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ABSTRACT

Chromatin modifications, such as post-translational
modification of histone proteins and incorpor-
ation of histone variants, play an important role in
regulating gene expression. Joint analyses of mul-
tiple histone modification maps are starting to
reveal combinatorial patterns of modifications that
are associated with functional DNA elements,
providing support to the ‘histone code’ hypothesis.
However, due to the lack of analytical methods, only
a small number of chromatin modification patterns
have been discovered so far. Here, we introduce
a scalable subspace clustering algorithm, coher-
ent and shifted bicluster identification (CoSBI),
to exhaustively identify the set of combinatorial
modification patterns across a given epigenome.
Performance comparisons demonstrate that CoSBI
can generate biclusters with higher intra-cluster
coherency and biological relevance. We apply our
algorithm to a compendium of 39 genome-wide
chromatin modification maps in human CD4+

T cells. We identify 843 combinatorial patterns that
recur at>0.1% of the genome. A total of 19 chromatin
modifications are observed in the combinatorial
patterns, 10 of which occur in more than half of the
patterns. We also identify combinatorial modifica-
tion signatures for eight classes of functional DNA
elements. Application of CoSBI to epigenome maps
of different cells and developmental stages will aid
in understanding how chromatin structure helps
regulate gene expression.

INTRODUCTION

Histone proteins in chromatin are subject to a number of
post-translational modifications (PTMs), primarily at their
N-terminal tails, including methylation, acetylation, phos-
phorylation, ubiquitylation and ADP-ribosylation (1).

It has been proposed that distinct histone modifications,
on one or more nucleosomes, act in combination to
form a ‘histone code’ that is read by other proteins to
bring about distinct downstream events (histone code
hypothesis) (2). The advent of chromatin immuno precipi-
tation coupled with microarray chip (ChIP-chip)—and
recently, ultra high-throughput sequencing (ChIP-seq)—
has enabled global and whole-genome histone modification
profiling studies. To date, several dozens of histone
modifications across multiple human cell types and
disease states have been mapped, generating a diversity of
epigenomic data sets (1,3,4). A picture is now emerging
in which distinct genomic regions such as enhancers,
promoters, insulators, gene bodies (both protein coding
and non-coding RNA genes), and sub-chromosomal
regions have distinct chromatin modification patterns/
signatures. For example, high levels of histone 3 lysine
4 (H3K4) methylation and histone 3 and 4 acetylations
have been found at gene promoters and enhancers (3–5).
Collectively, these observations provide strong support
to the histone code hypothesis and suggest that epigenetic
signatures could be an effective way to pinpoint functional
DNA elements in the genome. However, we are far from
deciphering the histone code. From a computational point
of view, the current challenge is to develop analytic tools to
extract novel and consistent combinatorial patterns and
integrate them with various functional genomic data sets.
To date, several computational methods have been

developed to identify histone modification patterns from
ChIP-Chip/Seq data sets. From a computational perspec-
tive, they fall into two categories. The first category uses
supervised statistical learning techniques for identifying
distinct and predictive histone modification patterns at
known classes of functional sites, such as promoters and
enhancers (6). Although supervised methods have revealed
distinct chromatin signatures, they could not identify
novel patterns that are associated with either poorly
studied or new classes of functional DNA elements.
For the second category of approaches, Hon et al. (7)

proposed an unsupervised method, termed ChromaSig, to
identify histone modification ‘motifs’ that are repeated
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across the human genome. The proposed algorithm uses a
progressive alignment approach to identify motifs starting
from a seed motif. Although it captures interesting
patterns, ChromaSig does not exhaustively search for all
combinations of repeated patterns across the genome.
Jaschek and Tanay proposed a spatial clustering algo-
rithm that employs hidden Markov model (HMM) to
identify a set of common patterns defined over con-
tiguous genomic regions (8). Their probabilistic model
describes a set of clusters (i.e. HMM states) with transition
probabilities between these states. Their algorithm
assumes that consecutive regions in the genome tend to
share a functional annotation, which might not necessarily
be true. In a more recent work, Ernst and Kellis (9)
proposed an alternative HMM algorithm based on the
binarization of presence or absence of each histone
mark. This approach significantly reduces the number of
parameters compared to the spatial clustering algorithm
(8). But it still requires a set of non-intuitive parameters to
be set. More importantly, for both ChromaSig- and
HMM-based algorithms, the final motifs/patterns are
forced to include all histone modification marks in the
input data. However, multiple studies so far have
demonstrated that many combinatorial patterns only
involve a few chromatin modifications (10). Therefore, a
more powerful approach is to identify sets of genomic loci
that are specifically associated with subsets of chromatin
modifications.
To address the challenges described above, we propose

a new computational algorithm to comprehensively search
for combinatorial histone modification patterns across
a given epigenome. Benchmarking experiments demon-
strate that our algorithm outperforms an existing greedy
algorithm in terms of the coherency and biological
relevance of inferred biclusters. Application of our algo-
rithm to a compendium of chromatin modification maps
in human T cells revealed 843 combinatorial patterns
across the genome. We provide supporting evidence for
the discovered patterns based on three lines of evidence:
combinatorial histone modifications identified using
mass spectrometry, location biases of predicted biclusters
with respect to known functional DNA elements, and
correlations with gene expression data in T cells. The
analysis presented here provides a systematic character-
ization of combinatorial chromatin modifications in a
mammalian cell.

MATERIALS AND METHODS

Chromatin modification maps

Genome-wide maps of 18 histone acetylations (3), 20
methylations (11) and a histone variant H2A.Z (3) of
human CD4+ T cells have been generated using
ChIP-seq (see Supplementary Data for the list of modifi-
cations). In this study, for each chromatin modification
map, we used the summary tag counts obtained at every
200 bp as our raw data for the pre-processing step
described below.

