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Abstract: Transport between the endoplasmatic reticulum, the Golgi-network, the  

endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, 

describing traffic that goes forward or backward, respectively. Traffic going from the 

plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) 

constitutes the major retrograde transport routes. Several transmembrane proteins undergo 

retrograde transport as part of a recycling mechanism that contributes to reutilization and 

maintenance of a steady-state protein localization. In addition, some receptors are hijacked 

by exotoxins and used for entry and intracellular transport. The physiological relevance of 

retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor 

protein determines the distribution between organelles, and hence the possibility of cleavage 

by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s 

disease. During embryonic development, retrograde transport of Wntless to the TGN is 

essential for the following release of Wnt from the plasma membrane. Furthermore, 

overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects 

of the retrograde trafficking of mammalian transmembrane receptors and transporters, with 

focus on the retromer-mediated transport between endosomes and the TGN. 

Keywords: retrograde; trafficking; transmembrane; receptor; transporter; retromer; TGN; 

endosomes; sortilins; MPRs 
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1. Introduction 

Secretion from the endoplasmatic reticulum (ER) sends proteins towards the Golgi complex, the  

trans-Golgi network (TGN), the plasma membrane or the endo-lysosomal system, and is known as 

anterograde traffic. Transport in the opposite direction is called retrograde, but is often not defined 

beyond that. Transmembrane proteins, such as receptors, transporters, proteases and soluble NSF 

attachment protein receptors (SNAREs) are constantly being exported to and anchored at the plasma 

membrane [1–4]. The balancing of outgoing and incoming traffic is essential for maintaining the 

functions of both the endosomal system and the TGN. Retrograde traffic includes the transport going 

from the endosomal system toward the TGN or from the Golgi to the ER. Here, we focus on the 

retromer-mediated retrograde transport going from endosomes towards the TGN, but we also briefly 

mention the retromer-mediated transcytosis taking place in polarized epithelial cells. 

After internalization, proteins are transported to early endosomes, which make up the first step 

along the retrograde pathway, and is an essential way station before any following step [5] (Figure 1). 

From early endosomes, transport continues to late endosomes and eventually lysosomes for degradation, 

to the plasma membrane, or to the TGN. Transport to the plasma membrane is divided into the fast, 

direct pathway and the slower pathway, going via recycling endosomes [6,7]. Likewise, transport to the 

TGN may go through recycling endosomes or even late endosomes, and some proteins continue towards 

the ER (Figure 1) [1,2,8]. Neuronal retrograde traffic is simply defined as traffic going towards the cell 

body, regardless of the compartments involved [9]. Given the size of neurons, their retrograde traffic is 

highly important for maintaining necessary gradients of proteins and signaling molecules. This topic 

has been excellently covered in other reviews [9–11] and will not be further discussed here. 

A well-functioning retrograde machinery is essential in order to maintain the correct distribution  

of lipids and proteins in the TGN as well as endosomes (reviewed in [1]). Defects are associated with a 

range of disorders, including Alzheimer’s and Parkinson’s diseases [12,13]. Likewise, secretion of Wnt 

proteins depends on recycling of the Wntless sorting receptors and is essential for tissue patterning 

during development [14]. Several plant, bacterial and viral proteins also rely on endocytosis and 

retrograde transport for cellular entry and following correct delivery to target compartments. This 

includes among others Shigella dysenteriae Shiga toxin, Vibrio cholera Cholera toxin and HIV-1 envelope 

protein [15–17]. Studies of the cellular uptake of the Ricinus communis toxin ricin gave the first 

description of the retrograde pathway in 1975 [18], and several proteins have since been found to 

utilize this pathway. The early endosome-to-TGN pathway is the choice for most receptors and 

transporters, while the deliverers of lysosomal hydrolases, the mannose-6-phosphate receptors, are the 

only known example of transmembrane receptors to traffic from late endosomes (Figure 1). 
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Figure 1. Retrograde trafficking of receptors. Retrograde trafficking can be divided into 

routes going from early endosomes towards the trans-Golgi network (TGN),  

from late endosomes or via recycling endosomes. The most common route goes from early 

endosomes and is mediated by the SNX-BAR-retromer as well as the SNX3-retromer.  

