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Abstract: A study of the structure and morphology of diblock copolymers composed of crystallizable
blocks of polyethylene (PE) and syndiotactic polypropylene (sPP) having different lengths is reported.
In both analyzed samples, the PE block crystallizes first by cooling from the melt (at 130 ◦C) and the
sPP block crystallizes after at a lower temperature. Small angle X-ray scattering (SAXS) recorded
during cooling showed three correlation peaks at values of the scattering vector, q1 = 0.12 nm−1,
q2 = 0.24 nm−1 and q3 = 0.4 nm−1, indicating development of a lamellar morphology, where lamellar
domains of PE and sPP alternate, each domain containing stacks of crystalline lamellae of PE or
sPP sandwiched by their own amorphous phase of PE or sPP. At temperatures higher than 120 ◦C,
when only PE crystals are formed, the morphology is defined by the formation of stacks of PE
lamellae (17 nm thick) alternating with amorphous layers and with a long period of nearly 52 nm. At
lower temperatures, when crystals of sPP are also well-formed, the morphology is more complex.
A model of the morphology at room temperature is proposed based on the correlation distances
determined from the self-correlation functions extracted from the SAXS data. Lamellar domains of
PE (41.5 nm thick) and sPP (8.2 nm thick) alternate, each domain containing stacks of crystalline
lamellae sandwiched by their own amorphous phase, forming a global morphology having a total
lamellar periodicity of 49.7 nm, characterized by alternating amorphous and crystalline layers, where
the crystalline layers are alternatively made of stacks of PE lamellae (22 nm thick) and thinner sPP
lamellae (only 3.5 nm thick).

Keywords: semicrystalline block copolymers; phase separation and crystallization; morphology;
small-angle X-ray scattering

1. Introduction

The structure and the morphology that develop in semicrystalline block copolymers
(BCPs) depend on the competition between phase separation of the incompatible blocks
and crystallization of one or more blocks [1–8]. Phase separation favors the formation
of nanometer-sized microdomains whose shape, form and size depend on the BCP com-
position [9], and crystallization that favors the formation of alternating crystalline and
amorphous layers [1,3,7,10,11]. The result of this competition is the possible formation
of many different structures and morphologies at room temperature that depend on the
crystallization and glass transition temperatures of blocks and the order–disorder transition
temperature, and on which process between crystallization and phase separation occurs
first upon cooling from the melt [1–11].

When the two polymer blocks are miscible in the melt, or weakly segregated, crys-
tallization occurs from a homogeneous melt driving microphase separation and the final
structure is essentially defined by the crystal morphology [7,10,11]. When the two blocks
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are strongly segregated in the melt, crystallization occurs from a microphase-separated
heterogeneous melt, resulting in crystallization confined within microdomains formed in
the melt by phase separation, templated crystallization or breaking out of the nanostructure
formed in the melt by subsequent crystallization [7,10–12].

When diblock copolymers are composed of two crystallizable blocks, the final mor-
phology still depends on the competition between phase separation and crystallization,
and if the two blocks crystallize at different temperatures, the crystallization of the first
block may define the final morphology, or be modified by the subsequent crystallization
of the other block [3–7,13–19]. Confined crystallization may occur even when the two
blocks are miscible in the melt because one block may crystallize within the lamellar
crystals of the other block previously formed, giving lower crystallization and melting
temperatures [1,3,4,6,7,17–19].

The crystallization behavior of crystalline BCPs containing poly(ethylene oxide) (PEO),
poly(ε-caprolactone) (PCL), polyethylene (PE), poly(L-lactide) (PLLA) and hydrogenated
polynorbornene (hPN) have been extensively investigated [4,13–16,20–26]. In contrast,
BCPs containing blocks based on crystallizable stereoregular polyolefin have received
less attention because of the difficulty of the synthesis and the intrinsic limitations of the
living polymerization methods available to date to ensure high stereochemical control in
living olefin polymerization. Therefore, the morphologies that develop in crystalline BCPs
composed of crystallizable polyolefins blocks, and the relationships between crystallization
and phase separation in the melt, have been mainly studied in BCPs containing crystal-
lizable polyethylene (PE) blocks synthesized by hydrogenation of BCPs containing 1,4-
polybutadiene blocks prepared by classic anionic living polymerization [3,7,10–12,27–42].
This has resulted in highly defective PE blocks with low melting temperature (about
90 ◦C) containing high amounts of constitutional defects of 1-butene units arising from
hydrogenation of 1,2-butadiene units present as defects in the precursor 1,4-polybutadiene
blocks [27–42].

More recently, BCPs containing blocks based on crystallizable stereoregular polyolefins,
in particular isotactic propylene (iPP) and syndiotactic polypropylene (sPP), and linear PE,
have been successfully synthesized due to the development of organometallic catalysts
able to promote stereoselective and living olefin polymerization [43–47]. This has allowed
the synthesis and the study of the crystallization and phase separation of BCPs containing
crystallizable isotactic or syndiotactic polypropylene linked to amorphous blocks or to
crystalline linear PE [17–19,48–53].

Block copolymers containing crystallizable blocks have aroused great interest as
thermoplastic elastomers due to the improved mechanical properties and thermal stability
with respect to conventional elastomers. The possibility of synthesizing BCPs containing
crystallizable iPP or sPP blocks linked to amorphous rubbery blocks or crystallizable PE
block is of great interest for producing novel rubbery materials with remarkable mechanical
strength, in which the polymorphic behaviors of iPP or sPP and their copolymers [54–56],
and the crystal morphology and phase transformations occurring during deformation, play
a role [57–66].

In this paper, we report a study of the structure and morphology of samples of
crystalline–crystalline BCP composed of blocks of crystallizable polyethylene (PE) and
syndiotactic polypropylene (sPP) (PE-b-sPP) having different block lengths. We show that
the final morphology that develops upon crystallization from the melt is characterized
by strict alternation of amorphous and crystalline layers, the latter being composed of
two different crystalline phases (sPP and PE) having different periodicities, which could be
controlled by the relative molecular mass of the two blocks.