Chromatin modification ChIP-Seq data pre-processing

The genome is split into consecutive non-overlapping
windows that we refer to as genomic loci throughout the
article. Since chromatin modification signals tend to be
diffusive, in order to capture the entire signal, we used a
window of size 5000 bp. Using the MACS software (12),
we then identified signal peaks and mapped these peaks to
genomic loci. Peak detection step is used to eliminate
genomic loci with no signal for all of the chromatin modi-
fications. Using this strategy, we identified 130 559
genomic loci.

Construction of the GCP matrix

The input to our algorithm is a three-dimensional (3D)
matrix of preprocessed chromatin modification data.
The three dimensions are genomic locus, chromatin modi-
fication, position within a signal peak. Therefore, the
matrix is abbreviated as a GCP matrix. We construct
such a matrix by using the summary tag count at every
200 bp within each 5000 bp genomic locus. For the
genome-wide study, dimensions of the matrix are
39 (number of chromatin modifications)� 25 (number of
signals per genomic locus)� 130 559 (number of genomic
loci with at least one modification peak).

Computational model

We propose an algorithm to exhaustively search for com-
binatorial chromatin modification patterns that frequently
recur in an epigenome and exhibit similar signals. Before
going into details of the algorithm, we start by defining
notations and the concept of coherent bi-cluster.

Let G be a set of genomic loci each of which has a
length of 5kbp, GU={g1,. . ., gn}, let C be a set of chro-
matin modifications, CU={c1,. . ., cm}, and let PU be a
consecutive set of tag counts from the ChIP-seq experi-
ment that covers the 5 kbp window, P={p1,. . ., pt}. A 3D
GCP matrix represents a real valued nxmxt matrix
GCP=GU

�CU
�PU={dijk| i 2 [1,n], j 2 [1,m], k 2

[1,t]}, whose dimensions correspond to genomic locus,
chromatin modification and signal position accordingly.
An entry in this matrix, dijk, refers to the tag count at
position pk of the genomic locus gi for chromatin modifi-
cation hj. ChIP-seq signal at a genomic locus i for modi-
fication j, which is of length t, is referred as GCP[i,j,*] or
Sij* for short, throughout the article.

A coherent bi-cluster B[GXC] is a sub-matrix of GCP, i.e.
B=G�C and G � GU and C � CU provided that the
following two coherency conditions are satisfied:

(i) every pair of chromatin marks in C, Cx and Cy,
satisfies r(Skx*, Sky*) >a for every locus in G, gk,
where r is a measure of correlation between two
signal vectors, i.e. Skx* and Sky*, and a is the
minimum coherency threshold across the dimension
C;

(ii) every pair of genomic loci in G, gk and gl, satisfies r
(Skx*, Slx*) >b for every modification in C, say Cx,
where r is a measure of correlation between two
vectors, Skx* and Slx*, and b is the minimum coher-
ency threshold across the dimension G.
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We use cross correlation as the correlation measure r. It is
a standard metric for measuring the similarity between
two signals when a time delay is applied to one of the
signals (13). This measure enables us to capture correlated
patterns that are shifted from each other.

A particular chromatin modification signal at a 5 kb
window can be represented as a vector of t consecutive
points, which we denote as Sij*. The cross-correlation
between two such vectors Sij* and Sik* with delay d can
be calculated using the following formula:

CCd Sij�,Sik�

� �
¼

P
Sijx � Sik x�dð Þ �

P
Sijx �

P
Sik x�dð Þ

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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To find the best match between these two signals, we
choose the delay d that maximizes the correlation between
the two signals as follows:

� Sij�,Sik�

� �
¼ max CCd Sij�,Sik�

� �� �
, where � t � d � t:

Algorithm for identifying maximal coherent bi-clusters

We propose an algorithm to identify maximal coherent
biclusters in two steps. In the first step, for each
genomic locus gk, we identify the maximal set of chroma-
tin modifications that exhibit a coherent signal at the
locus. Each set is named as a maximal sample set. To do
so, we first construct a binary coherency matrix CM of
size |C|�|C|. An entry in this matrix is set to 1, if the
corresponding pair of chromatin modifications are
coherent at gk, more formally CM[i,j] =1 if r(Ski*, Skj*)
>a. Once we construct the CM matrix, the problem of
finding maximal sample sets is transformed into the
problem of enumerating all maximal cliques of size at
least mins in the graph induced by the CM (termed coher-
ency graph). A maximal clique is a subgraph that is fully
connected and is not contained in any other such
subgraphs. The clique enumeration problem is known to
be NP-hard. Fortunately, the maximum size of any CM
matrix cannot exceed the number of chromatin modifica-
tions (39 in our case) since there exist s single node per
modification in this graph. Therefore, with efficient search
and pruning techniques, we can identify maximal cliques
in a scalable manner. For this purpose, we employ a re-
cursive, depth-first search (DFS) of the set enumeration
tree of the chromatin modifications. Set enumeration tree
provides an efficient and systematic way to enumerate the
complete set of combinations (14). For our analysis, we
employed the two pruning strategies that are also
employed in Jiang et al. (15) study. The first strategy lets
us to eliminate paths from the tree that will never lead to
large enough sample sets. The second strategy enables us
to eliminate paths that are subsumed by a maximal subset
sample. Using efficient search and pruning strategies on
the set enumeration tree, we effectively identify ‘maximal
sample sets’ for every genomic locus at the first step of
CoSBI.

