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ABSTRACT

Introduction: Fractional nonlinear models have been widely used in the research of nonlinear science. A
fractional nonlinear Schrédinger equation with distributed coefficients is considered to describe the
propagation of pi-second pulses in inhomogeneous fiber systems. However, soliton molecules based on
the fractional nonlinear Schrédinger equation are hardly reported although many fractional soliton struc-
tures have been studied.
Objectives: This paper discusses the propagation and interaction between special fractional soliton and
soliton molecules based on analytical solutions of a fractional nonlinear Schrodinger equation.
Methods: Two analytical methods, including the variable-coefficient fractional mapping method and
Hirota method with the modified Riemann-Liouville fractional derivative rule, are used to obtain analyt-
ical non-travelling wave solutions and multi-soliton approximate solutions.
Results: Analytical non-travelling wave solutions and multi-soliton approximate solutions are derived.
The form conditions of soliton molecules are given, and the dynamical characteristics and interactions
between special fractional solitons, multi-solitons and soliton molecules are discussed in the periodic
inhomogeneous fiber and the exponential dispersion decreasing fiber.
Conclusion: Analytical chirp-free and chirped non-traveling wave solutions and multi-soliton approxi-
mate solutions including soliton molecules are obtained. Based on these solutions, dynamical character-
istics and interactions between special fractional solitons, multi-solitons and soliton molecules are
discussed. These theoretical studies are of great help to understand the propagation of optical pulses
in fibers.
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Introduction

A soliton is known as a self-reinforcing wave packet that keeps
its shape and propagating velocity. Soliton exhibits its rich struc-
tures including optical soliton [1], plane soliton [2], soliton mole-
cules [3], rogue waves [4], etc, and helps develop some
breakthrough branches of physical sciences [5-7] such as optics,
condense physics, fluid and plasma [8-11].

Soliton molecules mean robust multi-soliton bound states [12],
and their dynamics have become hot topics in several contexts,
including optical systems [13,14] and Bose-Einstein condensates
[15]. The formation of optical soliton molecules originates from
the existence of attractors of a nonlinear dynamical system. Once
formed, soliton molecules will stably travel around a mode-
locked laser cavity [14]. For a soliton molecule, temporal separa-
tions among solitons are the most relevant degrees of freedom
[13]. The real-time internal dynamics of two-soliton and three-
soliton molecules were experimentally studied [14,16]. Optical
soliton molecular complexes have been experimentally observed
in a passively mode-locked fiber laser [17]. The breathing soliton
molecules were also experimentally found in a mode-locked fiber
laser [18].

These studies above focused on experimental observations [12-
18]. However, theoretical investigation on soliton molecules was
less carried out. Until fairly recently, the formation mechanism of
soliton molecules was theoretically proposed [3,19-21]. Soliton
molecules based on fractional nonlinear models(FNMs) are hardly
reported although many fractional soliton structures have been
studied [22,23].

In recent years, FNMs have been widely used in the research of
nonlinear science [24-26]. At the same time, FNMs with distributed
coefficients have certain representative significance. Many phe-
nomena can be described successfully by using FNMs such as
plasma, nonlinear optics and chaotic oscillations [24]. Many
researchers have already succeeded in the study of fractional mod-
els [27,29]. Effective methods for solving fractional nonlinear
Schrodinger (FNLS) equation have been achieved [30], such as
the fractional F-expansion method [28], fractional Riccati method
[26] and fractional bi-function method [31]. At the same time,
some numerical methods have also been successfully used to solve
the fractional nonlinear Schrodinger equation [32], and numerical
solutions were derived by using Riesz-Feller Derivative and non-
standard discretization [33,34]|. These numerical methods have
been validated by the researchers [35].

The novelty of this paper lies in presenting a new strategy to get
analytical fractional non-travelling wave solution and multi-
soliton solutions of a FNLS equation by altogether utilizing frac-
tional mapping method and Hirota method with the modified Rie-
mann-Liouville(RL) fractional derivative rule. Another novelty is to
study the dynamics of special fractional soliton and soliton mole-
cules, and discuss the formation mechanism of soliton molecules.
The stability of the special fractional soliton and soliton molecule
is analyzed through a series of numerical studies. These conclu-
sions possess theoretical guidance for the related experimental
study in all-optical switches, optical amplifier and mode-locked
lasers.