2. Materials and Methods

Samples of PE-b-sPP were prepared with a living organometallic catalyst, bis[N-(3-
tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato]-titanium(IV) dichloride (from MCAT,
Donaueschingen, Germany), activated with methylalumoxane (MAO) (from Lanxess,



Polymers 2022, 14, 1534 3 of 19

Cologne, Germany) [43,50]. The molecular mass and the polydispersity of the sample
were determined by gel permeation chromatography (GPC), using a Polymer Laboratories
GPC220 apparatus equipped with a Viscotek 220R viscometer (Agilent Company, Santa
Clara, CA, USA), on polymer solutions in 1,2,4-trichlorobenzene at 135 ◦C. The molecular
structure was analyzed by 13C NMR spectroscopy using a Varian VXR 200 spectrometer
(Varian Company, Palo Alto, CA, USA).

The molecular characteristics of the samples of PE-b-sPP are reported in Table 1. The
sample PE-b-sPP-1 has PE and sPP blocks with similar molecular masses (Mn(sPP) = 10200
and Mn(PE) = 9800), with a 53% volume fraction of the sPP block (f sPP), whereas the sample
PE-b-sPP-2 has a higher total molecular mass (Mn = 64000), and an sPP block longer than the
PE block (Mn(sPP) = 46700 and Mn(PE) = 17300) with a volume fraction of sPP of f sPP = 75%.
Both samples are characterized by a narrow polydispersity with Mw/Mn = 1.2. The molec-
ular masses of the blocks were estimated from the total Mn and the weight% (wt%) of PE
or sPP, determined by 13C NMR, such that Mn(PE) = Mn × wPE and Mn(sPP) = Mn − Mn(PE).
The volume fractions of the blocks were calculated from the molecular masses of the
two blocks Mn(PE) and Mn(sPP) and the densities of crystalline PE (0.997 g/cm3) and sPP
(0.90 g/cm3) [67], such that f PE = (Mn(PE)/0.997)/(Mn(sPP)/0.90 + Mn(PE)/0.997).

Table 1. Total molecular mass (Mn), molecular masses of PE (Mn(PE)) and sPP (Mn(sPP)) blocks,
weight fraction (wPP) of the sPP block, volume fractions of the sPP (f sPP) and PE (f PE) blocks and
polydispersity (Mw/Mn) of the samples of PE-b-sPP block copolymers.

Sample Mn (Da) Mn(sPP) (Da) Mn(PE) (Da) wsPP (wt%) f sPP (v/v%) f PE (v/v%) Mw /Mn

PE-b-sPP-1 20000 10200 9800 51 53 47 1.2
PE-b-sPP-2 64000 46700 17300 73 75 25 1.2

Calorimetric measurements (DSC-822, Mettler Toledo, Columbus, OH, USA) were
performed under flowing N2 at heating and cooling rates of 10 ◦C/min.

X-ray powder diffraction profiles were obtained with Ni-filtered CuKα radiation with
an Empyrean diffractometer (Malvern Panalytical, Worcestershire, UK). Diffraction profiles
were also recorded in situ at different temperatures during heating and cooling from the
melt at approximately 10 ◦C/min using an attached TTK non-ambient stage (Anton Paar
KG, Graz, Austria). The sample was heated from 25 ◦C up to the melt at 150 ◦C at nearly
10 ◦C/min and the diffraction profiles were recorded every 5 degrees starting from 105 ◦C
up to 150 ◦C. Then, the sample was cooled from the melt at 150 ◦C down to 25 ◦C, still
at 10 ◦C/min, and the diffraction profiles were recorded every 5 degrees during cooling.
The temperature was kept constant while recording of each diffraction profile during both
heating and cooling.

Small-angle X-ray scattering (SAXS) profiles were collected using an evacuated high
performance SAXS instrument “SAXSess” (Anton Paar KG, Graz, Austria), which is a mod-
ification of the so-called “Kratky compact camera” [68,69]. Data collection was performed
in the slit collimation configuration with the SAXSess camera attached to a conventional
X-ray source (CuKα, wavelength λ = 1.5418 Å). The scattered radiation was recorded on a
BAS-MS imaging plate (Fujifilm) in a configuration which allowed simultaneous recording
of WAXS and SAXS data and was processed with a digital imaging reader (Cyclone Plus
Phosphor Imager, Perkin-Elmer, Waltham, MA, USA) at a resolution in the small angle
region of 2π/qmin ≈ 60 nm, where q = 4πsinθ/λ is the scattering vector and 2θ the scattering
angle, with qmin = 0.1 nm−1 being the minimum accessible value of the scattering vector
permitted by our collimation setup. After subtraction for dark current, the empty sample
holder, and a constant background due to thermal density fluctuations, the slit-smeared
data in the SAXS region (for q < 4 nm−1) were de-convolved with the primary beam in-
tensity distribution using the software SAXSquant 2.0 (Anton Paar KG, Graz, Austria) to
obtain the corresponding pinhole scattering (desmeared) intensity distribution. The SAXS
profiles were recorded at different temperatures starting from the melt and cooling down
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to room temperature. The desmeared SAXS intensities were then used to calculate the
normalized self-correlation function of electron density fluctuations γ(r).

Thin films (thickness lower than 50 nm) of the samples of PE-b-sPP were prepared
for transmission electron microscope (TEM) observation by casting at room temperature
on microscope glass slides from a p-xylene solution (0.2 wt%–0.5 wt%). The so-obtained
thin films were carbon-coated under vacuum in an EMITECH K950X evaporator (Quorum
Technologies Ltd., Lewes, UK). To improve contrast, the thin films were decorated with
gold nanoparticles by vacuum evaporation and condensation. After evaporation, gold
condensates and deposits formed mainly at the amorphous-crystalline interface of the
semicrystalline lamellae allowing better visualization of the crystalline phases. The films
were then floated off on water with the help of a poly(acrylic acid) backing and mounted
on copper grids.

