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Abstract: Digoxin is a hydrophobic drug used for the treatment of heart failure that possesses a
narrow therapeutic index, which raises safety concerns for toxicity. This is of utmost relevance in
specific populations, such as the elderly. This study aimed to demonstrate the potential of the sodium
alginate films as buccal drug delivery system containing zein nanoparticles incorporated with digoxin
to reduce the number of doses, facilitating the administration with a quick onset of action. The film
was prepared using the solvent casting method, whereas nanoparticles by the nanoprecipitation
method. The nanoparticles incorporated with digoxin (0.25 mg/mL) exhibited a mean size of
87.20 ± 0.88 nm, a polydispersity index of 0.23 ± 0.00, and a zeta potential of 21.23 ± 0.07 mV.
Digoxin was successfully encapsulated into zein nanoparticles with an encapsulation efficiency of 91%
(±0.00). Films with/without glycerol and with different concentrations of ethanol were produced.
The sodium alginate (SA) films with 10% ethanol demonstrated good performance for swelling
(maximum of 1474%) and mechanical properties, with a mean tensile strength of 0.40 ± 0.04 MPa
and an elongation at break of 27.85% (±0.58), compatible with drug delivery application into the
buccal mucosa. The current study suggests that SA films with digoxin-loaded zein nanoparticles can
be an effective alternative to the dosage forms available on the market for digoxin administration.

Keywords: oromucosal films; sodium alginate; nanoparticle drug carriers; digoxin; zein; heart failure

1. Introduction

Heart failure is a pathological condition with an estimated worldwide prevalence of
64.34 million cases representing the most significant burden after 60 years of age [1,2]. The
incidence in European countries and the USA ranges from 1 to 9 cases per 1000 person-years [1].
Digoxin is a hydrophobic drug with a positive inotropic effect that reduces heart rate in
supraventricular tachyarrhythmias associated with heart failure, improving the dynamic ca-
pacity of the heart [3]. It is one of the most used drugs to improve symptoms and reduce
hospitalization in patients with heart failure and atrial fibrillation [4]. These conditions are
highly prevalent in older adults [5]; therefore, digoxin is a widely prescribed drug at this age
group [3,6]. However, this drug has a narrow therapeutic index, wide individual variability in
dosage requirements, and complex metabolic pathways, which raises concern since digitalis
toxicity is not only a medical emergency but can also be lethal [7]. This is of utmost relevance for
the geriatric population considering the pharmacodynamic and pharmacokinetic change. The
older patient’s high sensitivity to glycosides and consequent risk of intoxication [8] highlights
the need of developing new delivery systems for improving safety.

Digoxin is currently only available on the market in conventional dosage forms, which
are a limitation for narrow therapeutic index drugs since these have several limitations,
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such as reduced patient compliance, shorter half-life of drugs, and high peak, failure to
control the drug release ratio, poor stability, and lack on the therapeutic target [9].

The use of mucosal administration has recently received attention by researchers
on the drug administration by mucosal route since it avoids the hepatic first-pass effect
and the degradation by gastrointestinal enzymes [10–12]. Besides that, the sublingual
mucosa is very permeable with large veins, and high blood flow provides instantaneous
drug absorption and high bioavailability [13]. Therefore, oral mucoadhesive drug delivery
systems can be a good solution as they provide more comfort and flexibility during the
administration process [14–16]. Moreover, mucoadhesive forms may be designed to enable
prolonged retention at the site of application, providing a controlled rate of drug release
for improved therapeutic outcomes [17]. Oromucosal films are alternative dosage forms to
traditional solid oral dosage forms [18], which are essentially prepared through the casting
method [19].

Different polymers have been used in film preparations since they achieve rapid
disintegration, good mouthfeel, and mechanical properties [20] and are an easy way to
enhance bioavailability [21]. In addition, the use of natural and biocompatible polymers
reduces the side effects of a given drug, and biodegradable biomaterials minimizes the
inflammatory effect, possesses good permeability, and good therapeutic properties [9],
which overcome the toxicity and non-degradability associated with synthetic polymers
used in the production of commercial dosage forms. Herein, sodium alginate (SA) was
selected since it is a hydrophilic, biocompatible, and antioxidant polysaccharide [22]
with mucoadhesive properties [23,24]. In fact the promising properties of SA propelled
the development and commercialization of oral films for the food and pharmaceutical
industries [25–27].