The SNX-BAR-retromer mediates trafficking of MPR300 and the sortilin family members  

via the tubular-endosomal network (route 1), while the SNX3-retromer mediates trafficking 

of Wntless (route 2). The route from late endosomes is mainly used by MPR300 independent 

of retromer (route 3). Abbreviations: PM: plasma membrane; ER: endoplasmatic  

reticulum; RE: recycling endosome; EE: early endosome; LE: late endosome;  

TEN: tubular-endosomal network. 

2. The Retromer Complex and Trafficking 

2.1. Retrograde Transport from Endosomes towards the TGN 

The transport from endosomes towards the TGN is generally considered to consist of several 

parallel pathways, going from early, late or recycling endosomes. The clear division of endosomes into 

specific compartments is somewhat misleading, as several studies have concluded that endosomes mature 

gradually through processes of fusion and fission, and therefore cannot be considered discrete 

compartments [19–21]. The terms early and late endosomes are therefore solely used for explanatory 

purposes in this text. The highly dynamic endosomal system may be an explanation of the convergent 

functions of the many accessory proteins involved in the retrograde transport of mammalian receptors 

and transporters. 
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Generally, adaptors recognize their cargo, and mediate transport, assisted by a broad range of 

accessory proteins involved in scission from the donor compartment, transport along the cytoskeleton 

and fusion with the target compartment. The retromer is a central player in the process of retrograde 

trafficking. It was initially discovered in yeast, where it mediates retrieval of the vacuolar protein 

sorting (Vps) 10 protein (Vps10p), which transports acidic hydrolases, and in absence of retromer will 

be delivered to the vacuole [22,23]. It consists of five subunits; Vps26p, Vps29p, Vps35p, Vps5p and 

Vps17p. Vps26p, Vps29p and Vps35p form the highly conserved cargo-selecting subcomplex while the 

latter two mediates membrane interaction [22,24]. The mammalian counterpart likewise consists of two 

subcomplexes; a Vps26-Vps29-Vps35-trimer and a membrane-interacting dimer. The dimer consists of 

the Vps5p orthologues sorting nexin (SNX) 1 or SNX2 and the Vps17p orthologues SNX5 or  

SNX6 [25–27]. Vps35 is the largest member of the cargo-binding subcomplex. The C-shaped subunit 

interacts with the smallest subunit Vps29 through the C-terminal region and with Vps26 at the N-

terminal end [28] (Figure 2). Vps35 is generally known as the main cargo-binding subunit, although 

interactions between sortilins and Vps26 have been reported [29,30]. Vps26 exists as three paralogues, 

Vps26A, Vps26B and Down’s syndrome critical region (DSCR3), of which the first two are highly 

similar and best characterized [31,32]. Vps29 is essential for interaction of the Vps26-Vps35-Vps29 

subcomplex with the SNX dimer and functions as a scaffold for retromer assembly by binding the C-

terminal half of Vps35 [33]. The trimer does not interact directly with membrane lipids, but remains 

associated with endosomes due to interactions with the small GTPase Rab7 [33,34]. The membrane-

interacting subcomplex can be formed from any combinations of SNX1 or SNX2 and SNX5 or SNX6 

[26,27] (or SNX32, according to a recent review [31]). All these SNXs contain two membrane-binding 

domains; a BAR (Bis/amphiphysin/Rvs) domain, which senses membrane curvature, and a 

phosphoinositide-binding PX (phox homology) domain, and therefore belong to the SNX-BAR family 

[35,36]. The main target of PX-domains is phosphatidylinositol 3-phosphate (PI3P), which is highly 

enriched in early endosomes [37]. The C-terminal BAR-domains form a C-shaped structure upon 

dimerization. The inner part interacts electrostatically with the membrane and senses the curvature, but 

the BAR-domains can also induce and stabilize curvature and as such participate in forming the tubular-

endosomal network (TEN) [38,39]. The retromer is found on early and late endosomes due to 

interactions with the GTPases Rab5 and Rab7, respectively [34]. Rab7 has been proposed to bind 

directly to Vps35, an interaction enhanced dramatically by the subsequent binding of Vps26 [40]. 