Transmission electron microscope (TEM) images in bright-field mode were taken in
an FEI TECNAI G2 200 kV S-TWIN microscope equipped with 4K camera (electron source
with LaB6 emitter) (FEI Company, Dawson Creek Drive, Hillsboro, OR, USA). Bright-field
(BF) TEM images were acquired at 120 kV using a spot size equal to 3, integration time 1 s.

3. Results and Discussion

The X-ray powder diffraction profiles of the as-prepared (as-precipitated from the
polymerization solution) samples of PE-b-sPP block copolymers of Table 1 are reported
in Figure 1A. The presence of the 200 and 020 reflections of form I of sPP at 2θ = 12◦ and
16◦ and of the 110 and 200 reflections at 2θ = 21.5◦ and 24◦ of PE, indicates that in both
samples sPP crystallizes in the most stable helical form I [70,71] and PE crystallizes in the
stable orthorhombic form [72].
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Figure 1. X-ray powder diffraction profiles of as-prepared samples (A) and of samples crystallized
from the melt by compression molding and cooling down to room temperature at 10 ◦C/min (B) of
the BCP samples PE-b-sPP-1 (a) with f sPP = 53% and PE-b-sPP-2 (b) with f sPP = 75%. The (200)sPP,
(020)sPP and (121)sPP reflections of form I of sPP at 2θ = 12.2◦, 16◦, and 21◦, and the (110)PE and
(200)PE reflections at 2θ = 21.5◦ and 24◦ of the orthorhombic form of PE are indicated.

The intensities of the reflections of sPP crystals in the diffraction profile of the sample
PE-b-sPP-2 (profile b of Figure 1A) were higher than those in the profile of the sample
PE-b-sPP-1, according to the higher volume fraction of the sPP block in the sample PE-
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b-sPP-2 (Table 1). The diffraction profiles of Figure 1A also indicated that the degree of
crystallinity of the as-prepared sample PE-b-sPP-1, having lower molecular mass (49%), is
slightly higher than that of the sample PE-b-sPP-2 (40%).

The X-ray diffraction profiles of samples crystallized from the melt by compression
molding and cooling down to room temperature at 10 ◦C/min are shown in Figure 1B.
The diffraction profiles of both samples still present the 200 and 020 reflections of form
I of sPP at 2θ = 12◦ and 16◦, and the 110 and 200 reflections at 2θ = 21.5◦ and 24◦ of the
orthorhombic form of PE. The reflections are sharper than those in the diffraction profiles
of the as-prepared samples of Figure 1A, making visible also the 121 reflection of form I of
sPP at 2θ = 21◦ (profile b of Figure 1B). The diffraction profiles of Figure 1B also indicate
that the melt-crystallized samples show slightly higher crystallinity.

The DSC curves of the two samples of PE-b-sPP are reported in Figure 2. The ther-
mograms recorded during the first heating of the as-prepared samples, and the second
heating of the samples crystallized from the melt by cooling at 10 ◦C/min (curves a and c of
Figure 2), show for both samples only one broad endothermic peak with shoulders at high
temperatures, indicating melting of PE and sPP crystals in the same range of temperature.
In the cooling curves b of Figure 2, only one exothermic peak, corresponding to the almost
simultaneous crystallization of PE and sPP, is observed for both samples. The symmetric
sample PE-b-sPP-1, with similar lengths of PE and sPP blocks, shows a melting temperature
(134–136 ◦C, curves a,c of Figure 2A) and crystallization temperature (113 ◦C, curve b of
Figure 2A) higher than those of the asymmetric sample PE-b-sPP-2 with a longer sPP block
(melting peak at 126–128 ◦C, curves a,c of Figure 2B and crystallization peak at 110 ◦C,
curve b of Figure 2B).
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Figure 2. DSC curves recorded during heating of the as-prepared samples (a), cooling from the melt
(b) and successive second heating of the melt-crystallized samples (c) of samples PE-b-sPP-1 (A) with
f sPP = 53% and PE-b-sPP-2 (B) with f sPP = 75%. All thermograms have been recorded at a scanning
rate of 10 ◦C/min.

The X-ray diffraction profiles of samples of PE-b-sPP-1 and PE-b-sPP-2, recorded at
different temperatures during heating and cooling from the melt down to room temperature,
are reported in Figures 3 and 4, respectively. In the as-prepared specimen of the symmetric
sample PE-b-sPP-1 with f sPP = 53% (Figure 3A), the PE and sPP blocks seem to melt almost
simultaneously as the intensities of the 110 and 200 reflections of PE at 2θ = 21◦ and 24◦,
and of the 200 and 020 reflections of sPP at 2θ = 12◦ and 16◦, do not decrease up to 135 ◦C
and disappear almost at the same temperature. This agrees with the single endothermic
peak present in the DSC heating curve a of Figure 2A. In the melt-crystallized specimen of
the sample PE-b-sPP-1 (Figure 3C), instead, the intensities of the 110 and 200 reflections
of PE decrease at temperatures higher than nearly 130 ◦C, while the intensities of the 200
and 020 reflections at 2θ = 12 and 16◦ of sPP do not change up to nearly 135 ◦C. This
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indicates that during heating of the melt-crystallized sample PE-b-sPP-1, the PE block melts
before the sPP block. This is more evident in the sample PE-b-sPP-2 having the longer sPP
block (f sPP = 75%) of Figure 4A,C. In both as-prepared (Figure 4A) and melt-crystallized
(Figure 4C) specimens of the sample PE-b-sPP-2, the intensities of the 110 and 200 reflections
of PE at 2θ = 21◦ and 24◦ decrease at temperatures higher than 130 ◦C, and disappear at
135–137 ◦C in the diffraction profiles recorded during heating (Figure 4A,C), while the 200
and 020 reflections at 2θ = 12◦ and 16◦ of sPP are still present (profiles f of Figure 4A and d
of Figure 4C). This indicates that even though the DSC heating curves of the as-prepared
and melt-crystallized samples of PE-b-sPP-2 present single broad endotherms (curves a and
c of Figure 2B), crystals of PE melt before those of sPP, and, therefore, in the asymmetric
melting peaks of the sample PE-b-sPP-2 of Figure 2B (curves a and c), the peaks at low
temperature of 125–128 ◦C correspond to the melting of the PE block and the shoulders at
131–137 ◦C correspond to the melting of the sPP block (curves a, c of Figure 2B).
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Figure 3. X-ray powder diffraction profiles of the sample PE-b-sPP-1 with f sPP = 53% recorded at
different temperatures during first heating (a–f) of the as-prepared sample up to the melt (A), during
cooling (a–g) from the melt down to room temperature (B), and during successive heating (a–f) of
the melt-crystallized sample up to the melt (C). The (200)sPP, (020)sPP and (211)sPP reflections of
form I of sPP at 2θ = 12◦, 16◦ and 18.8◦, respectively, and the (110)PE and (200)PE reflections of the
orthorhombic form of PE at 2θ = 21◦ and 24◦, respectively, are indicated.