Since polymeric nanoparticles have numerous potentialities as carrier systems for
bioactive compounds, it is possible to control the drug release profile and reduce drug
degradation and toxicity [28,29]. Polymers are the most common materials for constructing
nanoparticle-based drug carriers and among different polymers used in nanoparticle pro-
duction, zein is a natural and biodegradable polymer belonging to the group of prolamins,
and it is one of the few alcohol-soluble biopolymers with more than 50% hydrophobic
amino acids [30]. Besides, zein has unique characteristics, such as high coating capac-
ity, biocompatibility, low toxicity [31,32], and its mucoadhesive character can be used
for mucosal delivery of drugs and vaccines [33]. This polymer was widely described
as a pharmaceutical excipient in oral solid dosage forms [34]. A significant advantage
of zein-based nanoparticles is their amphiphilic character, which encapsulates both hy-
drophilic and hydrophobic compounds like digoxin [35]. Indeed, they have been proposed
to encapsulate phenolic compounds due to their ability to increase the dispersibility of
drugs in an aqueous medium, as well as to promote chemical stability [36]. This polymer
has been used in modified release systems for the delivery of enzymes, drugs, essential
oils, and other substances [32,33]. In fact, different studies have reported the ability of
zein nanoparticles to encapsulate different drugs, such as lovastatin [37], artemether [38],
gambogenic acid [39], doxorubicin [40], 5-fluorouracil [41], docetaxel [42], carvacrol [43],
and maytansine [44]. These studies demonstrated the utility of zein nanoparticles as a
viable drug-delivery and in a recent work, PEG-coated zein nanoparticles demonstrated to
be adequate carriers for promoting the oral bioavailability of biomacromolecules [45].

Herein, the zein nanoparticles were produced through the nanoprecipitation tech-
nique, also known as solvent displacement, or antisolvent method, which consists of the
interfacial interaction of zein after displacement of a semi-polar solvent, miscible in water.
The rapid diffusion of the organic solvent results in the reduction of the interfacial tension
between the two phases, increasing the surface area, inducing supersaturation, leading
to precipitation of the solute and the formation of nanoparticles [46]. This method em-
ploys the addition of zein solution to an anti-solvent (water), which allows the controlled
protein precipitation due to the reduction of solubility in the medium, promoting the
nanoparticles’ formation.
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However, it is important to notice that the physicochemical properties of the nanopar-
ticles (e.g., size, surface properties, and polydispersity index (PDI)) are dependent on the
materials and technique used for the nanoparticles production. In this case, the production
of zein nanoparticles through the nanoprecipitation technique enables the production of
the reproducible and positively charged zein nanoparticles that will promote electrostatic
interactions with negatively sialic acid residues in mucin, which will prolong the residence
time in the buccal mucosa and consequently increase the drug bioavailability [47–49].

In turn, the oromucosal films will act as a matrix to support the incorporation of
the digoxin-loaded zein nanoparticles since they are flexible, comfortable, and easy to
administer, prolonging the stability of the system [50]. Herein, this study aimed to de-
velop a sodium-alginate mucoadhesive film containing zein nanoparticles with embedded
digoxin to be used as a buccal drug delivery system. The films were produced using the
casting method from aqueous solutions and the nanoparticles were obtained through the
nanoprecipitation method.

2. Materials and Methods
2.1. Materials

Standard digoxin 96% was purchased from Alfa Aesar (Haverhill, MA, USA). SA
(molecular weight 10,000–600,000 g/mol) was obtained from AppliChem GmbH (Darm-
stadt, Germany). Glycerol was acquired from Guinama S.L.U (Valencia, Spain. Ethanol
100% was purchased from Carlo Erba Reagents (Cornaredo, Italy) with a density at 20 ◦C
of 0.7893:0.7899. Zein was obtained from Acros Organics (Waltham, MA, USA). Sodium
chloride 99.5% was obtained from Honeywell Fluka (Charlotte, NC, USA), potassium
phosphate monobasic and sodium phosphate dibasic and High-Performance Liquid Chro-
matography (HPLC)-gradient grade acetonitrile 99.9% were obtained from VWR Chemicals
(Radnor, PA, USA). HPLC-gradient grade methanol 99.9% was obtained from Chem-Lab
NV (Zedelgem, Belgium). Deionized water was used for all sample preparation.

