve the quality of life,
without compromising patient care. Such a support system, if
applied to clinical practice, it would allow clinicians to define
a personalized radiotherapy plan by reducing the doses of the
parotids as much as possible and to associate pharmacological
support therapies to be carried out before and during the
radiotherapy treatment.

Although our study is multicentric, the limited sample size
represents a limitation of the study which, therefore, requires
further validation studies. In future studies, we intend to
generalize the model also for observation times and toxicities
different from those considered here.

Conclusion

In this article, we proposed a deep learning-based model
to predict late toxicity after radiotherapy in patients with
OPC. Specifically, we developed a radiomic-based model using
pre-treatment CTs to give an early prediction of xerostomia
in 3 months after RT treatment. The achieved experimental
results are promising in terms of prediction accuracy. Moreover,
the model is robust with respect to the manual parotid
contouring procedure. Therefore, the proposed model could
help to develop a valid support tool for clinicians in planning
radiotherapy treatment.
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