It is worth noting that during heating of the as-prepared specimen of the sample
PE-b-sPP-2, a new reflection at 2θ = 18.8◦ appears at 137 ◦C (profile f of Figure 4A). This
reflection corresponds to the 211 reflection typical of the ordered form I of sPP [70,71,73],
which is absent in the diffraction profiles of the as-prepared samples at room temperature
(Figure 1 and profiles a of Figures 3A and 4A). This indicates that the as-prepared samples
are crystallized in disordered modifications of form I [70,73], characterized by disorder in
the alternation of right-handed and left-handed 2/1 helical chains of sPP along the a and b
axes of the orthorhombic unit cell of form I [70,73]. Annealing at high temperatures that
occurred during heating of the as-prepared sample and recording the diffraction profiles,
allows development of more ordered modifications of form I of sPP, characterized by a
higher order in the alternation of enantiomorphous helices along both axes of the unit
cell [70,71,73].

The diffraction profiles recorded during cooling from the melt at 160 ◦C down to
room temperature of Figures 3B and 4B indicate that, starting from the amorphous halo,
the 110 and 200 reflections of PE at 2θ = 21◦ and 24◦ appear first, already at 125–120 ◦C
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(profiles b of Figures 3B and 4B), before the 200 and 020 of sPP at 2θ = 12◦ and 16◦ that
appear only at lower temperatures (profile d of Figure 3B and profiles c–d of Figure 4B).
Therefore, even though the DSC cooling scans show only a single crystallization peak
(curves b of Figure 2), during the slow cooling and the isothermal necessary to record the
diffraction profiles, the PE block crystallizes first at high temperatures (nearly 120–125 ◦C).
The intensities of the reflections of both sPP and PE increase and became sharper on further
cooling. Moreover, the diffraction profiles of Figures 3B and 4B also show that, upon cooling
from the melt besides the 200 and 020 reflections of sPP, the 211 reflection at 2θ = 18.8◦

of the ordered form I of sPP also develops [70,71,73] (profiles f, g of Figure 3B and d–h
of Figure 4B). As discussed above, this reflection is absent in the diffraction profiles of
the as-prepared samples or the compression molded samples of Figure 1. This indicates
that the as-prepared and melt-crystallized compression molded samples are crystallized
in disordered modifications of form I [70,73]. The slow crystallization from the melt of
Figures 3B and 4B induces, instead, the crystallization of a more ordered modification of
form I of sPP, characterized by a higher order in the perfect alternation of enantiomorphous
helices along both axes of the unit cell [70,71,73].
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Figure 4. X-ray powder diffraction profiles of the sample PE-b-sPP-2 with f sPP = 75% recorded at
different temperatures during first heating (a–h) of the as-prepared sample up to the melt (A), during
cooling (a–h) from the melt down to room temperature (B), and during successive heating (a–e) of the
melt-crystallized sample up to the melt (C). The (200)sPP, (020)sPP, (211)sPP and (121)sPP reflections of
form I of sPP at 2θ = 12◦, 16◦, 18.8◦ and 20.7◦, respectively, and the (110)PE and (200)PE reflections of
the orthorhombic form of PE at 2θ = 21◦ and 24◦, respectively, are indicated.

SAXS experiments were performed on the symmetric sample PE-b-sPP-1 with f sPP = 53%,
and high and comparable crystallinities of the two blocks, to provide information about
the morphology that develop by cooling from the melt and after the crystallization of
the PE and sPP blocks. The SAXS profiles of the sample PE-b-sPP-1 recorded at different
temperatures, starting from the melt at 250 ◦C and cooling down to room temperature, are
reported in Figure 5A. The Lorentz-corrected SAXS profiles are reported in Figure 5B. The
SAXS profile of the melt recorded at 250 ◦C (profiles a of Figure 5) is essentially featureless
and not informative. This does not necessarily indicate that the melt is homogeneous, but
is due to the very small electron density difference between the PE and sPP blocks in the
melt that prevents observation of the eventual phase-separated structure.
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Figure 5. SAXS profiles (A) and Lorentz-corrected profiles (B) of the sample PE-b-sPP-1 with
f sPP = 53% recorded at different temperatures (a–f) during cooling from the melt down to room
temperature. The three correlation peaks q1, q2 and q3, corresponding to lamellar stacks of PE and
sPP, are indicated.