2.2. Preparation of Sodium Alginate Films

Films were prepared using the casting method from aqueous solutions, as previously
reported [51]. An aqueous solution of SA (3% w/v), was placed under magnetic stirring at
25 ◦C and 400 rpm, for 6 h. After that, the ethanol was added at different concentrations
(0, 10 and 20% v/v) to promote the gelation of the film [51]. Then, the glycerol (12 g/L)
was added as a plasticizer for the film optimization due to its texture and mechanical
properties [52]. The polymeric solution was deposited into Petri plates (55 mm) and
was dried at 30 ◦C overnight (Incubator Hood TH 15-Edmund, Bühler GmbH, Uzwill,
Switzerland). The final composition of the oromucosal films is shown in Table 1. Posteriorly,
SA films with embedded zein-digoxin nanoparticles were also produced. The production
process of nanoparticles is described in Section 2.4.

Table 1. Film’s composition (SA: Sodium alginate, EtOH: Ethanol, and Glyc: Glycerol).

Formulation
Film Composition

3% SA Solution (mL) Ethanol (mL) Water (mL) Glycerol (g/L)

SA EtOH0 15.00 0.00 0.00 0.00
SA EtOH10 10.00 1.50 3.50 0.00
SA EtOH20 10.00 3.00 2.00 0.00

SA_Glyc EtOH0 15.00 0.00 0.00 12.00
SA_Glyc EtOH10 10.00 1.50 3.50 12.00
SA_Glyc EtOH20 10.00 3.00 2.00 12.00

2.3. Characterization of Films
2.3.1. Scanning Electron Microscopy Analysis

The morphology and structure of the surface films were characterized through scan-
ning electron microscopy analysis. The samples were mounted onto aluminum stubs with
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Araldite glue and sputter-coated with gold using a Quorum Q150R ES sputter coater (Quo-
rum Technologies Ltd., Laughton, Lewes, UK). Then the images acquired with different
magnifications were acquired in a Hitachi S-3400N Scanning Electron Microscope (Hitachi,
Tokyo, Japan) at an acceleration voltage of 20 kV.

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy (FTIR) measurements were performed to
evaluate the effect of ethanol addition in SA structure by a Nicolet iS10 FTIR spectropho-
tometer (Thermo Scientific, Waltham, MA, USA). The analysis was performed with an
average of 128 scans, a spectral width ranging from 4000 and 400 cm−1, and a spectral
resolution of 4 cm−1. At least three replicates were run for each sample.

2.3.3. Thickness

The film thickness was measured using a Digimatic Caliper (0.01 mm, Mitutoyo
Corporation, Sakado, Japan) at 10 different film positions. At least three replicates for each
formulation were considered.

2.3.4. Mechanical Properties

Tensile strength (TS) and elongation at break (EAB) were measured using a Texture
Analyser (TA-XT Plus, Stable Micro Systems, Godalming, UK). All measurements were
performed in three replicates for each formulation. Each test strip was cut into a specific
size (3 × 1 × 0.1 cm) and placed longitudinally in a tensile grip probe (A/MTG). Initial
grip separation was 5 mm and crosshead speed was 10 mm/min. The test was considered
concluded at the film break. The TS was evaluated using the Equation below (1). Results
were expressed in MPa.

TS =
Force at break

Thickness × width
(1)

The EAB was calculated according to the following Equation (2):

EAB (%) =
Increase in length

Original length
× 100 (2)

2.3.5. Swelling Profile

The swelling profile of the films was measured by a method previously proposed [51].
The samples (2 × 2 cm) were immersed in 1 mL of a simulated saliva solution prepared
with sodium chloride (8.00 g/L), potassium phosphate monobasic (0.19 g/L), and sodium
phosphate dibasic (2.38 g/L), setting pH to 6.8 [53], at 25 ◦C and stirred at 120 rpm for
5 min. The samples were evaluated after 0, 30, 60, 120, 180, 240, and 300 s of the beginning
of the test. The excess of simulated saliva solution was removed with a filter paper and their
wet weight was immediately determined to calculate the swelling ratio by the following
Equation (3), where Wt is the final weight, and W0 is the initial weight of the films:

Swelling (%) =
Wt

W0
× 100 (3)

2.3.6. Dissolution Time

To investigate the dissolution time of the films, the samples (1 × 1 cm) were immersed
in 5 mL of simulated saliva solution at 37 ◦C and at 120 rpm. The test was considered
concluded when the film was completely dissolved. Measurements were performed in
triplicate for each formulation.