Material and methods

To our knowledge, most practical nonlinear physical models
have distributed coefficients. For example, modern communication
systems use variable dispersion fiber. The NLS equation with dis-
tributed coefficients can describe the propagation of pi-second
pulses in inhomogeneous fiber systems [38,39]. Recently, many
scholars believe that the evolution of the development function
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can be well described by FNMs. When describing practical prob-
lems, compared with the integer model, FNMs are more satisfac-
tory [36]. The FNLS equation with distributed coefficients was
introduced as [37]

iD,Q +%M(X)D?"Q +B®)QIQP —ip(x)Q = 0.0 < Z u < 1,x
>0, )

where the complex envelope Q = Q(x,t)and its derivatives
D}Q = 9*Q/ox*, DQ = 9*#Q /ot

with the fractional orders /and p, the delay time t and longitu-
dinal propagation distance x. Functionsg(x)ando(x)are coefficients
of the Kerr nonlinearity and dispersion, and function p(x)is adia-
batic amplification (loss) for p(x) <0 or gain for p(x)>0. If
A=pu=1, Eq. (1) is the variable-coefficient NLS equation [38].
When functionsp(x)ando(x)are constant and p(x) = 0, Eq. (1)
describe solitons in the homogeneous fiber [39]. Here the modified
RL fractional derivative is defined as [40]

i [ (= 9) ) )1y 2 < 0
DT = N i e J =) ) ~F(O)p0 < i< 1 @
2% a>1,a<i<a+1
they has the following properties [41,42]
DX’ = rl(_,(iﬂ),) Xty >0,

D (ca(x)) = cD}a(x), withc = const,
D(a(x)b(x)) = o:x{a(X)D;b(x) + b(x)Dya(x)}, (3)
Dyab(x)] = 04a’s [b(x)Dyb(x),
Djalb(x)] = a:Djalb(x)](b's)’,
with the following inequality [42]
Dya(x) = T(% + 1)Dya(x) (4)

In Eq. (3), the fractal index oy is usually calculated from a
gamma function. Abdel-Salam et al. found that for the Mittag-
Leffler function as V,(x) = > x!/T(1 + 12), 4 > 0, the value of the
fractal index is equal to one [42].

Analytical non-travelling wave solutions of FNLS equation (1)

We suppose that Eq.(1) has the form of the following solution
Q = qV,(i¢"), o = k(X)E + m(x)t + n(x), (5)

where the amplitude q = q(x, t), chirped phasek(x),linear phasem(x)
and phase shift n(x) are functions of x , making 1 = u, separating
the imaginary and real parts, thus

(X)KqV,(i)") + (x) (2Kt + M)’V (i")Dq — p(x)qV (i)
+V,(i¢')Dig
o, (6)

—(ket? + Myt + 1) qV, (i¢") — Lou(x) 2kt + m)*qV,(i¢”) + Lou(x)D¥qV, (i)
+HBR)G V(i1 (~ig")V, (ip*) = 0
7
We suppose that Egs. (6) and (7) have following solution

1
ax, ) =go+ > &Y W) +fY (W), (8)

e=1
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where g, = gy(x),8. = &.(x),f. =f.(x),(e=1,..,)are functions
of x , ¥ =y(x,t)is a function of x and ty = r(x)t + s(x)with group
velocity s(x)and pulse width r(x)are functions of x , by the leading
term analysis in Eq. (7) can get | = 1. Here Y(y)satisfies the frac-
tional mapping equation [28]

DLY = \/ao + @ Y* + asY?, (9)

with arbitrary constants ao, a,, as. Eq. (9) has different forms of solu-
tions listed in Table 1.