The possible phase separation in the melt for PE-b-sPP BCPs has been discussed
in [50]. According to mean-field theory, the order-disorder transition for symmetric BCPs
occurs at a fixed interaction strength for calculated values of χN = 10.5, where χ is the
Flory–Huggins interaction parameter, and N is the total number of equivalent segments
that constitute the macromolecules of the blocks of the BCP [50]. For non-symmetric
BCPs, the phase separation transition occurs for higher values of χN. For polyolefin-based
BCPs, the equivalent segments are assumed as a portion of chains having the density of
four CH2 units (four carbon atoms segment). The Flory–Huggins interaction parameter
χ between sPP and PE has been determined in [50] as: χ = 6.2/T − 0.0053, with T the
absolute temperature. For the sample PE-b-sPP with total Mn = 20000 and f sPP = 53%,
the total number of equivalent segments N that constitute the macromolecules of the
blocks is N = Mn/56 = 357 (where 56 is the molecular mass of the four CH2 carbon atoms
segment). Therefore, for this sample, the order-disorder transition temperature TODT may
be calculated from χN ≥ 10.5 = (6.2/T − 0.0053)357, and is expected to be lower than 0 ◦C.
This indicates that the crystallization of the sample PE-b-sPP-1 most likely takes place from
a homogeneous melt.

Starting from the featureless SAXS profile of the melt at 250 ◦C, upon cooling, three
correlation peaks at values of the scattering vector q1 = 0.12 nm−1, q2 = 0.24 nm−1 and
q3 = 0.4 nm−1 appear in the SAXS profiles of Figure 5 already at 130 ◦C. Correspondingly,
the wide-angle diffraction profiles of Figure 3B show that crystallization of PE and sPP
occur by cooling at temperatures below 130 ◦C. With further decrease in temperature, the
three correlation peaks became more intense and appear well-resolved at room temperature
where crystals of PE and sPP are well-formed. The three correlation peaks correspond to
the sum of scattering from the sPP and PE semicrystalline blocks and indicate development
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of a lamellar morphology, where the lamellar crystals of PE and/or sPP alternate with
amorphous layers, as shown schematically in Figure 6A.
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Figure 6. Schematic models of morphology that may develop in the sample PE-b-sPP-1 with f sPP

= 53%, based on SAXS profiles of Figure 5. (A) Stacks of crystalline lamellae of PE and/or sPP
alternating with amorphous chains; (B) Possible lamellar morphology of the nearly symmetric BCP
in the melt with alternating amorphous lamellar domains of PE and sPP; (C) Possible morphology
that develops upon cooling from the melt, characterized by alternating sPP and PE domains, which
include stacks of crystalline lamellae of sPP and PE, respectively, separated by the corresponding
amorphous regions of sPP and PE; (D,E) Details of the morphology in C showing two possible limit
orientations of the chain axes in the crystalline domains, normal (D) and parallel (E) to the lamellar
domain interface (D).

The formation of lamellar morphology in the sample PE-b-sPP-1, characterized by a
similar length of the two blocks, is compatible with both the hypotheses of crystallization
from a homogeneous melt and from a segregated melt (Figure 6B). In a symmetric block
copolymer a melt lamellar morphology, where sPP layers alternate with PE layers, would be
expected (Figure 6B) [9]. In this case crystallization would occur confined to the preformed
lamellar domains of sPP and PE, giving a global lamellar morphology, where stacks of
crystalline lamellae of PE and sPP grow within the corresponding lamellar domains of the
two blocks (Figure 6C). On the other hand, if phase separation is driven by crystallization,
a morphology characterized by the alternation of sPP and PE domains, which include
stacks of crystalline lamellae of sPP and PE, respectively, separated by the corresponding
amorphous regions of sPP and PE, is expected (Figure 6C). In both cases, consecutive
crystalline layers of sPP and PE are separated by amorphous layers of chains of the two
blocks and the crystalline lamellae would assume different orientations within the lamellar
domains of the two blocks (Figure 6C).

This equilibrium morphology, that involves strict alternation of amorphous and crys-
talline layers, has been described in the case of crystallization of one block in crystalline-
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amorphous diblock copolymers [1,7,10,31–33,74]. In the case of crystalline-crystalline
PE-b-sPP block copolymers, the alternating crystalline domains separated by amorphous
layers are made of two different crystalline phases (sPP and PE lamellae) (Figure 6C), char-
acterized, probably, by different periodicities, with each crystalline layer being sandwiched
by its own amorphous phase (sPP or PE) (Figure 6C). According to models proposed for
amorphous-crystalline diblock copolymers, two limit orientations of the chain axes in the
crystalline domains are possible. The chain axis may be normal to the lamellar interface, as
in the model of Figure 6D, or parallel to the lamellar interface as in the model of Figure 6E.
Generally, the different directions of the chain axes in lamellar systems of crystalline BCPs
have been attributed to different states of the system and crystallization conditions, such as
crystallization from a homogeneous melt or weakly segregated melt, that should favor ori-
entation of the chain axes perpendicular to the lamellar interface [7,31,33], or crystallization
from a segregated melt that should favor orientation of the chain axes parallel to the lamellar
interface [1,7,28,29,75]. In any case, the two models of Figure 6D,E correspond to two limit
orientations of the chain axes and of folding directions, because, in the absence of external
bias that induces fiber or single crystal orientation of the crystalline phases [17–19,38,48,49],
the crystalline lamellae assume different, almost random, orientations within the lamellar
domains of the two blocks.