2.4. Preparation of Zein Nanoparticles with Embedded Digoxin

Zein (2.5 mg/mL) was dissolved in ethanol (80% v/v). Nanoparticles were prepared
by the nanoprecipitation method through confined impingement jets with dilution (CIJ-D)
mixer, as previously described [54]. CIJ-D mixer is made of a high-density polyethylene,
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with two inlets and adapters fitted with threaded syringes, and one outlet adapter. The
dimensions and operating mode is described in more detail in work conducted by Han
et al. [54]. One of the syringes contains 2.50 mL zein solution and digoxin at different
concentrations (0.00, 0.25, 0.50, and 1.00 mg/mL), and the second syringe contains 2.50 mL
of deionized water. Nanoparticles without digoxin were also produced as a control. The
two syringes were then attached to the two vertical openings on the CIJ-D mixer. A beaker
containing 45 mL of deionized water was placed at the exit of the CIJ-D mixer. The exit
stream outlet was submerged in the water. The two syringes were then pushed rapidly
and simultaneously by hand to inject the liquids into the CIJ-D mixer at equal rates, where
the two streams were rapidly mixed and collected in water solution.

2.5. Particle Size, Zeta Potential and Polydispersity Index (PDI)

After production, zein nanoparticles with and without digoxin, size distribution, zeta
potential, and PDI were determined by dynamic scattering technique using Zetasizer Nano
ZS, Malvern Instruments, Malvern, UK. Such parameters were also measured over time,
for 26 days, at room temperature, to evaluate the stability of the nanoparticles.

2.6. Determination of Standard Calibration Curve and Encapsulation Efficiency of Digoxin
into Nanoparticles

Encapsulation efficiency (EE) of digoxin was determined by HPLC. A standard cali-
bration curve was previously obtained (y = 292.67 x + 17.595, R2 = 0.999). HPLC chromatog-
raphy was performed according to the conditions described previously [55], with a column
C18 (Acclaim™ 120 Reversed-Phase Columns C18, 5 µm, 4.6 × 150 mm, Thermo Scientific)
at a temperature of 35 ◦C and the mobile phase (mixture of water and acetonitrile, 72:28%
(v/v)) was pumped at a flow rate of 0.8 mL/min. The run time cycle was completed in 20
min. Peak areas registered at 218 nm were used for digoxin quantification. All experiments
were carried out in triplicate.

The EE indicates the drug amount into nanoparticles and was determined after
ultrafiltration-centrifugation (Amicon® Ultra Centrifugal Filters, 30k; Merck Millipore,
Billerica, MA, USA). The filtrate, containing the unencapsulated drug, which can pass
through the filter membrane during centrifugation (4000× g; 10 min), was analyzed by
HPLC. Encapsulation efficiency was calculated using the following Equation (4):

EE (%) =
Actual amount of drug − loaded in nanoparticles
Theory amount of drug − loaded in nanoparticles

× 100 (4)

2.7. Statistical Analysis

The statistical analysis of the obtained results was performed using one-way analysis
of variance (ANOVA), with Tukey’s test for post hoc analysis, using GraphPad Prism
software version 8.0.1 (Dr Harvey Motulsky, San Diego, CA, USA). All of the results were
expressed as the mean value ± standard error of the mean (SEM). A p-value lower than
0.05 (p < 0.05) was considered statistically significant.