In the second step, we identified the maximal G�C sets
that satisfy conditions (i) and (ii) in the ‘coherent bicluster’
definition. A naı̈ve method would test every possible G
and C combination, which is infeasible since there exist
>130K genomic loci in our data. In order to scale this
problem, we again employ set enumeration tree of sample
sets, which systematically enumerates combinations of
histone modifications and prune unpromising combin-
ations before hand. Similar to our previous search, we
employ two search strategies that significantly reduces
the running time of the algorithm: eliminating unpromis-
ing sets and eliminating subsumed sets (16). Every G � C

set computed with this search is a potential maximal
coherent bicluster unless a superset of this set already
satisfies the coherency conditions. To identify maximal
coherent biclusters, we keep track of all G � C sets that
satisfy the two coherency properties. Since we conduct
a depth-first search in the set enumeration tree, any
coherent superset of G � C should be reported before
its subsets. Therefore, by reporting only G � C sets that
satisfy coherency properties and are not subsumed by
any maximal coherent biclusters identified before, we
can obtain the final set of maximal coherent biclusters.
Since the set enumeration tree systematically enumerates
the complete set of combinations, in theory we are
guaranteed to find the complete set of coherent biclusters
in the data.

Intra-cluster similarity

To quantify the overall quality of a bi-cluster B[G�C], that
includes |G| genomic loci and |C| chromatin marks we
defined the following intra-cluster similarity measure:

IS B G�C½ �

� �
¼

P
j2G

P
i2G � Si,Sj

� �
1=2� Gj j � G� 1j j

,

where �Si represents the mean signal for genomic locus i
over all chromatin modifications in the given bicluster
B[G�C]. G represents the set of genomic loci in the
bicluster, and accordingly, |G| represents the number of
genomic loci in the cluster. Intra-cluster similarity of a
bicluster is the average of all pairwise similarities of
mean genomic loci signals. More coherent bi-clusters
across both dimensions C and G score higher with
respect to the intra-cluster similarity measure.

Combinatorial histone modifications supported by tandem
mass spectrometry data

Combinatorial histone modifications observed in a single
histone tail were compiled from references (17–20). For
each of the predicted biclusters, we computed the fractions
of member histone marks that are also observed in the set
of combinatorial histone codes defined by mass spectrom-
etry. We then chose the largest fraction as the fraction of
bicluster histone marks supported by a histone code
uncovered using mass spectrometry experiments.
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Enrichment analysis

To associate identified biclusters with functional DNA
elements, we conducted a comprehensive examination
of the biclusters for enrichment of the following eight
classes of DNA elements (i.e. genomic features): highly
conserved sequences (from phastCons analysis across 17
vertebrate genomes obtained from the UCSC Genome
Browser), protein-coding genes (from the RefSeq
database, version hg18), large intergenic noncoding
RNAs (lincRNA) (21), transcription start sites (TSS)
of RefSeq genes, CpG islands, DNaseI hypersensi-
tivity sites (DHSs), CTCF binding sites (i.e. insulator)
from Cuddapah et al. (22), p300 binding sites from
Wang et al. (23). For conserved sequences, we used
genomic regions with a phastCons conservation score of
at least 0.5.
To determine the overlap between a genomic feature

described above and a predicted bicluster, we calculated
the center-to-center distances between a genomic locus
in a bicluster and instances of the genomic feature. If
this distance is smaller than half of the window size (i.e.
|genomic feature center–genomic locus center| �2500 bp),
we regard the genomic locus as an instance of the genomic
feature. The only exception to this center-to-center
distance rule is TSS overlap. In this case, if a TSS is
<1000 bp away from the center of a genomic locus, we
regarded them as overlapping. This is to ensure a bicluster
locus has a large overlap with a promoter region as well as
the TSS. Any locus that is not labeled as a TSS but
overlaps with the open reading frame of a gene over at
least half of the locus length (2500 bp) is regarded as a
gene body instance.

Enhancers in human CD4+ T cell

For performance comparison between CoSBI and
EDISA, we curated a set of high-confidence enhancers.
We first identified distal p300 binding sites in CD4+

T cell mapped by ChIP-seq in a previous study (23).
Here, distal is defined as at least 2.5 kbp away from the
closest known TSS. We further filtered the set of distal
p300 binding sites to include those that overlap at least
with one computationally predicted enhancer in the
PreMod database (24). This procedure generated 213
high-confidence enhancers. For background genomic
sites, we randomly selected loci containing chromatin
modification peaks but having no overlap with PreMod
predictions. We used the same number of random sites as
the number of enhancers.

Promoter regions

To identify chromatin modification signatures of
promoter regions, we used RefSeq genes (version hg18)
downloaded from the UCSC Genome Browser. After
eliminating genes that are unmapped or have alternative
TSS, we ended up with 21 123 genes. For promoters, we
used 5000 bp regions that span 3500 bp upstream and
1500 bp downstream of a TSS.

Promoter bicluster and gene expression correlation
analysis

To identify biclusters that are associated with highly
expressed and silent genes, we first sorted all biclusters
by their median gene expression levels and then by the
standard deviation of the gene expression levels at the
bicluster level. We then identified the top and bottom
10 biclusters from the sorted list. This analysis guaranteed
to identify biclusters whose genes were highly expressed or
silent and have a narrow range of expression levels. We
used the gene expression data set generated for CD4+

T cells (25).

RESULTS

The CoSBI algorithm for identifying combinatorial
chromatin modification patterns

We propose an unsupervised subspace-clustering algo-
rithm for the analysis of chromatin modification data
generated using ChIP-chip/seq technology. The algorithm,
termed coherent and shifted bi-cluster identification
(CoSBI), aims to identify all recurrent combinatorial
patterns with coherent signals over the same set of
genomic loci and chromatin modifications. Since the
patterns we seek are coherent in two dimensions, our
problem is similar to finding biclusters in a compendium
of gene expression microarray data, which has been exten-
sively studied (26,27). However, the major difference
from previous biclustering algorithms is that individual
data entries in the 2D data matrix are not scalar values.
Instead, they are vectors representing consecutive meas-
urements of a given chromatin modification across a
genomic locus (Figure 1). This third dimension of the
data presents additional challenges for the design of the
clustering algorithm.