In table 1, the extended hyperbolic and trigonometric functions
satisfy the following definitions

sinh(y, )—%(V'(l//’) = Vi(=y%)), cosh(y, 1) = 3V, (") + Vi(—y)),
cos(y, 2) = LV (iy") + Vi(—iy?)), sin(y, 2) = H(Va(iy*) = V(-ig)),
tanh(y, 2 )—z:)‘;];/ 4 sech(y, ) = m,tan(d/,z):; ((‘5 ,SeC(, 2) = gz -

(10

Substituting ansatz (8) with [ = 1and (9) into Egs. (6) and (7),
considering the approximation of the generalized binomial theo-

rem, and making the coefficients of
t°Y%(c=0,1,2,d =0,1,2,3)and \/ao + a;,Y? + a,Y* zero get
gi(ak* +2(ke)") = 0, g:(4aum’k’ + 2(m,)") = 0,
20 as8, + 2Mg3 f = 0,6Mg; g7 =0,
gjum* — gjor’a; — 6Mgig;f — 6Mg3g;p + 2g;n; = 0, an
2Mg3p + 12Mg; 8,85 — g oum* — 2g,(ny)" = 0,
g;(ork” + Dir) = 0,2D;,g; — 2pg; + okg; = 0,
20rtapg; + 2Mg3p = O,gj(ocrm* +Dls)=0.

where M = V,(—i¢")V,(i¢") with (i=1,2,3,j = 2,3).

Solving Eqs. (11), using Egs. (5) and (8) with solutions in Table 1,
we can get several families of solutions of Eq. (1). Due to the limit
of length, we only list part of solutions.

Family 1. whenay = 1,0, = 2,05, =1,
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where

WL [} oo’
T e

¥ =Gt -GG () fo (x— &) T ou(&)de + Ca, =

n=fxyh-2c - cf’) +3C2o(&)dé + Cs,
p(x) and wa(x)are functions of xand C;~Cs are arbitrary constants.

(1) Fractional chirped dark soliton solution

Qs = GV | "0

(k)" (&)

L ) V,(ilke? + Cikt +n)”
2k2/.71(6) ( [ 1 ] )

(d¢)" }tanh(y, ) (14)

where

2=y =Gy L) L x—c)’1<) Dr(@)de + i,

w{ jj ”‘<d>1}
MCZ{V \f” ) (dey?

(dé) Jt+G'T

' 2= o {/3(=2r = R de + Cs.

p(x) and k(x)are functions of xand C;~Cs are arbitrary constants.

(IV) Fractional chirped combined soliton solution
Q14:C3V;{ / [n<z>+

a= =YLy =V [f WO@) e+ T 0) fi (x

(ko) (&)
2771 ()

] dg’)’}{tanh(xp‘ 7) & coth(y, A}V (ifke? + Crke +n]”)

1 (k)9
23

2 (ks )* 2
xCZ{V/[j: e
)

p(x) and k(x) are functions of xand C;~Cs are arbitrary constants.
Family 2. when ag = 0,0, =1,a4 = -1,

where

n=Jy \/ [1(=2r = CVI) % 32 a(e)de + C5. = —

(I) Fractional chirp-free bright soliton solution

Qa1 = GV, / p(8)(de) Isech(y, 1)V, {1[C1t+/ ,/% C: - ode+ ol ).

(I) Fractional chirp-free dark soliton solution 16)

Q= vl [ poe e, v gicie s [ {32 - mererc), az)  WheTe C
. X PR aC3{V; <)o)’
bere V= Gat = CIGT (0) i (- & (e + Gy, = VP
V=Gt = CAGT () fy (- & oe)de + Co, pr= — “EUBIIET px)a- (II) Fractional chirped bright soliton solution
ndo(x)are functions of xand C;~Cs are arbitrary constants. .
=GV, / 14
(I) Fractional chirp-free combined soliton solution QL2 Val J 1000
(ko) (&) | s . z
X ; ——=2(d¢) }sech(y, 1)V (i[kt* + Cikt 4+ n]"), (17)
Qi = GVi[ | plo)de) tanhy. ) 2K771(&)
+ coth(y, )V, {i[Cat +n(x)]'}, (13) ~ Wwhere

Table 1
Some solutions of Eq. (9).