In addition to the above-described retromer, which is the complex mainly referred to (and also  

known as the SNX-BAR-retromer), two additional retromer complexes exist, based on the core 

complex Vps26-Vps29-Vps35 in combination with either SNX27 or SNX3 [41–43]. The  

SNX27-retromer has been shown to mediate fast recycling of the β2-adrenergic receptor and the copper 

transporter Menkes protein from endosomes directly to the plasma membrane without crossing the  

TGN [43–45]. The SNX3-retromer mediates endosome-to-TGN transport of the Wntless  

receptor [41,46], but has also been suggested to participate in recycling of the transferrin receptor [47]. 

Retromer-mediated trafficking is assisted by a broad range of accessory proteins,  

enabling vital events such as recruitment, membrane scission and fusion, docking and transport along the 

cytoskeleton. Some factors are essential, while others are only required for certain cargos (reviewed  

in [3,4,8,31,48,49]). 
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Clathrin forms coated pits that, in addition to the plasma membrane, have been found on early  

as well as more mature endosomes, and are necessary for the retrograde trafficking originating  

there [50–52]. The transport from late endosomes to the TGN is unaffected by clathrin inactivation [53]. 

The whole sequence of events leading to the formation of the cargo-loaded tubules at the early endosome 

is far from understood. Studies by McGough and Cullen [54] have shown that the formation of 

retrograde carriers from early endosomes begins with clathrin binding and organizing cargo on a flat 

lattice. The DNAJ protein RME-8 is then thought to bind SNX1 and thereby recruit the retromer 

complex [54]. The SNX BAR-domains initiate membrane folding and generate the tubular structures 

of the TEN. At the same time, SNX1 attracts the clathrin disassembly factor Hsc70, and thus couples 

clathrin coat shedding with retromer assembly [55,56]. In addition to SNX1, RME-8 also binds the 

FAM21 subunit of the Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) complex. 

The WASH complex recruits Arp2/3 to generate patches of actin polymerization, producing a pushing 

force that leads to elongation of endosomal tubules [57]. The interactions with RME-8 maintain the 

cargo-binding Vps-trimer, the curvature-generating SNX-dimer and the tubule-forming WASH 

complex close [58]. 

 

Figure 2. Retromer interactions with type-1 receptors. The retromer core complex consists 

of Vps35, Vps26 and Vps29. The banana-shaped Vps35 interacts with Vps26 through its  

N-terminal and Vps29 through the C-terminal. Located at endosomes, type-1 receptors have 

been reported to bind to Vps35 as well as Vps26. MPR300, sortilin and SorCS-1C bind 

Vps35; MPR300 via a WLM motif while the binding motifs in sortilin and SorCS-1C are 

unknown. Sortilin may also interact with Vps26, whereas SorLA has only been reported to 

bind Vps26 through a FANSHY motif. 

 

An additional force, enabling tubule elongation and eventually scission, comes from SNX5 or 6 

interacting with the p150Glued subunit of the dynein-dynactin complex, enabling the endosome-associated 
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retromer to “walk” along the microtubule [59–61]. Arriving at the TGN, tethering factors link the 

transport vesicle to the acceptor compartment where after SNARE complexes mediate the actual fusion 

of the two membranes (reviewed in [4,8,49]). 

Retromer-dependent retrieval from maturing endosomes takes place independent of clathrin [54] 

while retromer has not been detected at mature late endosomes. Late endosomal sorting by the GTPase 

Rab9 represents an alternative to the retromer [62], and these somewhat overlapping functions may 

reflect the fatality of well-functioning proteins being sent to lysosomes. 

 

2.2. Transcytosis 

The process of transcytosis, as seen in epithelial and endothelial cells, is essential for maintaining 

polarity of the cells. In addition, transport of macromolecules and micronutrients, including IgA and 

vitamin B12, across barriers, provides a mechanism for crossing an otherwise impermeable cellular 

barrier [63–65]. Capillaries are a well-known site for transcytosis (reviewed in [64]), and transcytosis 

across the blood-brain barrier could prove to be a potential method for delivery of therapeutic drugs. In 

addition to its role in retrograde trafficking, the retromer is also involved in basolateral-to-apical 

transcytosis of the polymeric immunoglobulin receptor in Madin-Darby canine kidney (MDCK)  

cells [65]. In fact, recent results indicate that in MDCK cells, and perhaps also other epithelial  

or endothelial cell lines, the main function of the retromer is transcytosis rather than retrograde 

transport [66]. 