Details of the morphology with determination of the lamellar parameters, that is, the
thicknesses of the two crystalline lamellae of PE and sPP and of the amorphous layers and
of the values of the periodicity, and assignment of the observed periodicities of PE or sPP
lamellar stacks, can be obtained by analyzing the WAXS and SAXS profiles recorded during
cooling. In the SAXS profiles of Figure 5, the three correlation peaks at q1 = 0.12 nm−1,
q2 = 0.24 nm−1 and q3 = 0.4 nm−1, appear already at 130 ◦C, during cooling from the melt,
when only the PE crystals are probably formed, as indicated by the WAXS profiles of
Figure 3B that show starting of crystallization of sPP only at 120 ◦C. This probably indicates
that the SAXS correlation peaks can be attributed mainly to the formation of stacks of
crystalline lamellae of PE. Therefore, the first correlation peak at q1 = 0.12 nm−1 may be
interpreted as the first-order diffraction of a monodimensional lattice of periodicity (the
long period) calculated by direct application of the Bragg law LB = 2π/q1 = 52 nm. This
monodimensional lattice corresponds to stacks of parallel crystalline lamellae of PE, spaced
by LB alternating with amorphous layers, as in Figure 6A. The second correlation peak
occurs at q2 ≈ 2q1 = 0.24 nm−1 and may correspond to the second-order diffraction of the
monodimensional lattice, confirming the formation of almost ideal stacks of parallel crys-
talline lamellae of PE of long period LB. The third correlation peak at q3 = 0.4 nm−1 ≈ 3q1
may correspond to the third-order diffraction of the PE lamellar stacks or may be due to
the formation of crystalline lamellae of sPP with lower periodicity LB = 2π/q3 = 16 nm. The
latter hypothesis is based on the observation that, in the SAXS profiles of Figure 5B, the
correlation peak at q3 is better defined at low temperatures when crystallization of sPP
proceeds. In any case, at temperatures lower than 120 ◦C, the contribution of sPP crystals is
not negligible. Therefore, at 130 ◦C, the morphology may be described by the simple model
of Figure 6A, where crystalline layers of PE (constituted by stacks of crystalline lamellae)
alternate with amorphous layers, which are composed of the amorphous phase of PE and
the amorphous (melt) sPP. At lower temperature, crystallization of sPP proceeds and stacks
of crystalline lamellae of sPP grow within the sPP domain (Figure 6C).

The values of the scattering vector q of the correlation peaks observed in the SAXS
profiles of Figure 5B at different temperatures during cooling, and the values of the long
period LB calculated from the first correlation peak LB = 2π/q1, are reported in Table 2.
Assuming the model of PE lamellar stacks of Figure 6A, from the values of the long period
LB, evaluated from the first correlation peak q1 and the degree of crystallinity, evaluated
from the WAXS diffraction profiles of Figure 3B, the average value of the thickness of the
crystalline lamellae lc of PE has been calculated as lc * = ϕc(WAXS) × LB, where ϕc(WAXS)
is the volume fraction of the crystalline phase [1,76], approximately evaluated from the
degree of crystallinity extracted from the WAXS profiles xc and the density of the crystalline



Polymers 2022, 14, 1534 11 of 19

and amorphous phases as: ϕc = xc dc
−1[xc dc

−1 + (1 − xc) da
−1], where dc = 0.997 g/cm3

and da = 0.850 g/cm3 are the densities of crystals of PE in the orthorhombic form and of
the amorphous PE at 25 ◦C, respectively [67]. The average values of the thickness of the PE
amorphous layers between PE lamellae has been calculated as la *= LB − lc *. The values of
the thicknesses of the crystalline and amorphous layers lc * and la * in the PE domains are
reported in Table 2.

Table 2. Values of crystallinity xc(WAXS) evaluated from the WAXS diffraction profiles of Figure 3B,
scattering vectors q = 4πsinθ/λ of the three correlation peaks q1, q2 and q3 observed in the SAXS
curves of Figure 5 recorded at different temperatures T during cooling from the melt of the sample
PE-b-sPP-1 with f sPP = 53%, values of the corresponding long period (LB and LCF) evaluated from the
scattering vector q1 of the first correlation peak (LB = 2π/q1) and from the self-correlation functions
of electron density fluctuations of Figure 7 (LCF), values of the thicknesses of the crystalline lamellae
lc and amorphous layers la, evaluated from the SAXS profiles of Figure 5B and the values of the
long period LB (lc * and la *) and from the self-correlation functions of Figure 7 (lc(CF) and la(CF)), and
values of the thickness of the PE and sPP domains (LPE and LsPP).

T
(◦C)

xc(WAXS)
(%)

q 1
(nm−1)

q 2
(nm−1)

q 3
(nm−1)

LB = 2π/q1
(nm)

lc *
(nm) a

la*
(nm) b

LCF
(nm)

lc(CF)
(nm)

2la(CF)
(nm)

LPE
(nm)

LsPP
(nm)

130 19 0.125 0.242 0.393 50.3 11.0 39.3 52.0 16.9 35.1
125 32 0.125 0.242 0.374 50.3 18.1 32.2 49.3 17.3 32.0
120 37 0.123 0.240 0.40 51.1 21.1 30.0 51.4 16.6 (PE) 34.8

25 47 0.120 0.241 0.40 52.4 27.0 25.4 49.7 3.5 (sPP)
22 (PE)

4.7 (sPP)
19.5 (PE) 41.5 8.2

(a) lc * = ϕc (WAXS) × LB, ϕc = xc dc
−1[xc dc

−1 + (1 − xc) da
−1] with dc = 0.997 g/cm3 and da = 0.850 g/cm3

the densities of crystals of PE in the orthorhombic form and of the amorphous PE at 298 K, respectively [67].
(b) la* = LB − lc *.

To gain further details of the bulk morphology that develops in the sample of PE-b-sPP
BCP upon crystallization of the two blocks revealing the different periodicities of the stacks
of crystalline lamellae of PE and sPP included in the PE and sPP lamellar domains of
Figure 6C, the self-correlation function of electron density fluctuations has been extracted
from the SAXS data of Figure 5. The normalized self-correlation function of electron
density fluctuations γ(r) has been calculated from the observed SAXS intensity Iobs(q) by
the following equation relative to an ideal two phases lamellar morphology [76]:

γ(r) =

∫ ∞
0 q2 Ic(q) cos(qr)dq∫ ∞

0 q2 Ic(q)dq

where r is the correlation distance along the monodimensional lattice of Figure 6A, and Ic(q)
is the observed desmeared SAXS intensity after subtraction for a residual background Iback:

