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Abstract

Background: Regular and timely monitoring of blood glucose (BG) levels in hospitalized patients with diabetes mellitus
is crucial to optimizing inpatient glycaemic control. However, methods to quantify timeliness as a measurement of quality
of care are lacking. We propose an analytical approach that utilizes BG measurements from electronic records to assess
adherence to an inpatient BG monitoring protocol in hospital wards.

Methods: We applied our proposed analytical approach to electronic records obtained from 24 non-critical care wards in
November and December 2013 from a tertiary care hospital in Singapore. We applied distributional analytics to evaluate
daily adherence to BG monitoring timings. A one-sample Kolmogorov-Smirnov (15-KS) test was performed to test daily
BG timings against non-adherence represented by the uniform distribution. This test was performed among wards with
high power, determined through simulation. The 15-KS test was coupled with visualization via the cumulative distribution
function (cdf) plot and a two-sample Kolmogorov-Smirnov (25-KS) test, enabling comparison of the BG timing
distributions between two consecutive days. We also applied mixture modelling to identify the key features in
daily BG timings.

Results: We found that 11 out of the 24 wards had high power. Among these wards, 15-KS test with cdf plots
indicated adherence to BG monitoring protocols. Integrating both 15-KS and 2S-KS information within a moving
window consisting of two consecutive days did not suggest frequent potential change from or towards non-
adherence to protocol. From mixture modelling among wards with high power, we consistently identified four
components with high concentration of BG measurements taken before mealtimes and around bedtime. This
agnostic analysis provided additional evidence that the wards were adherent to BG monitoring protocols.

Conclusions: We demonstrated the utility of our proposed analytical approach as a monitoring tool. It provided
information to healthcare providers regarding the timeliness of daily BG measurements. From the real data application,
there were empirical evidences suggesting adherence of BG timings to protocol among wards with adequate power
for assessing timeliness. Our approach is extendable to other areas of healthcare where timeliness of patient care
processes is important.
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Background

Regular monitoring of blood glucose (BG) in hospital-
ized patients is an important component of inpatient
diabetes mellitus (DM) care. The American Diabetes
Association (ADA) recommends monitoring blood glu-
cose (BG) four times per day (i.e., before meals and at
bedtime) in hospitalized patients with DM. If the patient
is fasting or receiving continuous enteral or parenteral
nutrition, the recommended BG monitoring frequency is
once every 4 to 6 h. BG monitoring is performed every
30 min to 2 hourly, if a patient is on an intravenous
insulin infusion [1-4].

Timely measurement of BG facilitates the delivery of
inpatient DM care, and allows treatment regimens to be
revised to achieve optimal glycaemic control. For ex-
ample, pre-prandial BG measurement supports clinical
decision-making by enabling healthcare providers to pre-
scribe an appropriate dose of supplemental insulin to
correct for pre-meal hyperglycaemia. Therefore, a holis-
tic assessment of the quality of inpatient DM care
should include an evaluation of compliance to BG moni-
toring timings. However, methodologies assessing timeli-
ness are not well-established.

A study by Buchs and colleagues assessed the compli-
ance to BG monitoring protocols by using a pie chart to
display the proportion of BG timings in a specific portion
of time, such as, pre-meals and post-meals [5]. The major-
ity of BG measurements (approximately 75 %) occurred
before mealtimes over a 6-month period. However, this
method aggregated data over a long period which did not
facilitate further evaluation of circumstances surrounding
non-adherence, if any was detected. This would limit its
utility in a real-world setting.

Continuous evaluation of BG measurements can now be
conducted with the advent of electronic medical records
[6]. We propose using distributional analytics as a surveil-
lance tool to provide high-resolution empirical evidence of
adherence to clinical protocols where timeliness is an im-
portant factor [7]. Our proposed analytical approach will
address the following: (i) assessment of daily adherence to
a BG monitoring protocol by ward over a pre-specified
period, and (ii) detection of wards and days exhibiting po-
tential non-adherence or changes in patient care processes.