3. Retromer-Binding Receptors and Transporters 

3.1. Cation-Independent Mannose-6-Phosphate Receptor (MPR300) 

The mammalian cation-independent mannose-6-phosphate receptor (CI-MPR or MPR300), is one 

of the most studied receptors using the retrograde retrieval pathway. The type-1 receptor is well-

recognized for its role in delivery of soluble lysosomal hydrolases [67], and is characterized by the 

presence of 15 mannose-6-phosphate homology repeats in the extracellular domain, of which four are 

involved in mannose-6-phosphate-tagged ligand-binding [68–73]. MPR300 binds mannose-6-phosphate-

tagged acidic hydrolases in the TGN and transports them to endosomes, where they are released in a 

pH-dependent manner [74]. The transport is mediated by clathrin, the Golgi-localized, γ-ear containing, 

Arf-binding family of proteins (GGAs), which recognizes a DXXLL motif in the cytoplasmic tail, and  

AP-1, which can interact with several binding sites including the tyrosine-based YXXØ (where Ø is a 

bulky hydrophobic amino acid) and D/EXXXLL/I [74–77]. The GGAs and AP-1 appear to cooperate, as 

depletion of AP-1 leads to a loss of MPR300 and GGA2 in clathrin coated transport intermediates [78]. 

Delivery of lysosomal enzymes is essential for the maintenance of proper functioning lysosomes, and 

defective mannose-6-phosphate tagging causes the lysosomal storage disorder I-cell disease (reviewed 

in [79]). After successful delivery of lysosomal hydrolases, the receptors are returned to the TGN for 

another round of ligand binding. The retrograde transport goes from early as well as late endosomes, 

and is mediated partly by the retromer complex, partly by Rab9 [80,81]. Rab9 mediates retrieval from 

late endosomes, while the retromer mainly sorts MPR300 from early or maturing endosomes [80–84]. 

TIP47 was previously believed to assist Rab9 in the retrograde trafficking from late endosomes [85], but 
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has since been shown not to colocalize with or affect the trafficking of MPR300 [86]. In addition, AP-1 

and PACS-1 may also participate in the retrograde trafficking of MPR300 [87,88]. Several retrieval 

motifs are found in the cytosolic tail, reflecting the variety of adaptors and emphasizing the importance 

of receptor recycling [85,89,90]. Specifically, a WLM motif is responsible for interaction between 

MPR300 and the retromer Vps35 subunit [80,90] (Figure 2 and Table 1). The MPR trafficking pathways 

have a large similarity with the pathways for sortilin and Wnt trafficking, as described below. 
 

Table 1. Receptors and transporters engaging in retromer-mediated traffic. 

Receptors Type Ligands Retromer 

sorting 

Interacting retromer

subunit 

Receptor 

binding motif 

References 

 

CI-MPR (MPR300) 

 

Type-I 

 

M6P containing ligands: acidic 

hydrolases, TGF-β1, proliferin, 

granzyme B, thyroglobulin; 

Non-M6P containing ligands: 

IGF-II, retinoic acid, uPAR, 

plasminogen, serglycin 

EE to TGN 

 

Vps35 

 

WLM 

 

26 

 

SorLA (LR11) 

 

Type-I 

 

LpL, apoE, apoA-V-DMPC, 

GDNF, GFRα1, uPA-PAI1 

PAI-1, tPA-PAI-1, PDGF-BB, 

APP, SPAK, TrkB 

EE to TGN 

 

Vps26 FANSHY 30, 107 

Sortilin Type-I 

 

LpL, pro-NGF, neurotensin, 

progranulin PGRN, IL6, 

apoE, PCSK9, delta-like 

homologue receptor, 

 IL6, IFN-gamma, CNTF, 

apoAV, apoB100, APP 

EE to TGN 

 

Vps35 Not known 29,105 

SorCS-1 Type-I PDGF-BB, APP, sortilin Not known Vps35 Not known 108,109 

pIgR Type-I IgA Transcytosis Vps35 Not known 65 

Wntless (GPR177) 7TM Wtn family proteins EE to TGN Vps35 FLM 120, 124 

Transporters       

Menkes protein 

(ATP7A) 

ATPase 

(8TM) 

Cu++ Recycling to 

cell surface 

Vps26 Not known 45, 132 

Glut4 12 TM Glucose EE to TGN Not known Not known 128, 130 

DMT1-II 12 TM Divalent cation transporter Recycling to 

cell surface 

Not known YLL 135, 136 

3.2. Sortilins 

The Sortilins are a group of 5 mammalian type-1 receptors named sortilin, SorLA and SorCS-1 to 3. 