Case ao a, ay Y

1 1 -2 1 Y = tanh(y, 1)

2 1 -1 Y =sech(y, 1)

3 1/4 -1/2 1/4 = bl Y = coth(y, 2) + csch(y. 2), Y = tanh(y, 2) + isech(y, 2)

4 0 1 1 = csch(y, 2)

5 1 1 0 7smh(¢ 2)

6 -1 1 0 Y = cosh(y, 1)

7 1 -1 0 Y =sin(y, ), Y = cos(y, 1)

8 0 -1 1 =csc(y, L), Y = sec(y, 2

9 1 2 1 = cot(y, 4),Y =tan(y, 1)
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Multi-soliton approximate solutions of FNLS equation (1)

In order to study the dynamics of multi-soliton solutions, we
use the inequality (4) in Eq.(1), thus Eq.(1) is converted into

i+ 1)DQ + 52T+ 17DeQ + BRIQIQE ~ ip()Q

=0x>00</i<1. (18)

Because the approximate expression (4) is used here, thus we
call these solutions derived in the following as approximate solu-
tions. Similar to the solving procedure in Section 3, we can also
derive fractional bright and dark soliton approximate solution with
and without chirped phase by using the fractional mapping
method. For the limit of length, we do not list them.

Using the Hirota method, we can get a chirp-free bright soliton
approximate solution like that derived from the fractional mapping
method. However, we can not get chirped bright soliton approxi-
mate solution.

Next, we will get chirp-free multi-soliton approximate solution.

From the Hirota method [43], we assume that Q = e
J p(x)dxh(x,t)/f (x,t),where h(x,t)is complex function, and f(x, t)is
real function. We get the bilinear equation of Eq. (18) as follows

2iDsh -f + T2+ 1)’a(x)D?h - f = 0, (19)
2p(x)erdn ) PO%h bt (2 1 1)20(x)Df -f =0,

where * denotes the complex conjugate, D, and D, are Hirota
bilinear operator. In order to solve Egs. (19), (20), we can write
h(x,t) and f(x,t) as power series expansions [43,44]
h(x,t) = ehy(x,t) + h3(x,t) + &hs(x, t) 4+ - - -,
fx0) =1+, (x,t) + 4, (x, 0) + F(x,0) +

(20)

(21)

Two soliton solutions via the Hirota method

In order to get the two soliton solution, we suppose that Eq. (18)
has a solution as

h(x,t) = hy(x,t) + h3(x, ), 22)
f ) =1+F,x,0) +fa(x.0),
where
hy(x,t) = % + e, (23)

Withﬁj = aj(x) + ij + l(j = Qj (X) + ia,-z (X) + (Sj] + isz)t + kj] + l"(jz.
Heres;; ,5j2,kj1 andkj,are real numbers related to the group velocity,
phase velocity, soliton position and phase of the j-th soliton respec-
tively, aj; (x)and aj; (x)are pending functions. Substituting h; (x, t)into
Eq. (19), collect the coefficient of ¢, we get a;; (x)anda (x).

Substituting h; (x, t)into Eq. (19), collect the coefficient of 2, we
get

f2 — Gl e(h +01% + Gze()2+()1* 4 G3e()1 +0; % 4 G4ef)z+()2* (24)

where G; = Ay, G, = A4, G3 = Ay, G4 = As, Kis an arbitrary constant.
Substituting h;(x,t)and f,(x,t)into Eq.(19), collect the coeffi-
cient of &3 , we get

h3 — Gse()] +02+0; + GGe01+02+0; (25)
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where G5 = B] -,GG = Bz
Substituting h; (x, t).f,(x,t)and hs(x,t) into Eq.(20), collect the
coefficient of &, we get

f4 _ G7e()1 +()2+()§+0§7 (26)
where G; = M;
We assume that ¢ = 1, we get the two soliton solution
h(x,t) hi(x,t) + hs(x, )
Q = — = y ) 27
) T+ h00 +F.D @

where hy(x,t), hs(x,t), fo(x,t)and f,(x,t) are given in Eqs.(23), (24)-
(26). We list coefficients Ay, A,,Aq4,As, By, By, Miof Eq.(27) in Appen-
dix A.

Three soliton solutions via the Hirota method

In order to get the three soliton solution, we assume that
Eq. (18) has a solution as [43]

h(x,t) = hy(x,t) + h3(x,t) + hs(x,t),
fx,0) =1+ f(x,0) +f4(x,8) + fo(x,0),
using the similar steps in Section 4.1, we can define ¢ = 1, we
can get the three soliton solution of Eq. (18)
h(x,t) _ hi(x,t) + h3(x,t) + hs(x,t) eﬁf”(")‘“
f, ) T+ fr(x0) +falx, 1) +fo(x, 1)

where parameters hi(x,t), hs(x,t), hs(x, t),f5 (X, £),f4(x, 1), fo(x, t)are
listed in Appendix A.