Methods

We examined all point-of care (POC) BG measurements
performed in 24 non-critical care wards in a 1000-bed
tertiary care hospital, National University Hospital, from
November to December 2013. Capillary BG measure-
ments were performed using POC glucose meter Accu-
Chek Inform II (Roche, Basel Switzerland) and stored in
a central laboratory database. The BG data downloaded
from the central database contains de-identified patient
identifier, BG value, patient location (i.e., ward), date and
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time of BG measurement. The specialty of the ward in-
dicates the predominant type of patients in the ward.
We did not collect additional data including mealtimes
and patient demographics, which reflected the current
set-up of the laboratory database.

We analyzed all the POC BG timings during the 2-
month period. BG timings were converted to hours
according to the standard 24-h clock. In the hospital
where we conducted the study, the mealtimes are
targeted around 0800, 1200 and 1800 h, while the
bedtime is targeted around 2200 h.

The majority of inpatients requiring BG monitoring are
eating regular meals (i.e., not fasted). Hence, the ideal BG
timings should be distributed with multi-modes within a
day, where the modes should occur before mealtimes and
at bedtime. An extreme contrast would be a uniform dis-
tribution in the BG timing, which reflects a complete lack
of adherence to ADA-recommended timings for patients
eating regular meals. Hence, a simple way to assess poten-
tial adherence to BG monitoring protocol is to perform a
one-sample Kolmogorov-Smirnov (1S-KS) test that de-
tects deviation of BG timings from a continuous uniform
distribution between 0 and 24 h [8], where a significant
p-value (i.e., p-value <0.05) suggests potential adher-
ence to protocol. For presentation purposes only, we
ranked wards in a decreasing order according to the
proportions of days with significant deviations from the
uniform distribution over the 2-month period and ties
were broken with the median p-value. We plotted the
boxplots of p-values for each ward stratified by medical
specialty to investigate for potential differences between
specialties.

To avoid false negatives with 1S-KS test, we identified
wards that are adequately powered by performing a
Monte Carlo simulation study to estimate the power for
each ward [9-11]. For each ward, we had generated
5,000 simulation iterations for each day. The BG timings
were simulated via the inversion of the empirical cumu-
lative distribution function (cdf) on that day and the
total number of measurements simulated was the same
as the observed number on that day [11, 12]. We used
linear interpolation to obtain a continuous cdf for simu-
lation purposes and recorded the simulated power for
each day (i.e., the proportion of iterations with p-values
<0.05) [13]. The simulation procedure for each BG tim-
ing in a day was as follows:

1. We generated a random number from a uniform
distribution, i.e., # ~ U(0, 1)

2. We identified the closest observed BG timings
interval, (¢, £,], on that day, such that, F(¢;) <u <

F(t,), where F(-) is the empirical cdf of BG timings,

_F
then Lsimulate = (t2_t1) ﬁ + t1.
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We gathered the estimated power from simulation
across all days to compute the median and mean power
for each ward. Wards with average or median power
more than or equal to 90 % were considered adequately
powered for assessing adherence. To understand the
interplay among effect size, sample size and p-value across
all wards in the hospital, we also regressed —log;o(p-value)
of 1S-KS test on standardized effect size and sample size,
with interaction between the two standardized quantities.
The effect size is the 1S-KS test statistic, D = sup,

|F(y)- 7|, where y denotes the BG timing and D quanti-
fies the magnitude of deviation between the empirical cdf
of BG timing and the uniform distribution.

To complete the assessment of BG monitoring protocol
with 1S-KS, we corroborated the p-value findings visually
with the cdf plots to inspect for features that we would
expect from a ward that had been compliant with the
protocol. Testing against a uniform distribution is based
on a simple assumption of an extreme non-adherence
behavior. However, other non-adherent behaviours may
exhibit distributions of BG timings that differ from a uni-
form distribution resulting in statistically significant find-
ings with 1S-KS tests too. To rely less on the parametric
assumption of the uniform distribution, we also proposed
to test the BG timing distribution of the current day
against the previous day via a two-sample Kolmogorov-
Smirnov (2S-KS) test [14, 15]. A significant p-value from a
2S-KS test suggests a statistically significant difference in
BG timing distributions between two consecutive days.