Ic(q) = Iobs(q) − Iback

For high values of the scattering vector (q > 1.5 nm−1), this SAXS intensity has been
fitted to the Porod law Ic(q) = Kp q−4, assuming that the interphase surface between the two
phases, the crystalline lamellae and the amorphous layers, is sharp [76–78]. The normalized
self-correlation functions of the electron density fluctuations γ(r), calculated from the SAXS
intensities of the sample PE-b-sPP-1 of Figure 5, recorded at different temperatures during
cooling from the melt, are reported in Figure 7. Only the data at temperatures at which
crystallization had already begun are shown.
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Figure 7. Normalized self-correlation functions of electron density fluctuations γ(r) calculated from
the SAXS intensities of the sample PE-b-sPP-1 with f sPP = 53% of Figure 5, recorded at different
temperatures (a–d) during cooling from the melt. The main correlation triangle ABC, and the average
values of periodicity L, and of thicknesses of crystalline or amorphous layers of the layer structure of
Figures 6C and 8, are indicated.
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Figure 8. Models of the morphology of the sample PE-b-sPP-1 with f sPP = 53% that develops by
crystallization upon cooling from the melt, at 125–130 ◦C when mainly PE crystals contribute (A), and
at room temperature when both PE and sPP crystals are well-formed (B). The values of the thickness
of the crystalline lamellae of PE and sPP and of the amorphous layers and of the periodicities,
are indicated.
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The correlation functions present the typical shape expected for a lamellar morphology
of Figure 6A [1]. In fact, in the simple cases, at temperatures of 130 ◦C and 125 ◦C (curves
a and b of Figure 7), the correlation functions present a main maximum at a correlation
distance around 50 nm, corresponding to the long period L, and a main minimum at
correlation distance around 17 nm, corresponding to the minimum thickness of layers in
the stacks (thickness of amorphous la or crystalline lc layers) (curves a, b of Figure 7). More
precisely, the lamellar parameters have been extracted from the “self-correlation triangle”
ABC of the correlation functions (Figure 7), considering that the minimum layer thickness
in the stacks corresponds to the abscissa of the point B of the correlation triangle ABC
(curve a of Figure 7), and corresponds to the thickness of the amorphous layer la, if the
degree of crystallinity evaluated from the WAXS profiles is higher than 50%, or to the
thickness of the crystalline lamellae lc, if the crystallinity is lower than 50%. Then, the larger
thickness, lc or la, is calculated as lc (la) = L − la (lc). The values of the long period LCF,
and the thicknesses of crystalline lc(CF) and amorphous la(CF) layers determined from the
correlation functions of Figure 7, are reported in Table 2, and compared with the values
obtained from the SAXS correlation peaks by direct application of the Bragg law (LB, lc *
and la *). The values obtained with the Bragg law and the correlation functions at 130 and
125 ◦C are very similar.

As discussed above, at temperatures higher than 120 ◦C, when only PE crystals are
formed (as indicated by the WAXS profiles of Figure 3B), and the contribution of sPP crystals
is negligible, the SAXS intensity is essentially due to the fluctuation of the electron density
for the formation of crystals of PE and the values of the long period and the thicknesses
of the amorphous and crystalline layers, evaluated by both the Bragg law and correlation
functions (profiles c, d of Figure 5 and curves a, b of Figure 7), refer essentially to stacks of
crystalline lamellae of PE alternating with the amorphous layer, as in Figure 6A. Therefore,
since the degrees of crystallinity at 130 and 125 ◦C are lower than 50%, the lowest thickness
of nearly 17 nm (Table 2 and Figure 7a,b) corresponds to the thickness of the crystalline
lamellae of PE, and the larger thickness of 33–34 nm, corresponds to the thickness of the
amorphous phase that includes the amorphous phase of PE and the amorphous sPP still in
the melt state. A schematic model of the morphology that developed at 125–130 ◦C, when
mainly PE crystals contribute, with assignment of the observed periodicities, is shown
in Figure 8A. The long period of 49–52 nm (Table 2) corresponds to the average distance
between the crystalline lamellae of PE.

At lower temperatures, when crystallization of sPP proceeds, the contribution of sPP
is no longer negligible, and the self-correlation functions assume a more complex shape
(curves c, d of Figure 7), showing new minimum and maximum, and deviations from
the shape of the ideal two-phase lamellar morphology of Figures 6A and 8A. At room
temperature, the correlation function presented a new minimum at a correlation distance of
3.5 nm, and a new maximum at a distance of 8.2 nm (curve d of Figure 7), that are probably
due to the formation of lamellar crystals of sPP. A model of the morphology of the BCP that
develops at room temperature, when both PE and sPP crystals are well formed, is reported
in Figure 8B. The minimum thickness of the lamellar morphology is, this time, 3.5 nm, that
can be interpreted as the thickness of the crystalline lamellae of sPP (lc(sPP)). The distance
of 8.2 nm may be interpreted as the thickness of the whole sPP domains LsPP containing
amorphous and crystalline layers of sPP (Figure 8B). The second minimum, at a correlation
distance of 22 nm at room temperature (curve d of Figure 7), corresponds to the thickness of
the crystalline lamellae of PE (Figure 8B), according to the value of nearly 17 nm achieved
at 120–130 ◦C (Figure 8A). The maximum in the correlation curve at room temperature at a
correlation distance of 49.7 nm (curve d of Figure 7), which has been interpreted as the long
period of the PE lamellar stacks at 120–130 ◦C (curves a, b of Figure 7), may be interpreted
as the distance between the crystalline PE lamellae, which corresponds to the periodicity of
the lamellar BCP LBCP = LPE + LsPP = 49.7 nm, where LPE and LsPP are the thicknesses of the
PE and sPP lamellar domains, each domain being composed of crystalline and amorphous
layers LPE = lc(PE) + 2lam(PE) and LsPP = lc(sPP) + 2lam(sPP) (Figure 8B).
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The values of the thicknesses of the PE and sPP lamellar domains, LPE and LsPP, and
of the thicknesses of the crystalline and amorphous layers in the PE and sPP domains in the
model of Figure 8B, lc(PE), lam(PE), lc(sPP) and lam(sPP), are reported in Table 2. The thicknesses
of the amorphous PE and sPP layers were calculated from the values of thickness of the
corresponding domains and of the global periodicity LBCP (Table 2 and Figure 8). In detail,
2lam(sPP) = LsPP − lc(sPP) = 8.2 − 3.5 = 4.7 nm, and, since LBCP = LPE + LsPP = (lc(PE) + 2lam(PE))
+ (lc(sPP) + 2lam(sPP)) = 49.7 nm, 2lam(PE) = LBCP − lc(PE) − (lc(sPP) + 2lam(sPP)) = 49.7 − 22 −
8.2 = 19.5 nm and LPE = 22 + 19.5 = 41.5 nm (Table 2 and Figure 8B).