(28)

Q=

(29)

Results & discussion

Based on analytical solutions (12)-(17) (27) and (29), some spe-
cial fractional soliton, multi-soliton and soliton molecules can be
constructed. When the order of the fractional soliton equals one,
the fractional soliton becomes a traditional integer soliton, espe-
cially two soliton and three soliton solutions are similar to those
solutions in Refs. [40,41].

In order to facilitate the study of the dynamic characteristics of
the soliton, we select the exponential distributed control system
[45]

o(x) = opexp(—ax)(Yo + Y1sin(dx)), (30)

where parameters o > 0, 0 and Y;describe the group velocity dis-
persion. Particularly, if Y; = 0, system (30) depicts the exponen-
tially dispersion decreasing fiber [46]. If o =0, system (30)
depicts the periodic inhomogeneous fiber [47].

Special fractional soliton

The evolution of fractional chirp-free bright-type soliton solu-
tion (16) with different values of fractional orders versus x and t
is shown in the periodic inhomogeneous fiber system in Figs. 1
and 2.The amplitude and the velocity of the bright soliton depend
on C3V;,[f(’]‘p(é)(dé)"‘] and Clo(x)respectively, the phase shift is
determined by(C2 — C*))a(¢)/2, and the time shift is related
toC; [3 (x — &) 'a(¢)dé. We find that the dynamic characteristics
of soliton are affected by different values of the fractional order/.
When the value of fractional orderiis closer to 1, solution (16)
describes the classic bright soliton in Fig. 1(a), where the ampli-
tude gradually decreases due to p(x) < 0. When/ = 0.5, the ampli-
tude of the soliton decreases rapidly and then tends to be fixed
magnitude in Fig. 1(b). By comparing Fig. 2(a) with Fig. 2(b), we
can find that the position of the soliton on the t-axis changes,
which means that the soliton has a phase shift. When the value
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1o’

Fig. 1. Chirp-free bright soliton (16) with the intensity|Q|*. Parameters are C; = 0.8,C;, = C3 = 1.5, C4 = Cs = 0,a(x) = exp(—0.05x)sin(x), p(x) = —0.025with (a) 4 = 1and (b)

2=0.5

Fig. 3. The dynamical interaction of the two-soliton solution: (a) density plot, (b) intensity plot and (c) numerical rerun with 5% white random noise. Parameters
aresy; = Sy1 = 1,812 = 0.3, = 0.1,ky1 = —5.k12 = 2, ka1 =3,kop = —2,2=0.5,P =2, p(x) = 0, 0(x) = 0.8exp(—0.01x).

of fractional order AZis closer to 0.5, the periodicity of the soliton is
significantly weakened. It can be clearly seen that the propagation
speed of the soliton along the fiber has changed due to the pres-
ence of the parameter C;. This shows that the soliton keeps its -
sech-function shape even if the velocity is changed. This is an
important property of solitons.

67

Multi-soliton and soliton molecules

The interaction of the two-soliton solution (27) in the exponen-
tial system is shown in Fig. 3. The two solitons continue to move
after elastic collision, and their shape remain unchanged. By
changing the parameters of phase velocity s;;ands,,, we can con-
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Fig. 4. A soliton molecule consisting of two solitons: (a) density plot and (b) intensity plot. Parameters
aresy; = 1.5,812 = —0.3,831 = 2,52 = —0.3,k11 = —2,k12 = —2,ky1 = 2,kyy = 2,1 =0.5,P =2, p(x) = 0, (x) = 0.0034exp(—0.076x).