3. Results and Discussion
3.1. Scanning Electron Microscopy Analysis

Scanning electron microscopy analysis was performed to characterize the film’s sur-
face, as previously reported in other studies [56,57]. The images indicate that the morphol-
ogy of all selected films is dense, homogeneous, and has no pores and cracks (Figure S1).
The addition of glycerol and ethanol did not change the surface of the developed films.
These characteristics, namely the absence of pores and surface uniformity, represent good
film quality and are appropriate for buccal drug delivery systems [19,58]. In fact, other
authors also state that the oral films must be homogeneous and smooth, not presenting
with bubbles, cracks, or aggregates, which aims to improve its acceptability [59].
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3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectra of SA films are presented in Figure 1. For native SA film, the peaks at
3253 cm−1 and 1023 cm−1 were assigned to stretching vibrations of –OH and –C–O–C–
bonds and asymmetric and symmetric –COO– stretching at 1590 cm−1 and 1413 cm−1,
respectively [51,60,61]. In this work, ethanol was used for gelation of SA chains. Al-
though ionic crosslinking is commonly used in SA films, another study observed that
when the SA films were crosslinked with Ca2+ ions, the peaks become broader. Thus,
different non-conventional crosslinking methods have been used, such as the non-solvent
method, which commonly uses ethanol. In fact, it has been described that the gelation
of polysaccharides induced by ethanol can occur due to the low water activity, wherein
the polysaccharide-water interactions are minimized and the hydrophobic interactions
between polysaccharide chains are promoted [62,63]. Since the gelation occurred directly in
ethanol there was no need for the solvent-exchange step and the process occurred without
additional crosslinkers.
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It is possible to verify that both the asymmetric and symmetric –COO– peaks of the
films did not change with increasing the ethanol proportion. Thus, ethanol fulfilled its
purpose without changing the SA structure, as seen in another study [51].

3.3. Thickness

Apart from ethanol, the SA films were also composed of glycerol. Such a plasticizer
has been commonly used since it improves the flexibility of films [64]. The thickness of
SA films changed depending on the ethanol content and glycerol addition, as shown in
Figure 2. The addition of ethanol changed the thickness of films leading to thicker films.
This may be related to the structural modification in the polypeptide chain that the gelation
process imposes since the three-dimensional structure assumes a conformation that takes
up more space and, therefore, the greater thickness of the reticulated films [65]. It was
possible to verify that the addition of glycerol does not affect film thickness (Figure 2).
Despite some minor changes on the films’ thickness, all formulations presented values
within the suitable range (0.05–1 mm), which is considered ideal to reduce side effects and
extensive metabolism of drugs in buccal films [66]. In turn, the thickness values maintain
along the surface of the film, assuring the thickness uniformity, which is important for film
dose accuracy [19].
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3.4. Mechanical Properties

TS is defined as a measurement of the maximum amount of force applied at which the
film breaks and is used to characterize the mechanical strength of the films [67]. In turn, the
percentage increase in EAB is the length that a material can be extended/stretched before
it breaks. It is related to the elasticity of the material and the ability of a plastic specimen to
resist changes of shape without cracking. An ideal oromucosal film dosage form should be
flexible, elastic, and soft, but strong enough to resist breaking caused by stress from mouth
movements [13].

Through the analysis of results presented in Table 2, it is possible to notice that
the addition of glycerol promoted a decrease in TS values and an increase in EAB. It is
widely reported that the plasticizers interfere with polymer chains, promoting a decrease
in intermolecular forces, soften the rigidity of the film’s structure, and increase the polymer
mobility. Thus, the presence of glycerol leads to a ductile and flexible material [64]. The
increase in ethanol led to an increase in the TS and a decrease in EAB values, except for
films without glycerol (Figure 3). A significant decrease in TS was noticed in another study
for gelatin films incorporated with the highest curcuma ethanol extract content [68]. The
increase in the EAB values can be explained by the good physical gelation process between
the polymeric matrix and the incorporated ethanol, leading to more cohesive and flexible
matrices [68].
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Table 2. The mechanical characterization of oromucosal films (n = 3) is expressed as mean ± SEM
(SA: Sodium alginate, EtOH: Ethanol, and Glyc: Glycerol).

Formulation Tensile Strength (MPa) Elongation at Break (%)

SA EtOH0 0.07 ± 0.01 5.15 ± 0.70
SA_Glyc EtOH0 0.35 ± 0.02 41.97 ± 0.72

SA EtOH10 0.04 ± 0.00 7.83 ± 1.27
SA_Glyc EtOH10 0.42 ± 0.01 27.85 ± 4.59

SA EtOH20 0.02 ± 0.00 6.38 ± 1.17
SA_Glyc EtOH20 0.72 ± 0.03 26.19 ± 1.96
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3.5. Swelling Profile

Polymeric film swelling is important to understand films’ water absorption capacity
and obtain information about their water resistance [69]. The swelling profile of SA films,
with and without glycerol treated with different ethanol concentrations, was recorded in
Figure 4. The data obtained revealed the high-water absorption ability of the films in the
first 30 s, stabilizing the swelling behavior over at least 300 s. This profile is described
as suitable for buccal administration since polymers with high initial swelling rate could
promote mucoadhesion [70]. The graphics also showed that after 240 s, the degradation of
the film occurs for formulations without glycerol. In general, all glycerol-free films exhibit
similar behavior with a maximum swelling percentage of 3578.7% ± 308.23.