So far, both the 1S-KS and 2S-KS tests were using BG
timings from each day and two consecutive days respect-
ively. By applying mixture modelling on all BG timings
in the 2-month period among wards with high power,
we can de-convolute the overall distribution of BG tim-
ings into components. We assumed a mixture of normal
distributions to model daily BG timings where the mean
and variance parameters were fixed constants across all
days, and we modelled the mixture probability of each
component by day where day was a categorical variable.
In this finite mixture model, we defined the conditional
density as follows:

K

h(yij|wi,~, a,u, 02) _ Z i (wig, a)f (yij|p¢k7 Gi),

k=1

where y;; denotes the j-th BG timing on the i-th day for
i=1,.., 61, and j=1,..., n; (where n; is the sample size
on the i-th day). Assuming there are K components,
is the component probability assigned to the k-th com-
ponent, and f{-) denotes the normal density function
with component-constant mean, u;, and variance, 0%
where g = (41, s, ..., ) " and 0 =(6%,05,...,00)". We as-
sume a multinomial logit model for the component
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probabilities with independent variable, w;; = (I;js, ..., Lija
..o1i61) ', where I;;; takes a value of 1 if the i-th day is
the d-th day in this 2-month period:
ewt‘iak
ﬂk(wijaa) ==K 7

w..
e q,
Zu:l u

where a = (ag); 1,k and a;=0. So the full log-likelihood
function for all BG timing in a ward is:

logl = i Zn: log{h(yl-j|wij, a) }

i=1 j=1

We used the integrated classification likelihood (ICL)
as the criterion for model selection. It is a more robust
criterion than Bayesian information criterion (BIC) in
the presence of violation in model assumptions [16].
Hence, if the wards with high power were adherent to
the BG monitoring protocol, there should be only four
components with small standard deviation (SD), which
we had arbitrary taken it to be SD<1, and the mean
values of these components should be prior mealtimes
and around bedtime. We summarized the mean and
variance estimates for each component with SD <1 using
the minimum, median and maximum statistics, and plot-
ted the mean+1.96 x SD of each component for all
wards. For the probability estimates, we first took the
average probability estimates within each ward and re-
ported their minimum, median and maximum for each
component with SD < 1. For components with SD >1,
their minimum, median and maximum statistics were
reported collectively for mean, variance and probability
estimates.

We used the R statistical software program to analyze
the BG data. R packages, stats, Matching and flexmix
were used to perform the simulation (R functions: runif
and approx), KS-tests (R functions: ks.test and ks.boot)
and mixture modelling (R functions: stepFlexmix and
FLXPmultinom) [14, 17, 18].

Results

There was a total of 73,182 BG measurements in
23,221 patient-days from 3,673 patients during the period
November to December 2013. Among the 23,221 patient-
days, 9.4 % of patient-days had more than four BG mea-
surements, 42.3 % of them had four BG measurements,
and 48.3 % had less than four BG measurements.

Figure 1 ordered the boxplots of the 1S-KS test p-values
for all 24 non-critical care wards by the proportions of
days with significant p-values within each specialty. The
boxplots with dark gray shading corresponded to wards
that were not adequately powered and these wards were
either small wards, or obstetrics & gynecology (O&QG)
wards that had much fewer patients on BG monitoring.
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Fig. 1 P-values of Kolmogorov-Smirnov tests. The top panel displayed the boxplots of —log;o(p-values) from the one-sample Kolmogorov-Smirnov
(15-KS), the middle panel displayed the minimum (min), median and maximum (max) daily number of blood glucose (BG) measurements over
the 2-month period, and bottom panel displayed the boxplot of p-value from the two-sample Kolmogorov-Smirnov (25-KS) tests. The boxplots
were grouped together according to the medical specialties of the wards, where Orthopedic represented Orthopedic surgery, Cardio represented
Cardiology, O&G represented Obstetrics and Gynaecology. Boxplots in white and dark gray shade corresponded to wards with mean or median power>
90 % and <90 % respectively. Within each specialty, wards were ranked by the proportions of significant p-values and when there were ties the median
p-values were used. The light gray region in the top and bottom panels corresponded to the region where the p-values were >0.05 and <0.05 respectively