They are characterized by having a luminal Vps10p-domain and a small cytoplasmic domain 

containing several known sorting motifs [91–94]. The receptors are involved in signaling, endocytosis 

and subcellular trafficking and have several physiological roles [95–97]. For instance, SorCS-1 has 

been associated with diabetes, SorLA is related to Alzheimer’s disease and lipoprotein trafficking, and 

sortilin is a cardiovascular risk gene and involved in amyloid precursor protein processing and 

neurotrophic factor signaling [95,98–104]. SorLA and sortilin have a particular high degree of 
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similarity to MPR300 in their cytoplasmic domain. Like MPR300, sortilin and SorLA are involved in 

endocytic processes and TGN-to-endosome shuttling mediated by adaptor proteins. For sortilin, a 

tyrosine-based YXXØ-type motif is responsible for endocytosis, whereas a dileucine-like VL motif is 

essential for the TGN to endosome sorting [105]. The dileucine-like signal is part of tyrosine-based 

motif and it is involved in binding to µ1A in AP-1, but sortilin also binds to σ1B subunit in adipocytes 

by an extended DXXD-X12-DSXXXL motif [106]. SorLA is endocytosed in an AP-2 dependent 

process and is also involved in TGN-endosome shuttling. Unlike sortilin, both these sorting events 

seem to be controlled by a cluster of acidic amino acids [107]. Both sortilin and SorLA are subject to 

retrograde transport from endosomes to TGN by the retromer. The retrograde transport of sortilin takes 

place from early endosomes in a SNX1 dependent manner. Sortilin does not exit early endosomes via 

the TEN, but from short non-branched tubules without clathrin coats [83]. A later study has 

demonstrated that sortilin interacts with the retromer via Vps35 and perhaps also Vps26B [29]. The 

motif mediating this interaction in sortilin remains unknown (Figure 2 and Table 1). Like sortilin, 

down-regulation of SNX1 with siRNA, compromises the retrograde transport of SorLA to TGN and 

increases lysosomal degradation of the receptor [107]. This study does not describe the subcellular 

structure of the endosomal system wherefrom SorLA exits, but it might be similar to sortilin, as SorLA 

also interacts with Vps26. This binding is facilitated by the FANSHY sorting motif in SorLA [30]. 

SorCS-1 has several different cytoplasmic tails due to alternative splicing, and one of these variants, 

SorCS-1C, has been reported to bind Vps35 [108]. The study does, however, not report any retromer-

mediated transport of SorCS-1, and accordingly, an earlier report demonstrate that none of the SorCS-

1 splice variants seem to be involved in endosome-to-TGN shuttling [108,109]. 

3.3. The Wntless Receptor 

The Wntless receptor, also known as GPR177 in mammals, is a large membrane-spanning receptor 

involved in the secretion of Wnt family proteins (Wnts) [14,110]. Wnts are small, highly conserved 

glycoproteins with central functions during development and homeostasis, including regulation of gene 

expression [14,111,112]. The Wnt receptor itself has, based on structural predictions, been suggested 

to have 7 or 8 transmembrane segments. The intracellular localization of both N- and C-terminus 

indicate an even number of membrane spanning domains [113]. 