In contrast, glycerol promoted a more controlled swelling profile in all formulations
where the maximum swelling was 1441% ± 4.041. Adding a hydrophobic compound,
such as glycerol, will impair the interaction with water molecules, decreasing the water
absorption capacity. Another study reported that the increase in glycerol concentration
reduced the swelling index of the fast oral dissolving films studied [71]. The swelling
capacity of SA films is facilitated by carboxylic groups, which are strongly associated with
water molecules [65]. In a drug delivery system, a moderate swelling profile is desirable,
not compromising the system’s stability [72]. Thus, based on the results, the SA_Glyc
EtOH10 formulation was selected to incorporate zein nanoparticles since it presented a
swelling profile compatible to be applied as mucoadhesive drug delivery system for the
buccal mucosa.



Pharmaceutics 2021, 13, 2030 9 of 16

Pharmaceutics 2021, 13, x  9 of 16 
 

 

In contrast, glycerol promoted a more controlled swelling profile in all formulations 
where the maximum swelling was 1441% ± 4.041. Adding a hydrophobic compound, such 
as glycerol, will impair the interaction with water molecules, decreasing the water absorp-
tion capacity. Another study reported that the increase in glycerol concentration reduced 
the swelling index of the fast oral dissolving films studied [71]. The swelling capacity of 
SA films is facilitated by carboxylic groups, which are strongly associated with water mol-
ecules [65]. In a drug delivery system, a moderate swelling profile is desirable, not com-
promising the system’s stability [72]. Thus, based on the results, the SA_Glyc EtOH10 formu-
lation was selected to incorporate zein nanoparticles since it presented a swelling profile 
compatible to be applied as mucoadhesive drug delivery system for the buccal mucosa. 

 
Figure 4. Swelling profile of the produced films (SA: Sodium alginate, EtOH: Ethanol, and Glyc: 
Glycerol). 

3.6. Dissolution Time 
The results obtained (Table 3) showed that the presence of ethanol induces an in-

crease on dissolution time, which can be explained by the reduction of water molecule 
interactions and consequently delay the dissolution time [73]. In terms of the glycerol ad-
dition, the effects were just observed on formulations with 10% of ethanol, which in-
creased the dissolution time [71]. 

Table 3. The dissolution time of oromucosal films (n = 3) is expressed as mean ± SEM (SA: Sodium 
alginate, EtOH: Ethanol, and Glyc: Glycerol). 

Formulation Dissolution Time (min) 
SA EtOH0 7.10 ± 0.41 

SA_Glyc EtOH0 6.27 ± 0.18 
SA EtOH10 8.88 ± 0.04 

SA_Glyc EtOH10 11.36 ± 0.68 
SA EtOH20 10.38 ± 0.05 

SA_Glyc EtOH20 9.00 ± 0.65 

Figure 4. Swelling profile of the produced films (SA: Sodium alginate, EtOH: Ethanol, and
Glyc: Glycerol).

3.6. Dissolution Time

The results obtained (Table 3) showed that the presence of ethanol induces an increase
on dissolution time, which can be explained by the reduction of water molecule interactions
and consequently delay the dissolution time [73]. In terms of the glycerol addition, the
effects were just observed on formulations with 10% of ethanol, which increased the
dissolution time [71].

Table 3. The dissolution time of oromucosal films (n = 3) is expressed as mean ± SEM (SA: Sodium
alginate, EtOH: Ethanol, and Glyc: Glycerol).