Our algorithm is briefly summarized here and in Figure 1.
It first represents a set of chromatin modification ChIP-
chip/seq data in the form of a matrix with the following
three dimensions: genomic locus, chromatin modifica-
tion and ChIP-chip/seq signal Position, namely a GCP
matrix. The algorithm employs techniques from Frequent
Itemset Mining and identifies coherent biclusters in two
steps. In the first step, for every genomic locus, it
identifies maximal subsets of chromatin modifications
that exhibit coherent signals among them. Each such
subset is termed ‘maximal sample set’ for the corresponding
genomic locus. To effectively identify all ‘maximal sample
sets’, we first construct a coherency graph for every locus. A
coherency graph summarizes all pair-wise similarities
between different chromatin modifications at the same
genomic locus (i.e. one coherency graph for each genomic
locus). For a given genomic locus, if two chromatin modi-
fication signals are similar enough there exists a link
between the corresponding nodes in the coherency graph.
Next, by finding maximal cliques in a coherency graph,
we obtain the complete list of ‘maximal sample sets’ for
every genomic locus in the input data. In the second
step, the algorithm identifies coherent patterns across
both genomic locus and chromatin mark dimensions,
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generating coherent biclusters. It does so by systematically
enumerating all promising chromatin modification com-
binations using a set enumeration tree. To speed up the
enumeration, we use an inverted list (16) of the ‘maximal
sample sets’ computed in Step 1. The final output of our
algorithm is a complete collection of biclusters across the
given data, each of which contains a set of chromatin
modifications that exhibit coherent signals across all
genomic loci in the bicluster. The algorithm has the follow-
ing four parameters: ming and mins which specify the
minimal numbers of genomic loci and chromatin marks
in the identified bicluster, respectively; � which is the
minimum coherency threshold for two chromatin modifi-
cation signals at the same genomic locus; � which is the
minimum coherency threshold for the same chromatin
modification at two genomic loci. CoSBI is implemented
in C language and is freely available at: http://www
.medicine.uiowa.edu/Labs/tan/CoSBI.

Performance evaluation of CoSBI using known enhancers

Since CoSBI is designed for subspace clustering of 3D
data, we compared its performance with an existing algo-
rithm that is designed for a similar task. Supper et al. (28)
proposed an iterative greedy algorithm, EDISA, for clus-
tering 3D gene-condition-time microarray data to identify
gene sets with coherent expression patterns across a subset
of conditions and time points. In this case, time points are
analogous to ChIP-chip/seq signal positions in our
problem. The coherent biclusters sought by EDISA are
analogous to the coherent biclusters that are sought by

CoSBI. However, there are two major algorithmic differ-
ences between EDISA and CoSBI. First, EDISA is a
greedy algorithm, which implies that it does not exhaust-
ively search for all coherent biclusters in the data. CoSBI,
in contrast, captures the complete set of maximal coherent
biclusters in the data satisfying specified coherency thresh-
olds. Second, instead of using Pearson correlation as a
measure of coherency, we use cross correlation to
capture correlation between signals that are shifted with
respect to each other.
We compared the performance of EDISA and CoSBI in

terms of their ability to identify coherent biclusters from a
given 3D GCP matrix consisting of functional DNA
elements and random genomic loci. Based on the histone
code hypothesis, we expect genomic loci that share func-
tionality to have a common chromatin modification sig-
nature. On the contrary, random loci would lack a
consistent signature. Based on this assumption, an effect-
ive algorithm should be able to group together genomic
loci of the same class along with their signature chromatin
modifications. For functional DNA elements, we prepared
a set of 213 enhancers in human T cells (‘Materials and
Methods’ section). The chromatin modification data
associated with these enhancers and an equal number of
random sequences are used as the input to both
algorithms.
We ran EDISA using its suggested automatic parameter

setting option. Since EDISA is not a deterministic algo-
rithm, we ran EDISA 10 times and used the result of the
best run as its final output. We ran CoSBI to identify
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Figure 1. Overview of the CoSBI algorithm. In Step 1, for each genomic locus, we identify sets of maximal coherent chromatin marks. In Step 2,
using the results of Step 1, we identify sets of biclusters that are coherent in two dimensions.

Nucleic Acids Research, 2011, Vol. 39, No. 10 4067



biclusters that are repeated across at least 10% of all input
sequences and that involve at least three chromatin modi-
fication marks. We set the coherency parameters � and
� to 0.75 and 0.65, respectively. We chose this parameter
setting since it produced almost the same number of
biclusters as EDISA. Additional comparisons of the two
algorithms using different parameter settings can be found
in Supplementary Data.
Using the parameters described above, EDISA

produced 234 biclusters that on average include 10
genomic loci and CoSBI produced 249 biclusters that on
average include 52 genomic loci. To assess the quality of
the identified biclusters, we calculated their intra-cluster
similarities. As can be seen from Figure 2A, the average
intra-cluster similarities were 0.69 and 0.83 for EDISA
and CoSBI biclusters, respectively. Lower intra-cluster
similarity of EDISA biclusters suggests that the greedy
algorithm had difficulty grouping genomic loci with a
coherent modification signal into the same bicluster. In
addition, the small size of EDISA biclusters indicates
that they do not involve complete coherent patterns.
We also evaluated the quality of the resulting biclusters

by exploring the functional ‘purity’ of the identified
biclusters, i.e. the fraction of enhancers present in each
bicluster. To do so, we calculated a hypergeometric
P-value of enhancer enrichment for each bicluster. As
can be seen in Figure 2B, CoSBI biclusters have a higher
enrichment of enhancers compared to EDISA biclusters.
Taken together, comparison with EDISA demonstrates

that CoSBI can infer biclusters with higher intra-cluster
similarity and functional coherency. Furthermore, our
experiments confirmed the general observation that
functional DNA elements tend to have distinct and
coherent chromatin modification patterns. This observa-
tion suggests that CoSBI biclusters can be effectively
used to infer novel epigenetic signatures and associated
functional DNA elements.