The Wnt-binding domain appears to be a lipocalin-like domain found in the luminal loop right before 

the second membrane spanning helix [14,114]. Ligand binding may involve hydrophobic  

interactions, and depends on palmitoylation and glycosylation of residues within the ligands, as well as 

pH [112,115–118]. Wnts are bound by the Wntless receptor as early as in the ER, where post-

translational modification is still taking place. Consequently, Wntless receptors are found throughout 

the Wnt secretory pathway, from the ER over Golgi apparatus to secretory vesicles and the plasma 

membrane [14,114,115,119]. After delivery of Wnts at the plasma membrane, the receptors are 

internalized for another round of ligand binding and secretion [120–123]. The clathrin-dependent 

endocytosis is mediated by Rab5 and AP-2, which binds the Wntless receptor via an YXXØ-type motif in 

one of the intracellular loops [41,122,124,125]. During endosomal passage, Rab5 and AP-2 are replaced 

by the retromer complex [120,121,123]. Vps35 binds the Wntless receptor, most likely through the 

tripeptide FLM in the third intracellular loop [14,90] (Table 1). In contrast to other receptors 
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mentioned in this review, retrograde trafficking of the Wntless receptor is not mediated by the SNX-

BAR-retromer, but by the SNX-3-retromer complex [41,46]. The complex exits from early endosomes 

in small vesicles independent of the TEN created by SNXs with BAR domains [14,41,46]. After 

delivery to the TGN, the Wntless receptor is further recycled to the ER in COPI-coated vesicles [126]. 

3.4. Other Receptors and Transporters 

Several transmembrane transporters follow the retrograde transport route from endosomes to the 

TGN, although less detail about the mechanism is known (Table 1). So far, no one has demonstrated 

direct retromer-mediated endosome-to-TGN trafficking of any transporter. One such transporter is 

Glut4, an insulin-regulated glucose transporter that is important for glucose transport in adipocytes and 

muscle cells [127,128]. After internalization, some Glut4 has been shown to return to TGN 

subdomains enriched in Syntaxin 6 and 16 [129]. This, combined with data demonstrating that Vps26 

is essential in order to rescue Glut4 from lysosomal degradation, makes it likely that the retromer is 

involved in retrieval of Glut4 [130]. The report also demonstrated that insulin induced dissociation of 

retromer components from the low-density microsomal membranes of adipocytes and thereby 

regulated the fate of Glut4. The human copper transporter, ATP7A (also known as Menkes protein) is 

another example of a retrograde transported transporter [131–133]. ATP7A is recycled between TGN 

and endosomes, but this anterograde and retrograde transport seems to depend on interaction with AP-

1 and AP-2 [134]. Nonetheless, the Vps26-Vps29-Vps35 retromer core complex is also involved in 

trafficking of ATP7A in combination with SNX27 and the WASH complex. This interaction seems to 

influence the transport of ATP7A from endosomes to the cell surface, and hence prevent lysosomal 

degradation [45]. Likewise, a non-epithelial isoform of the divalent metal transporter, DTM-II, has been 

shown to depend on the retromer for recycling back to the cell surface [134–136]. The trafficking 

involves the tyrosine-based YLL signal, and it is uncertain if the retromer also facilitates retrograde 

transport to the TGN [135]. Finally, the retromer is involved in the transcytosis of pIgA receptors in 

MDCK cells [65,137]. Though a small fraction of the retromer co-localize with MPR300 in MDCK 

cells, the majority is co-localized with the pIgA receptor, which is associated with a specialized early 

endosome-derived transcytosis pathway. This indicates that the primary function of the retromer in 

epithelial cells is receptor transcytosis rather than early endosome-to-TGN retrograde transport [66].  

4. Concluding Remarks 

Since its discovery, the retromer has emerged as a trafficking complex participating in the  

endosome-to-TGN trafficking of many receptors, transporters and other types of proteins. Recently, 

several studies have confirmed that the retromer core complex can mediate transport between other 

compartments as well, a diversity induced by interactions with different SNXs. Likewise, subunits  

other than Vps35 have been shown to bind cargo, and this also seems to affect the transport, in particular 

the budding process, giving rise to morphologically distinct tubules or carriers. More details about the 

interactions between retromer subunits and their cargo will undoubtedly enhance our understanding of 

the biology of the retromer complex. This includes a greater appreciation of the roles of the individual 

subunits and the motifs they bind, as well as the mechanisms behind the different budding processes. 

Without exemption, all receptors and adaptors sorted by the retromer complex play important roles in 
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development of various diseases, and correct trafficking and recycling is crucial for their function. A better 

comprehension of their interactions with the retromer will therefore greatly improve our chances of 

understanding the molecular mechanisms underlying certain pathogenesis. 
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