Formulation Dissolution Time (min)

SA EtOH0 7.10 ± 0.41
SA_Glyc EtOH0 6.27 ± 0.18

SA EtOH10 8.88 ± 0.04
SA_Glyc EtOH10 11.36 ± 0.68

SA EtOH20 10.38 ± 0.05
SA_Glyc EtOH20 9.00 ± 0.65

3.7. Characterization of Zein Nanoparticles

Nanoparticle drug carriers aim to achieve more efficient and sustained drug
delivery. Their characteristics, such as particle size, charge, and hydrophobicity, are
determinants of the permeability of the mucosal barrier [74]. The mean size of the
zein nanoparticles without digoxin was 85.72 ± 0.360 nm, which increase when the
digoxin concentration also augmented (Table 4). However, all produced nanoparticles
displayed a mean diameter inferior to 200 nm, which is ideal for escaping recognition
by the reticuloendothelial system and, consequently, prolong their half-life in the
blood system [74]. Nevertheless, other authors described the particle size reduction of
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nanosuspensions as determinant for the increase in the surface area and enhancement
in dissolution velocity of the drug [75,76]. In all cases, the PDI of the formulations
remained under 0.4, indicating monodisperse nanosuspensions. In turn, the zeta
potential indicates the surface charge of nanoparticles presenting values above 20 mV,
considered as moderately stable [77–79]. Apart from the size of nanoparticles, their
uptake is also dependent on charge density. The positive charge of zein nanoparticles
and hydrophobic character of zein nanoparticles enables the ionic interaction with
negatively charged groups available on the cell membrane surface and improves the
epithelial endocytosis through the attachment of polymeric substances to the glyco-
proteins on epithelial surfaces, which allows for the increase of the mucoadhesion
phenomenon [80–82]. This provides an intimate contact between drug formulation
and mucosa tissue, increasing the drug absorption and residence time, resulting in
improved drug therapeutic activity through high drug flux at absorptive mucosa [83].
Moreover, the mucoadhesive adhesion of zein nanoparticles on porcine buccal mucosa
was already evaluated by other authors, who verified that the positively charged
zein nanoparticles can anchor to the mucus layer by electrostatic interactions with
negatively charged sialic acid residues in mucin, which is fundamental to prolong the
residence time in the buccal mucosa [84].

Table 4. Characterization of the nanoparticles according to the digoxin concentration (n = 3), data are expressed as
mean ± SEM (PDI: Polydispersity Index).

Formulation Mean Size (nm) PDI Zeta Potential (mV)

Zein 2.5 mg/mL

Digoxin 0.00 mg/mL 85.72 ± 0.36 0.22 ± 0.00 24.23 ± 0.39
Digoxin 0.25 mg/mL 87.20 ± 0.88 0.23 ± 0.00 21.23 ± 0.07
Digoxin 0.50 mg/mL 92.16 ± 0.77 0.20 ± 0.01 23.40 ± 1.72
Digoxin 1.00 mg/mL 123.20 ± 2.42 0.36 ± 0.01 22.30 ± 0.25

In addition, the stability of the aqueous nanoparticles suspension, stored at room
temperature, was evaluated for 26 days (Figure 5). It was possible to verify that the zein
nanoparticles incorporating 0.25 mg/mL of digoxin maintained their size for 12 days, with
a PDI value of 0.23 ± 0.00, suggesting an ideal stability. In terms of zeta potential, no
significant differences were observed between 6 and 20 days (p > 0.999) for this formulation.
Thus, it can be concluded that this formulation is stable over at least 20 days and it was
chosen to be incorporated into the film. Through this strategy, it is possible to combine the
mucoadhesive behavior of zein, allowing the strong electrostatic interactions with mucin,
as highlighted previously [84], and acting as novel platform for the buccal delivery of the
poorly water-soluble digoxin.
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3.8. Digoxin Encapsulation Efficiency

The digoxin was incorporated into zein nanoparticles with a drug encapsulation
efficiency of 91 ± 0.03%. This result is of utmost relevance since high drug encapsula-
tion allows for lower concentrations of nanoparticles compared to other dosage forms,
and the controlled delivery of drugs. To the best of our knowledge, this is the first work
evaluating the performance of zein nanoparticles for digoxin delivery. In other studies
it is only possible to find works reporting the production of zein nanoparticles incorpo-
rated with other biologically active compounds, achieving encapsulation efficiencies
ranging between 47.80 and 92.60% [40,85–87]. One study reported the use of simple
coacervates of zein to encapsulate gitoxin, a naturally occurring cardiac glycoside
(such as digoxin) and proved the stability and maintenance of the biological activity of
glycosides [88]. On the other hand, the incorporation of digoxin into other polymeric
nanoparticles has been previously described, and the results showed high encapsula-
tion efficiency and revealed that digoxin-loaded nanoparticles increased permeability
across cell layers [89]. In addition, the digoxin incorporation into nanosystems affords
different potentialities, as verified by Das et al., where the in vivo studies revealed an
increase on digoxin bioavailability in solid lipid nanoparticles when compared with a
digoxin solution after oral administration (0.25 mg) [90]. Taking this into account, we
consider that the digoxin encapsulation into zein nanoparticles should not compromise
its biological activity and represents a promising approach for the development of
novel and safer formulations.