(a)

0 50 100 150 200 250 300

x

10 5 0

Fig. 5. The numerical rerun of the soliton molecule in Fig. 4 with 5% white random noise: (a) intensity plot and (b) density plot. Parameters are
S11=1.5,812 = —0.3,831 = 2,500 = —0.3.k11 = —2.k12 = —2,kp1 =2,kyp = 2,4 =0.5, P =2, p(x) = 0, (x) = 0.0034exp(—0.076x)

o1’

-8 -6 -4 -2 0 2 4 6 8

Fig. 6. A soliton molecule consisting of three solitons: (a) density plot and (b) intensity plot. Parameters are
S11=1.5,812 = —0.3,831 =2,52 = —0.3,531 =2.5,53 = - 0.3, k1 =0.1,k12 = —2,ka1 =2,k = 2,k31 =4,k3; = -2,P=2,p(x) =0,2=0.5, o(x) = 0.0034exp(—0.076x).

trol the phase shift of the soliton. By changing the parameters of ity parameters s;1and s3; change, the amplitude and phase of soli-

soliton position kj;andk;,, we can change the interval between soli- ton will also vary.

tons, but the amplitude of solitons has not changed. In addition, Besides the interactions between two soliton, we can also dis-
when we change the value of integral constant K, we can only cuss the two-soliton bounded state, currently termed ‘“soliton
change the amplitude of solitons. When the values of group veloc- molecules” [11,12]. Fig. 4 shows a soliton molecule consisting of
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®)

solitons:

(a) density plot and (b) intensity plot.  Parameters

ares;; = 2,512 = —2,821 = —3,522 = 2,831 = 3,85 = —2,kin = =1, kip = —2.ka1 = 2,kap =4, k31 =4, ks, = -2,P=2,p(x) =0,2=0.5,0(x) = 0.6.

Fig. 8. The numerical rerun of the three-soliton molecule in Fig. 6 with 5% white random noise: (a) intensity plot and (b) density plot. Parameters are
S11=1.5,812 =822 =532 = —0.3,821 = 2,531 = 2.5, k11 = 0.1, k12 = ksp = —2,ka1 = kop = 2,k31 =4,P=2,p(x) = 0,41 = 0.5, o(x) = 0.0034exp(—0.076x).

two solitons. Recently, Lou et al. gave the velocity resonance con-
ditions of soliton molecules consisting of integer-order solitons
in fluid [3,20]. Analyzing two-soliton solution (27), we give the
condition of velocity resonance for soliton molecules as
a11(x)/s11 = a21(x)/S21, which meansim(s;) = Im(s;). By using the
condition of velocity resonance, we can obtain two-soliton mole-
cule. The amplitudes of two soliton in the molecule are different,
due tos;;#s,1, although their speeds are the same. The distance
between the two solitons of the molecule depends on the parame-
ters k;and k,. If two solitons of the molecule are close enough, the
soliton molecule will become an asymmetric soliton, which similar
to that in Ref. [48].

In order to analyze the stability of the interaction between two
solitons and soliton molecules, we conduct direct numerical rerun
for equation (1) using the split-step pulse propagation method.
Here the initial field comes from solution (27) with initial 5% white
noise. By numerical estimation in Fig. 3(c), we see that two solitons
stably propagate a long distance after their interactions. For soliton
molecules withs;; = s,in Fig. 5, two solitons stably form the
bounded state a long-distance against the initial 5% white noise.
In both evolutionary processes, two solitons have maintained a
steady movement.

Furthermore, we can also study the three-soliton molecule,
which has the similar velocity resonance condition to the two-
soliton molecule. It is easy to know that if the solution (29) satisfies
the following resonance conditions as Im(sy) = Im(s;) = Im(s3),

69

namelys;; = Sy = S32, then we can obtain three-solitons molecule.
Similarly, we can deduce that if N-solitons satisfies the following
resonance conditions Im(s;) = Im(sy) = ...Im(s,), we can obtain N-
solitons molecule. In Fig. 6, we can find that the amplitudes of
three solitons in the molecule are different owing tos;; #5s,1#S31,
although their velocities are the same.

By adjusting the parameterssi,, Sy, S32, we can study the inter-
action of two-soliton molecules and a single bright soliton. Fig. 7
exhibits the elastic collision between a molecule consisting of
two solitons and a single bright soliton. Due tos;; #s31, the ampli-
tudes of two solitons in the soliton molecule are different, although
they have the same speed. Along the propagation distance x , the
single bright soliton interacts with the big soliton of the molecule
and produces a phase shift, and then interacts with the small soli-
ton of molecule and also appear a phase shift. After the collision,
the soliton molecule and the single bright soliton maintain their
amplitudes, shapes and widths, which is the elastic interaction. It
is known that the collision between the soliton and the soliton in
the NLSE is elastic, so the soliton molecule has similar properties
as the soliton.