Genome-wide prediction of combinatorial chromatin
modifications in human CD4+ T cell

To investigate combinatorial chromatin modifications
in the human genome, we applied CoSBI to a set of 39
genome-wide chromatin modification maps in human
CD4+ T cells. We set the ming and mins parameters to
0.1 and 3%, respectively, which allow us to capture
patterns that are recurrent across at least 0.1% of the
human genome and involve at least three chromatin
marks. We set the coherency thresholds � and � to 0.75
and 0.6, respectively, to achieve a reasonable balance
between coverage and quality of inferred biclusters (see
Supplementary Data for details). With this parameter
setting, CoSBI identified 843 biclusters in the CD4+

T cell epigenome. Additional information about the
identified biclusters can be found in Supplementary
Table S1.

The biclusters predicted by CoSBI are based on
histone modification generated using ChIP-Seq tech-
nology. An alternative experimental protocol for identify-
ing combinatorial histone modifications is tandem mass
spectrometry (MS) (29). Compared to ChIP-based
method, the major advantage of MS is that it can detect
all modifications associated with a given histone tail
simultaneously. As a first means to corroborate our pre-
dicted biclusters, we have manually compiled a list of
366 unique combinatorial histone modifications, each of
which is observed in a single histone tail using MS
(Supplementary Table S3). As shown in Figure 3, for
50% of the predicted biclusters, 40% of their member
histone marks are also observed in a single histone tail
in the mass spectrometry experiments. Note that this
curated list of histone codes only involves histones H3
and H4. Since our biclusters also involve histone H2, the
fraction of supported bicluster members will be even
higher when MS data on H2 become available in the
future.

Figure 2. Performance comparison of EDISA and CoSBI. (A) Intra-cluster similarity distributions of EDISA and CoSBI biclusters.
(B) Hyper-geometric P-value distributions for enhancer enrichment of EDISA and CoSBI biclusters.
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Global features of combinatorial chromatin modifications
in CD4+ T cell epigenome

Out of the 39 chromatin modifications we examined,
only 19 are present in the identified biclusters. Their occur-
rence frequencies are depicted in Figure 4A. This set
of chromatin marks includes all 17 backbone modifi-
cations that were identified by Wang et al. (3) (H2A.Z,
H2BK5ac, H2BK12ac, H2BK20ac, H2BK120ac,
H3K4ac, H3K9ac, H3K18ac, H3K27ac, H3K36ac,
H4K5ac, H4K8ac, H4K91ac, H3K4me1, H3K4me2,
H3K4me3 and H3K9me1) and two additional acetylations
(H4K16ac and H4K12ac). Based on our frequency analysis
(Figure 4A), we found that the following 10 chromatin
modifications (H2BK5ac, H2BK120ac, H3K4ac,

H3K9ac, H3K18ac, H3K27ac, H3K36ac, H4K5ac,
H4K8ac and H3K4me3) along with the histone invariant
H2AZ are very prone to participate in combinatorial
patterns. Each of them occurred in more than half of the
biclusters. This high tendency to participate in combinator-
ial patterns is not due to higher sequencing coverage of
these marks. As can be seen in Figure 4A, the occurrence
frequencies in CoSBI biclusters and overall occurrence
frequencies in the genome are not correlated (Pearson’s
correlation coefficient=0.13). Overall occurrence fre-
quency for a histone mark is computed as the ratio of
ChIP-seq peaks identified by MACS and the total
number of 5 kbp non-overlapping windows in the genome.
There were 18 acetylation and 20 methylation marks in

our input data. However, only 4 of 19 combinatorial
marks in the biclusters were methylations. We analysed
the genomic deposition patterns of the 39 chromatin
marks in our input data. Many acetylations show a clear
deposition bias towards 50 of TSS. In comparison, methy-
lations tend to display a wider deposition distribution
(Supplementary Figure S5). This broader deposition
pattern of methylation could explain why we only
observe four methylation marks in our biclusters.
Next, we analysed the identified biclusters in order to

reveal the set of most frequently co-occurring chromatin
marks. For this purpose, we constructed a co-occurrence
matrix involving all 19 chromatin marks observed in the
biclusters. Values in this matrix are the co-occurrence fre-
quency between a pair of histone marks. Co-occurrence
frequency is computed as the ratio of the number of
biclusters in which two histone marks appear together to
the total number of biclusters in which at least one of the
marks appears. Using hierarchical clustering, we clustered
the co-occurrence matrix to identify groups of chromatin
modifications that frequently co-occur. As can be seen in

A B

Figure 4. Occurrence and co-occurrence frequencies of chromatin modification marks of CoSBI biclusters. (A) Occurrence frequency of chromatin
modifications observed in biclusters and across the genome. (B) Hierarchical clustering of co-occurrence matrix for all chromatin modification pairs
observed in biclusters.

Figure 3. Predicted biclusters supported by mass spectrometry data.
Shown is the cumulative distribution of predicted biclusters whose
histone modification members are supported by mass spectrometry data.
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Figure 4B, three pairs of chromatin marks almost always
co-occur in biclusters, including <H3K27ac, H3K4me3>,
<H2AZ, H2BK120ac> and <H3K9ac, H3K36ac>.
Among these, the two marks, H3K27ac and H3K4me3,
have been observed to frequently co-occur by previous
studies (5,30,31).