3.9. Characterization of SA Films Embedded with Zein-Digoxin Nanoparticles

Considering the optimal film formulation obtained, the nanoparticles suspension
was embedded into the formulation by direct mixing with the SA_glycerol solution. The
casting method with ethanol for film production followed the previous described approach.
The results obtained for the characterization of films embedded with zein-digoxin (ZnDx)
nanoparticles are summarized in Table 5. The addition of nanoparticles into the film did
not change their thickness, with a mean value of 0.08 ± 0.90 mm. In turn, a significant
decrease of EAB of the film (5.72 ± 0.58) was registered, while TS was not changed. Such
can occur due to the addition of hydrophobic compounds, such as zein and digoxin, which
prevent the interaction between the hydrophilic groups of SA and water [91].

Table 5. Characterization of the final formulation, data are expressed as mean ± SEM (SA: Sodium
alginate, Glyc: Glycerol, EtOH: Ethanol, Zn: Zein, and Dx: Digoxin).

Formulation Thickness
(mm)

Tensile Strength
(MPa)

Elongation
at Break (%)

Dissolution
Time (min)

SA_Glyc EtOH10 0.09 ± 0.02 0.42 ± 0.01 27.85 ± 4.59 11.36 ± 0.68
SA_Glyc EtOH10_ZnDx0.25 0.08 ± 0.90 0.40 ± 0.04 5.72 ± 0.58 13.75 ± 0.37

In terms of the swelling profile, there are no significant differences for both
formulations (Figure 6). These formulations demonstrated an increase in the swelling
capability after 30 s, suggesting a suitable film swelling, able to accelerate the release
of the drug by diffusion and erosion [92]. Drug-loaded films dissolved significantly
slower (p = 0.02) than the equivalent drug-free formulation (Table 5). This could be
due to the poorly water-soluble character of digoxin. Besides, hydrophobic polymers
(zein) do not allow for quick hydration upon contact with simulated saliva and, hence,
delay the dissolution time of the films [93].
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4. Conclusions

In this study, a novel SA_Glyc EtOH10 film containing ZnD × 0.25 nanoparticles was
successfully prepared by incorporating drug nanosuspensions with mucoadhesive films
mainly composed of SA, which provides a new route of transforming nanosuspensions
of poorly water-soluble drugs (such as digoxin) into a solid dosage, which due to the
bioadhesive behavior, reduced the number of administrations. SA films were successfully
prepared by solution casting with different concentrations of ethanol. Then, the effect of the
glycerol plasticizing agent on films’ properties was also evaluated, where it was verified
that the films containing glycerol presented a more controlled swelling profile. In addition,
the zein nanoparticles incorporating digoxin were also successfully produced through the
nanoprecipitation method, which displayed a size and surface charge stable for at least
12 days.

In this way, the mucoadhesive SA film incorporated with ZnD × 0.25 nanoparticles
presented a swelling profile and mechanical properties compatible with the application as
drug delivery system through the buccal mucosa. The development of this technological
innovation becomes pertinent and necessary since it allows for the achievement of a more
controlled drug release, greater therapeutic effect, reduction of side effects, and also to
improve therapeutic compliance in patients with dysphagia.

In the near future, complementary assays, such as drug permeation, mucoadhesive-
ness, pharmacokinetic profile, and bioavailability, would allow for the successful scale-up
of the new oromucosal film produced as alternative dosage form for digoxin and for drugs
suffering from first-pass effect, especially those with a narrow therapeutic index.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122030/s1, Figure S1: SEM micrographs of films morphology (SA: Sodium
alginate, EtOH: Ethanol, and Glyc: Glycerol). A: SA EtOH0. B: SA EtOH10. C: SA_Glyc EtOH0. D:
SA_Glyc EtOH10.
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