Wards with high power had median sample size ranging
from 59 to 103 BG measurements in a day. When we ex-
amined the relationship of the p-values with sample
size and effect size across the 24 wards, a one unit in-
crease in the standardized sample size alone could lead
to an increase of 2.56 in —log;o(p-values) keeping stan-
dardized effect size fixed at 1, which is about 99.7 %
reduction in p-values, and similarly a one unit increase
in the standardized effect size alone could lead to an in-
crease of 2.41 in —log;o(p-values) keeping standardized

sample size fixed at 1, which is about 99.6 % reduction
in p-values (see Table 1). Hence, the change in p-value
that was attributable to sample size and effect size re-
spectively was comparable.

A significant 1S-KS test p-value only suggests the
particular day is potentially adherent to protocol. To
ascertain the adherence status of wards, we corrobo-
rated the p-values with daily cdfs of BG timings. For
the two highly ranked wards (i.e., Rank 1 and 2 in
Fig. 2a and b respectively), we found that the majority



Chen et al. BMC Medical Research Methodology (2016) 16:40 Page 5 of 9

Table 1 The relationship of —log;o(p-values) with effect size and ~ of days had exhibited four pronounced steps before
sample size mealtimes and around bedtime suggesting adherence to
Beta(95% C))  BG monitoring protocols. This was also observed in the

Standardized effect size 152 (1.5, 1.54) other wards with high power. There were only a few
Standardized sample size 167 (166, 169)  days that had fewer pronounced steps than the ideal
Interaction between the two standardized quantities 0.89 (0.87,0.9) BG timing distribution. When we further explored the

days with fewer pronounced steps, we found that there

. . . 2 0
Coefficient of deterrmination (%) 972% were no BG records on prior days suggesting potential
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Fig. 2 Cumulative distribution function plots of daily BG timings for selected wards. Panels a and b displayed the top two highly ranked wards
using the one-sample Kolmogorov-Smirnov (15-KS) test in Fig. 1; panels ¢ and d display the two lowest ranked wards. Each of the solid line was a
cumulative distribution function (cdf), where the light grey lines represented cdfs of daily BG timings and the dark gray lines represented cdfs of
aggregated BG timings over the 2-month period. The diagonal dotted lines represented the cdf of a uniform [0, 24], i.e, the reference distribution
used in the 1S-KS test
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missing data influencing the BG timing distribution.
The prevalence of days without any BG measurements
were low. There were 31 instances where no BG mea-
surements were available on an entire day among the
11 wards with adequate power in the 2-month period
(i.e., a total of 671 instances =61 days x 11 wards) and
27 instances among 13 wards with inadequate power in
the same period (i.e., a total of 793 instances = 61 days x
13 wards). For the two lowest ranked wards with low
power (i.e., Rank 23 and 24 in Fig. 2c and d respectively),
the lines were more jagged and less pronounced when
compared to wards with high ranks. The wards with low
ranks were O&G wards and patients from these wards
were mostly fasting and hence monitored more frequently
in every 4—6 h.

In Fig. 1, the majority of 2S-KS test p-values were
insignificant. For the scenarios where two consecutive
days had significantly different BG timing distributions,
they contained the days with less than four pronounced
steps observed in Fig. 2 previously. Further exploration
among wards with high power by utilizing both the 1S-KS
and 2S-KS p-values within a two consecutive days moving
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window did not suggest frequent potential change from or
towards non-adherence to protocol (i.e., a significant 2S-
KS p-value, and only one significant 1S-KS p-value) as
only three occurrences across all wards over the 2-month
period had transitions from non-adherence to adherence
or vice versa.