Chromatin modification signatures associated with
functional DNA elements

Multiple studies have demonstrated that distinct function-
al DNA elements (or genomic feature) exhibit character-
istic chromatin modification patterns that often involve
multiple modifications (3,7). To systematically investigate
this phenomenon, we identified biclusters that are
enriched for a given type of genomic feature (‘Materials
and Methods’ section). For this purpose, we examined the
following eight classes of genomic features: CpG islands,
conserved sequences in vertebrates, DNaseI hypersensitiv-
ity sites (DHS), enhancers (i.e. distal p300 binding sites),
insulators (i.e. CTCF binding sites), large intergenic
noncoding RNAs (lincRNAs), promoters (i.e. regions
around TSS) and protein-coding genes.
In total, we examined 130 559 genomic loci belonging to

the eight classes of genomic features (Table 1). For each
identified bicluster, we determined the number of feature
loci that overlap with the bicluster. We then calculated a
feature enrichment P-value for each bicluster using the
hypergeometric distribution. Our analysis revealed that
721 of the 843 biclusters (85.5%) were enriched for at
least one of these features. Additional information about
the full set of biclusters including their chromatin marks,
genomic locations, intra-cluster similarity values and
feature enrichment P-values can be found in the
Supplementary Tables S1 and S2.
Next, we focused our analysis on four classes of

genomic features that are most abundant in the genome:
CpG islands, distal enhancers, insulators and promoters.
Figure 5 depicts the co-occurrence maps for the chromatin

marks associated with these genomic features.
Co-occurrence maps for the remaining four classes of
genomic features, i.e. conserved sequences, DHSs,
lincRNAs and protein-coding genes, can be found in
Supplementary Figures S6–S9.

Among these four classes, gene promoters have the
most complicated combinatorial chromatin modifications,
both in terms of the total number of combinatorial
patterns and in terms of the total number of chromatin
modifications involved. On the contrary, although there
are many more annotated CpG islands than promoters in
the genome (18 249 versus 8737, Table 1), combina-
torial chromatin modification patterns seem to be less
prevalent for CpG islands compared to promoters. We
would like to point out that many acetylation marks
exhibit a biased 50-deposition patterns in the data set
used (Supplementary Figure S5), the observed larger
complexity of combinatorial patterns in promoter
regions could be due to this bias.

Using dendrograms from the hierarchical clustering of
the co-occurrence maps, we identified a set of core modi-
fications for each class of genomic feature. From all
subtrees in a dendrogram, we retained only those
member whose co-occurrence frequencies are all above
0.5, yielding the strongly co-occurring subsets in the
co-occurrence matrices, which we refer to as modification
cores. The set of modification cores for each genomic
feature are shown in Table 2. In the rest of this section,
we discuss supporting evidence for these core chromatin
marks from published literature.

We found three modification cores for insulators. Two
of them involved only acetylations. A previous study (32)
suggested a model that high levels of histone acetylations
are maintained by insulators per se and over the protected
regions that they surround. This model ensures that pro-
moters within insulator-delimited region will be physically
more accessible to TF binding. The third core signature
involves two methylations (H3K4me2 and H3K4me3). In
a recent computational analysis that focused on histone
methylation, Jaschek and Tanay (8) identified two clusters
that are enriched in CTCF binding and high levels of
H3K4me1, H3K4me2 and H3K4me3. Taken together,
this study and studies by other groups demonstrated
that acetylation is a significant modification mark at insu-
lators and at a subset of insulators both acetylation and
H3K4 methylation co-exist.

Several chromatin modifications have been shown to be
associated with functional enhancers by various studies.
Heintzman et al. (5) used ChIP-ChIP to map several
histone modifications across the HeLa cell genome.
Their analysis revealed that H3K4me1 and H3K27ac are
significant marks for enhancers. Roh et al. (33) also
showed that H3K4me2 and H3 acetylations are enriched
at enhancers conserved between human and pufferfish as
well as enhancers conserved between human and mouse.
Wang et al. (3) analysed the same set of chromatin modi-
fication data as used in this study. They found the follow-
ing six modifications that were enriched at >20% of
enhancers: H2A.Z, H3K4me1, H3K4me2, H3K4me3,
H3K9me1 and H3K18ac. In addition to these experimen-
tal studies, a computational analysis of the HeLa cell

Table 1. Overlap between identified biclusters and genomic features

Genomic feature Total
mapped
loci/feature

No. of
enriched
biclusters

No. of
loci in
biclusters

No. of
chromatin
modifications
in biclusters

CpG island 18 249 4 319 12
Conserved sequence 119 442 3 198 11
Insulator 16 902 9 240 10
DHS 44 159 8 332 12
Enhancer 8256 9 236 10
LincRNA 707 5 145 10
Promoter 8737 551 950 17
Protein-coding
gene body