The lamellar morphology suggested by the SAXS data has been confirmed by trans-
mission electron microscopy (TEM). Thin films of the sample PE-b-sPP-1 with f sPP = 53%
were prepared by casting at room temperature on microscope glass slides from a p-xylene
solution (0.2 wt%–0.5 wt%). The films were melted in a microscope hot stage and crystal-
lized from the melt by slow cooling to room temperature. The TEM bright-field image of
the so-crystallized films is reported in Figure 9. The film was coated with gold particles to
improve the contrast in the TEM observation and to reveal details of the morphology. The
technique of gold decoration is used to visualize edge-on crystalline lamellae of polymers
in TEM bright-field images, especially in the case of low-TEM-amplitude contrast between
amorphous and crystalline phases [79,80]. The vaporized gold gathers in the ditches made
by the interlamellar amorphous material and produces a regular pattern of gold particles,
which is observed in bright-field imaging [79–81]. In the case of homopolymers, this gen-
erally produces thin layers of gold particles at the interface between the amorphous and
crystalline lamellae, containing rows of essentially one gold particle thickness [79,80].
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Figure 9. TEM bright-field image of gold-decorated thin films of the sample PE-b-sPP-1 with
f sPP = 53% slowly crystallized from the melt.

In the image of Figure 9 of the sample PE-b-sPP-1, the dark spots correspond to the
gold particles that are presumably located in the amorphous intra-lamellar phases of PE
and sPP, that is, in between the crystalline domains of PE or sPP, whereas the brighter
regions correspond to PE and/or sPP crystalline lamellae. The image of Figure 9 has been
collected at high magnification on a selected region of spherulites to show the lamellar
details. In agreement with the results of the SAXS data, it is apparent from Figure 9 that
the PE and sPP crystalline lamellae (the light stripes) alternate with amorphous layers (the
darker stripes) and appear locally partially oriented.

4. Conclusions

The structure and morphology of crystalline-crystalline block copolymers composed
of crystallizable blocks of polyethylene (PE) and syndiotactic polypropylene (sPP) were
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studied by WAXS and SAXS. Two samples, having different block lengths and sPP volume
fractions of 53 and 75%, were analyzed. The samples crystallize in the stable form I of sPP
and the orthorhombic form of PE, both in as-prepared and melt-crystallized samples. Both
samples show only one broad endothermic peak with shoulders at high temperatures, and
only one exothermic peak in DSC thermograms, indicating melting of PE and sPP crystals
in the same range of temperature, and almost simultaneous crystallization of PE and sPP
during cooling. However, diffraction profiles recorded at different temperatures during
cooling from the melt indicate that, in both samples, the PE block crystallizes first at higher
temperature (higher than 125 ◦C), and the sPP block crystallized after at lower temperature.

The morphology of the symmetric sample with volume fraction of sPP of 53% that
develops from the melt during cooling upon crystallization of the two blocks, was analyzed
by recording SAXS profiles during cooling. The SAXS profile of the melt recorded at
250 ◦C is essentially featureless and not informative, due to the very small electron density
difference between the PE and the sPP blocks in the melt that prevents observation of the
eventual phase-separated structure. Upon cooling, three correlation peaks, at values of the
scattering vector, q1 = 0.12 nm−1, q2 = 0.24 nm−1 and q3 = 0.4 nm−1, appear in the SAXS
profiles, indicating development of a lamellar morphology, where the crystalline lamellae
of PE and sPP alternate with amorphous layers. The alternating crystalline domains
separated by amorphous layers are made of two different crystalline phases (stacks of sPP
and PE lamellae), and each crystalline layer is sandwiched by its own amorphous phase
(sPP or PE). This morphology is compatible with both the hypotheses of crystallization
from a homogeneous melt and from a segregated melt. In the latter case crystallization
would occur confined to the preformed lamellar domains of sPP and PE, giving a global
lamellar morphology, where stacks of crystalline lamellae of PE and sPP grow within the
corresponding lamellar domains of the two blocks.

The morphology that developed upon cooling from the melt changes with temperature
due to the different contribution of PE and sPP crystallization that occur at different
temperatures. At temperatures higher than 120 ◦C, when only PE crystals are formed
and the contribution of sPP crystals is negligible, the SAXS intensity is essentially due
to the formation of crystals of PE and the values of the long period of nearly 52 nm
and the thicknesses of the amorphous and crystalline layers, refer essentially to stacks
of crystalline lamellae of PE (nearly 17 nm thick) alternating with the amorphous layer.
At lower temperatures, when crystals of sPP are also well formed the morphology is
more complexwhose details, with assignment of the observed periodicities of PE or sPP
lamellar stacks, were revealed by analysis of the self-correlation functions of the electron
density fluctuations. A model of the morphology at room temperature is proposed based
on the correlation distances determined from the self-correlation functions. The lamellar
domains of PE (41.5 nm thick) and sPP (8.2 nm thick) alternate, each domain containing
stacks of crystalline lamellae sandwiched by their own amorphous phase, forming a global
morphology having a total lamellar periodicity of 49.7 nm, characterized by alternating
amorphous and crystalline layers, where the crystalline layers are alternately made of PE
and sPP lamellae of different thickness. In the crystalline lamellar stacks, the thickness of
the PE lamellae is 22 nm, whereas the thickness of the sPP lamellae is only 3.5 nm. This
lamellar morphology, with stacks of crystalline lamellae of PE and sPP alternating with
amorphous layers, was confirmed by TEM observation.
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