The daily BG timings were expected to be distributed
with four modes, i.e., before mealtimes and at bedtime,
if the BG monitoring protocol was being adhered to.
Among the wards with high power (=90 %), there was
evidence suggesting adherence to protocol. Hence, we
modelled each ward individually using mixture models
which de-convoluted the BG timing distribution into
components. From the mixture modelling analysis, we
consistently identified four components with SD esti-
mates < 1. In Fig. 3, we visualized the four components
identified for each ward with their mean and the interval
corresponding to mean + 1.96SD (indicating 95 % of the
BG measurements were within this interval). Most of
the wards were adherent to protocol because the major-
ity of their measurements (i.e. > 95 %) were taken before
mealtimes (except lunch time) and around bedtime.

4am 8am 12noon 4pm 8pm 12am
L : J‘ Il - 1 - ]
5 ——i et ! et
6 —— ——i et et
7 i et ! i
9 i i i e
10 i |—~—~| i |—.—,|
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Fig. 3 The four components from mixture models with small standard deviations among wards with high power. The four components were ordered
by their mean estimates. Diamonds represented the mean estimates and the solid horizontal lines with ticks at the two ends represented the +1.965D
widths. For the component corresponding to before breakfast, only ward with Rank 7 crossed 8 am; for the component corresponding to before lunch,
wards with Rank 1, 5,7,8,10 and 11 crossed 12noon; for the component corresponding to before dinner, no wards crossed 6 pm; for the component
corresponding to bedtime, all wards crossed 10 pm
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Among wards with high power, we found that the mean
estimates of the component corresponding to before
breakfast time, where the expected breakfast time was
8 am, the median of the mean estimates was about 46 min
earlier than 8 am, and it ranged from 103 to 29 min earlier
than 8 am (Table 2). For the component corresponding to
before lunch time, where expected lunch time was
12noon, the median of the mean estimates was about
37 min earlier than 12noon and it ranged from 53 to
23 min earlier than 12noon. For the component corre-
sponding to before dinner time, where the expected
dinner time was 6 pm, the median of the mean estimates
was 49 min earlier than 6 pm and it ranged from 59 to
38 min earlier than 6 pm. For the component correspond-
ing to bedtime, where the expected bedtime is 10 pm, the
median of the mean estimates was just 4 min before
10 pm and it ranged from 26 min before 10 pm to 16 min
after 10 pm. The range of the mean estimates was the
largest for the component corresponding to before break-
fast time and it was almost twice as large when compared
with the remaining three components.

As for the SD estimates, the median across the four
components were between 0.25 and 0.34 h (ie., for each
component, 95 % of the BG measurements were approxi-
mately within an hour, or an hour and 20 min interval).
For components with SD > 1, the range of the total num-
ber of components were 1 and 3. These components may
potentially represent the BG measurements taken from
patients with hypoglycaemia, or patients who were fasting
or receiving insulin infusions. The minimum SD for these
components was around 1.6, suggesting 95 % of the BG
measurements were within a time interval > 6 h. The ma-
jority of the probability estimates for each component
were distributed almost equally across the components,
except for a few cases where the components with large
SD had smaller probabilities when compared to the four
components with small SD.

Discussion

In this paper, we applied distributional analytics-based
methodology, mixture modelling and visualization to as-
sess adherence to an inpatient BG monitoring protocol
in non-critical care wards. To alleviate the occurrence of
false positives due to the interplay of small sample size
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and effect size in the 1S-KS test, we performed a simula-
tion study to identify wards where the daily total number
of BG measurements had a mean or median power
greater than or equal to 90 % over the 2-month period
(i.e., wards with high power). Restricting our assessment
to these wards, we further corroborated the 1S-KS test
findings using: (1) visualizations with cdf plots, (2) 2S-
KS tests, and (3) mixture modelling.