53 175 361 1029 18

Overlap P-value between a bicluster and a genomic feature is computed
using the hypergeometric distribution. A P <0.05 is considered to be
enriched. Definitions of features are as following: insulators, CTCF
binding sites; enhancers, distal p300 binding sites; promoters, regions
that span 3.5 kb upstream and 1.5 kb downstream of a transcription
start site. DHS, DNaseI hypersensitivity site; LincRNA, long intergenic
non-coding RNA.
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histone modification data set identified two clusters that
are associated with enhancers (7). These clusters involve
the signature <H3ac, H4ac, H3K9ac, H3K18ac,
H3K27ac, H3K4me1, H3K4me2>. As shown in Table 2,
the enhancer modification core we found is consistent with
previous findings (34,35). In addition, our analysis also
identified a novel core enhancer histone mark, i.e.
H2BK120ac, which provides a testable hypothesis for
future studies.
Since �60% of human gene promoters are associated

with CpG islands, it is worth comparing the modification
cores of promoters and CpG islands (36). The set of modi-
fications associated with CpG islands was a subset of those
associated with promoters except for H3K4me2 and
H3K9me1. H3K9me1 is a repressive chromatin mark
itself and is also involved in the recruitment of DNA
methyltransferase for de novo DNA methylation (37).
Since many CpG islands are methylated during develop-
ment in a tissue-specific manner (38), H3K9me1 might be
an important player for this process. Besides H3K9me1,

A B

C D

Figure 5. Combinatorial chromatin modification patterns associated with genomic features. (A) CpG islands; (B) enhancers (distal p300 binding
sites); (C) insulators (CTCF binding sites); (D) promoters. Each cell in the heatmap represents the normalized co-occurrence frequency of a
pair of chromatin modifications within the set of biclusters belonging to a specific class of genomic feature. Heatmaps are clustered using hierarchical
clustering.

Table 2. Core chromatin modification signatures associated with

functional DNA elements

Genomic
feature

Core chromatin modification signatures

Insulator <H3BK20ac, H3K36ac, H3K9ac>
<H3K27ac, H2BK5ac>
<H3K4me2, H3K4me3>

Enhancer <H2BK120ac, H3K27ac, H3K36ac, H4K8ac,
H3K4me2, H3K4me3>

Promoter <H2AZ, H2BK5ac, H2BK120ac, H3K36ac, H4K5ac,
H3K9ac, H3K27ac, H4K8ac, H3K4ac, H3K18ac,
H3K4me3, H2BK20ac, H4K91ac>

CpG island <H2BK5ac, H3K9ac, H3K4me2, H4K91ac>
<H2BK120ac, H3K4ac>
<H2BK20ac, H3K27ac>
<H2AZ, H3K4me3, H3K9me1>

Core modification sets represent highly co-occurring regions of the
co-occurrence matrix. These are identified based on the hierarchical
clustering dendrogram of the corresponding co-occurrence matrix.
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H3K27me3 and H4R3me2 are known histone marks to
recruit DNA methyltransferase. Neither of these two
histone marks was present in our CpG island biclusters.
This could due to the wider genomic deposition patterns
of H3K27me3 and H4R3me2 compared to H3K9me1
(Supplementary Figure S5).
In summary, our method recovered many known chro-

matin modification patterns associated with different
classes of functional DNA elements. We also identified
additional novel chromatin marks associated with these
DNA elements. Furthermore, our analysis has revealed
a set of 122 novel combinatorial modifications that do
not overlap with any of the eight genomic features
(Supplementary Table S2). These patterns represent
potential epigenetic signatures of yet undiscovered DNA
elements.

Relationship of promoter chromatin modifications and
gene expression

To better understand the relationship between promoter
chromatin modification and gene expression, we applied
CoSBI to promoter regions of 21 123 RefSeq genes in the
human genome. We ran CoSBI to capture biclusters that
occur at least on 0.5% of all promoters and include at
least three chromatin modification marks. We increased
the mins parameter from 0.1 to 0.5% because promoter
regions are much smaller than the whole genome. This
ensures we capture patterns that recur at similar number
of loci as the genome-wide analysis (105 versus 130). The
coherency cut-offs were set at 0.75 and 0.625, respectively.
A higher � parameter value was used than that of
the genome-wide analysis since the promoter regions in
general contain more tag counts compared to genome-
wide data. With this parameter setting, our algorithm
identified 2206 biclusters.
Next we focused on promoter biclusters whose target

genes are either highly expressed or silent in human CD4+

T cells based on the gene expression profiles generated by
Schones et al. (25). To do so, for each bicluster, we
computed the median expression level of all genes
associated with the promoters in the bicluster. We then
chose top 10 biclusters with highest median expression
levels and bottom 10 biclusters with lowest median expres-
sion level (see ‘Materials and Methods’ section for details).
They were regarded as being associated with highly
expressed and silent genes in T cells. By examining the
chromatin modification patterns of these two groups of
promoters, we made several interesting observations
regarding the relationship of gene expression and com-
binatorial patterns of chromatin modifications at gene
promoters. Most strikingly, we observed that silent
genes can also be associated with acetylations, despite
the fact that acetylation is generally regarded as an
activating modification (Figure 6). Previously, activating
methylation but not acetylation marks have been observed
at the promoters of silent genes poised for activation
(39–41). Our finding with acetylation is consistent with
the result of a more recent study by Barski et al. (42).
By examining genome-wide histone modification profiles
and gene expression during CD4+T-cell activation, Barski

et al. found that activating acetylations were already in
place for a majority of inducible genes, even though the
genes were silent in resting cells. Similarly, genes that were
silenced upon T-cell activation retained positive chromatin
modifications even after being silenced. Two mechanisms
have been proposed by the authors to explain the presence
of activating acetylation marks at silent genes: de novo
poising of silent genes for future expression or as a
memory of past transcription. Additional experiments
will be needed to determine if either or both mechanisms
are responsible for this phenomenon.

Upon further examination of the co-occurrence maps
in Figure 6, we noticed that acetylation marks could
associate with either activating or repressive methylation
marks. Interestingly, promoters of silenced genes have a
combinatorial modification pattern composed of a repres-
sive methylation mark, H3K27me3 and several acetyl-
ation marks. On the other hand, highly expressed genes
have promoters that are decorated by an activating methy-
lation mark, H3K36me1, along with a few acetylations.
Therefore, depending on the nature of the methylation
that co-occurs with acetylation marks, the regulatory
outcome of acetylations in local chromatin environ-
ment may be either inducing or repressing the gene expres-
sion. This observation and results reported by Barski et al.
(42) provided a generalization to the bivalent domain
concept (promoter regions with overlapping H3K4me3
and H3K27me3 modifications) first proposed by
Bernstein et al. (39), i.e. the presence of both acetylation
and repressive methylation marks may poise silent genes
for activation.