By the numerical rerun in Fig. 8, we see that the three-
soliton molecule also stably forms the bounded state a long dis-
tance, and maintains good stability. The numerical calculation
indicates no collapse, that is, its velocity, shape, amplitude
and width are nearly unchanged against the initial 5% white
noise.
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Conclusions

In conclusion, we consider a fractional NLS equation with dis-
tributed coefficients, which describes the propagation of pi-
second pulses in inhomogeneous fiber systems. We get analytical
chirp-free and chirped non-travelling wave solutions and multi-
soliton approximate solutions by two analytical methods, namely,
the variable-coefficient fractional mapping method and Hirota
method. We give the form conditions of soliton molecules, and
study the dynamical characteristics of special fractional solitons,
multi-solitons and soliton molecules in the periodic inhomoge-
neous fiber and the exponentially dispersion decreasing fiber. In
the fractional order, the soliton still maintains good stability and
forms the bound state of the soliton molecule. An elastic collision
occurs between the soliton molecule and the single bright soliton,
and their amplitudes, shapes and widths are maintained, and thus
soliton molecules have the similar properties as the soliton.

In Figs. 1 and 2, when A = 1with the integer case and 1 = 0.5
with the fractional case, the motion effect of soliton is similar,
however, the periodicity of the fractional soliton is significantly
weakened. In Fig. 3, after the two fractional solitons collide, they
keep their original shapes and continue to move. This shows that
the fractional order does not affect the properties of integer soli-
tons. Thus the fractional order has a certain effect on the move-
ment of the soliton, but does not change the nature of the
soliton. These results have theoretical guidance for the related
experimental study in all-optical switches, optical amplifier and
mode-locked lasers.

Via the simialr analysis and calculation, we can extend our
methods in this paper to two-dimensional FNLS equations and cou-
pled FNLS equations. This will be the direction and focus of our
next research.
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Appendix A. Coefficients in solution (29)

hy = e 4% 4 e,

fy = A1e 0T Aeli+05 1 Asel 05 - Aol 4 Asef205 4 Agefa 05 1 Aefs+0i
1 Age’ 5 4 Agelstls

hs = Bje" i+t | Byeli+0stta 4 Boghit0i+l | B,eh+0i+0s | Bophit03+05 | B oli+03+0s

+B7 e()z +07+03 + BS e(lz +03+03 + Bg e()z +03+03 ,
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fa =My @l+0i+0205 L VL, @01+03+0205 | V3 @01+03+0205 | V], @01+01 0305 | ] @l +0+03+0;
FMge! 05405405 4 M, @l +0i +02+05 o ls+0i+02+05 | g @la+05+02+05

h5 — 1\]1 e()1 +07+02+05+03 4 N2 e()‘ +0] +0,+05+03 + N3 e()] +03+0,+05+03 )

f6 — Ee()l +0; +0p+05+03 +0§ .

0; = a;(x) + st + kj = aj (X) + iap(X) + (Spp + iSp)t + Ky + ikjo,
(i = 172’3)7

ap(x)=-T'(A+1) /sﬂsjzoc(x)dx,ajz(x)
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diy = S11 +iS12 — Sp1 — iS22, d12 = S11 + iS12 — S31 — iS32, d13

= $y1 + Sy — $31 — iS32,

Ay = S11 —iS12 + 21 + iS22, dop = S11 — iS12 + S31 + iS32, o3

= Sy1 — iS22 + S31 + iS32,

d31 = S11 + 1812 + S21 — iS22, d32 = S11 + iS12 + S31 — iS32, 33

=Sy + 1825 + S31 — iS32,

Ay = S11 — 112 — So1 + iS22, dap = S11 — iS12 — S31 + iS32, a3

=Sy — ISy — S31 +iS32,

Ly = (s11 — 521)2 + (S12 *522)27142 = (S11 +521)2 +(S12 — 522)27
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L. — 2 2y 2 2
21 = (S11 —831)" + (S12 — $32)", Loa = (S11 +531)" + (S12 — $32)°,

Ls1 = (521 — $31)° + (S22 — $32)°, Lao = (S21 +531)° + (S22 — $32)°.
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