The BG timing distribution of wards with high power
exhibited four modes before three mealtimes and around
bedtime. From the cdf plots, we observed four pro-
nounced steps and from the mixture modelling, we ob-
served exactly four components with small standard
deviation. This phenomenon concurred with our expect-
ation of a ward following ADA monitoring recommen-
dations for patients eating regular meals. In particular,
the cdf plots and the mean + 1.96SD intervals from mix-
ture modelling allowed us to identify the time interval
where majority of BG measurements was taken, which
was not possible using the pie chart with aggregated BG
data [5]. These visualizations facilitate further investiga-
tions of non-adherence by healthcare administrators by
identifying problematic timings during the day. This high-
lights the importance of pairing statistics with visualization
to deliver actionable information. When we combined both
the 1S-KS and 2S-KS tests within a 2-day moving window
over the 2-month period, there was a low occurrence of
change from or towards non-adherence to protocol.

Although we could only draw conclusions for wards
with high power to minimize false negatives, we could ac-
crue a sufficient number of BG timings for those wards
with moderate power by aggregating the BG data over a
two-day window. For example, the 6-th medical ward in
Fig. 1 had median power close to 90 % (i.e., 87.3 %) and
median effect size close to the wards with high power. We
proposed to combine the BG timing of the current day of
interest with its previous day to obtain a larger sample size
while assuming the patient care process was the same
between two consecutive days. With a two-day window,
we obtained six other wards with an average or median
power greater than 90 %, and only the last ward in the first
five specialties and the two O&G wards in Fig. 1 were not
adequately powered. The results on adherence for these
six additional wards with moderate power were similar to

Table 2 Mean, standard deviation and mixture probability estimates from the mixture models among wards with high power

Components with SD < 1

Components with

SD >1
First Second Third Fourth Others
Mean (converted to hours according to 24-h clock) 7.23 (6.29,7.52) 11.38 (11.11, 11.61) 17.18 (17.02,17.37) 2194 (21.57,22.26) 11.22 (438, 21.56)
Standard deviation (hours) 0.28 (0.13,0.75) 0.34 (0.19, 0.44) 0.25 (0.13,0.38) 0.26 (0.21, 0.93) 5.94 (158, 6.55)
Mixture probabilities 0.22 (0.18,0.29) 0.18 (0.16,0.2) 0.22 (0.19, 0.23) 0.2 (0.15, 0.23) 0.12 (0.06, 0.22)

Median (minimum, maximum) were reported for mean and standard deviation (SD). For mixture probabilities, we first took the average estimates within each

ward and reported the median (minimum, maximum)
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the 11 wards with high power. In particular, we identified
20 out of 360 instances =60 2-day windows x 6 wards
were potentially non-adherent to BG protocol and there
were no occurrence of change from or towards non-
adherence to protocol.

As our proposed approach uses ward level as the unit
of analysis, it captures the correlation of BG timings
within a patient through the marginal distribution of BG
timings from all patients in the ward. Although we had
identified some days without BG measurements, these
occurrences were low and sporadic, and therefore un-
likely to affect our findings.

Our proposed approach provided an analytical way to
alert healthcare administrators of potential non-adherence
to protocol for a specific day and ward. However, to
extend our approach to continuous surveillance through
daily monitoring, we proposed to modify the criterion for
wards with high power based on the estimated power for
each day instead of the mean or median power over the
entire 2-month period. This will be useful for a large
hospital and will open up the opportunity to monitor
adherence on a daily time-scale.

Conclusion

In this paper, we have proposed a way to assess adherence
to BG monitoring protocols using electronic BG records.
To reduce false negatives from our proposed assessment
with 1S-KS test, we used concepts from power calculation
and simulation to determine the wards that are adequately
powered with empirical data. By investigating the p-values
of KS tests, cdf plots and mixture modelling, we found
that wards with high power were adherent to the BG
monitoring protocol.

In summary, our approach leverages on the distribu-
tional analytics and the availability of electronic records of
laboratory data to provide a practical surveillance tool for
identifying potential non-adherence to clinical workflow.
Our approach is also applicable to other areas of health-
care where timeliness of patient care processes is para-
mount, for example, medication administration or timed
blood investigations.
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