Finally, our analysis also revealed that two different
repressive methylation marks could be present at silent
gene promoters, one involving lysine methylation
(H3K27me3) and the other involving arginine methylation
(H4R3me2) (Figure 6). Interestingly, these two repressive
marks do not co-occur at high frequency and they form
modification cores with different modification marks, i.e.
H3K27me3 mostly with acetylation whereas H4R3me2
with H3K36me1. Having different modification mark
partners and low frequency of co-occurrence suggests
that these two repressive marks might be involved in dif-
ferent pathways for maintaining the silent state of target
genes. It has also been shown that both modifications can
recruit DNA methyltransferases for de novo DNA methy-
lation (43,44). Therefore, it appears that at least three re-
pressive marks could be present at these silent gene
promoters, two histone methylation marks and DNA
cytosine methylation.

DISCUSSION

Subspace clustering is an extension of traditional clustering
that seeks to find clusters in different subspaces given a data
set (45). Subspace-clustering algorithms have been de-
veloped to analyse 2D microarray data (also known as
biclustering in microarray data analysis literature),
associating subsets of genes whose expression are
coherent under a subset of conditions (46–50). Compared
to the microarray data, epigenomic data has a unique
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feature that must be accounted for, i.e. the data sets are
‘spatially arranged’ over chromosomes. This feature can
be regarded as the third dimension of the data with the
first two being genomic locus and type of epigenetic modi-
fication. The CoSBI algorithm is designed specifically for
this task and it is capable of clustering 3D epigenomic data
and grouping them into defined clusters of common
epigenomic behaviour.

Our proposed algorithm aims to identify 2D patterns
from the 3D GCP matrix. Other algorithms have been
proposed for similar analysis. Zhao and Zaki (26)
proposed a tri-clustering approach to analyse multiple
time-series data sets, which extends the biclustering concept
into three dimensions. However, identified ‘tri-clusters’ by
their algorithm are composed of subsets from three dimen-
sions, which implies partial chromatin modification signals/
peaks from ChIP-seq reads. Therefore, this algorithm is not
suitable for the analysis of the epigenomic data. In addition,
the tri-clustering algorithm is computationally very expensive
and did not scale to our data.

As discussed in the Introduction, there is a fundamental
difference between a subspace-clustering-based algorithm
such as CoSBI and previous algorithms such as
ChromaSig (7) and HMM-based algorithms (8,9). The
latter category of algorithms seek patterns that involve
all chromatin marks in the input data whereas the
former category of algorithms seek patterns involving
only subsets of chromatin modifications in the input
data. Numerous studies so far have demonstrated that
many combinatorial patterns only involve a few of the
many chromatin modifications available in a typical
ChIP-Seq data set nowadays. Therefore, subspace-
clustering algorithm is better suited for tasks of identifying
subsets of re-occurring modifications given a large com-
pendium of chromatin modification data. It also helps to
identify more precise patterns. As a comparison, we ran
ChromaSig on the same histone modification data used in
our comparison with EDISA, i.e. 39 histone modification
data (5 kb windows) at 213 enhancers and 213 random
sequences. Using the parameter settings suggested by the
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Figure 6. Combinatorial chromatin modifications of promoters associated with highly expressed and silent genes in human T cells. Biclusters associated
with highly expressed and silent genes are shown at top right and bottom left, respectively. Each curve represents the cumulative distribution of expression
levels of a set of genes whose promoters are associated with chromatin modification biclusters. Gene expression levels in log scale is represented by x-axis
and y-axis represents the fraction of genes in the biclusters that are expressed at higher levels than the corresponding x-axis values.
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ChromaSig authors, however, ChromaSig failed to find
any significant clusters. We believe the reason for the
failure is that enhancer histone modification patterns do
not involve all 39 marks but ChromaSig is designed to find
patterns involving all histone marks in the input data. On the
other hand, unlike HMM-based algorithms, since CoSBI is
designed to identify a set of chromatin marks restricted to
the same genomic location (overlapping marks), it cannot
identify patterns that involve spatially separated (i.e. sequen-
tial) chromatin modifications. Known examples of sequen-
tial chromatin modification patterns include H3K79me3–
H3K4me3–H3K36me3 associated with promoter and gene
bodies (10) and H3K4me3–H3K36me3 associated with
lincRNAs. HMM-based algorithms by design are better
suited for identifying these kind of patterns.
Although CoSBI was developed for epigenomic data

analysis, it can also be used to analyse 3D microarray
data (e.g. expression profiles from different patients/
samples over a time course). In this setting, the goal of
the analysis is to infer clusters that are coherent in two
dimensions in the 3D microarray data. We also envision
several different ways that CoSBI can be applied to
epigenomic data sets. For instance, to examine the spatial
and temporal dynamics of combinatorial chromatin modi-
fications, users could apply CoSBI to the chromatin
modification maps from different cell types or different de-
velopmental stages. Comparative analysis of the inferred
biclusters could reveal common and condition-specific
chromatin modification patterns. Fuelled by several
large-scale epigenomic projects [Epigenome Roadmap,
ENCODE (51), modENCODE (52)], epigenomic data
sets are becoming increasingly abundant. Comparative
analysis of different chromatin modification maps using
CoSBI could lead to novel insights into the histone code
hypothesis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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