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Abstract: Silver has a long history of antibacterial effectiveness. The combination of atomically
precise metal nanoclusters with the field of nucleic acid nanotechnology has given rise to DNA-
templated silver nanoclusters (DNA-AgNCs) which can be engineered with reproducible and unique
fluorescent properties and antibacterial activity. Furthermore, cytosine-rich single-stranded DNA
oligonucleotides designed to fold into hairpin structures improve the stability of AgNCs and addi-
tionally modulate their antibacterial properties and the quality of observed fluorescent signals. In
this work, we characterize the sequence-specific fluorescence and composition of four representative
DNA-AgNCs, compare their corresponding antibacterial effectiveness at different pH, and assess
cytotoxicity to several mammalian cell lines.

Keywords: DNA; silver; AgNC; nanocluster; antibacterial; fluorescence

1. Introduction

The formation of silver nanoclusters (AgNCs) on single-stranded (ss) DNA templates
has been shown to promote the unique optical properties defined by the sequences of
the DNA strands [1–3]. Out of all available coordination sites on nucleobases, silver
cations demonstrate the highest affinity for the N3 of cytosines, and therefore cytosine-
rich ssDNAs become efficient capping-agents for AgNC formation [4–6]. The size and
shape of AgNCs are regulated by rationally designed and chemically synthesized short
DNA oligonucleotides with different numbers of single-stranded cytosines embedded in
secondary and tertiary DNA structures such as hairpin loops, i-motifs, and G-quadruplexes,
to name a few [4–6]. The optical properties of DNA-AgNCs are dictated by their size, as the
appearance of the characteristic fluorescence is possible for nanoclusters comprised of only
a few silver atoms. At this nanometer size, a continuous density of electronic energy states
present in bulk silver breaks up and a band gap in the material becomes apparent [1–8].
This, in turn, causes a molecule-like behavior of AgNCs with discrete energy states allowing
for size-dependent fluorescence to occur [7–9]. DNA-capped AgNCs are also generally
more resistant to photobleaching when compared to traditional organic fluorophores or
fluorescent proteins, and this property begets the application of DNA-AgNCs in a variety
of nanophotonics and biosensing/biomedical applications [10–13]. While nanophotonics
and biosensing with DNA-AgNCs’ advantageous optical properties have been widely
probed and studied, other practical uses of AgNCs remain unexplored. Since the main
functional component of DNA-AgNCs is silver, applications based on effects known for this
element may prove useful. Various forms of silver, including ions and silver nanoparticles,

Molecules 2021, 26, 4045. https://doi.org/10.3390/molecules26134045 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9233-0936
https://orcid.org/0000-0002-6917-3183
https://doi.org/10.3390/molecules26134045
https://doi.org/10.3390/molecules26134045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26134045
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26134045?type=check_update&version=2


Molecules 2021, 26, 4045 2 of 14

are well-documented to have antibacterial efficacy [14–17]. Several groups have shown
DNA-AgNCs to be effective against both Gram-negative and Gram-positive bacteria in
liquid cultures [18–20] and against the formation of biofilms when aptamers for increased
targeting and binding of the bacteria of interest were introduced [21,22]. However, the
underlying mechanisms and relationship between the fluorescent properties of DNA-
AgNCs and their antibacterial actions are still understudied and poorly understood. AgNCs
offer a large surface-to-volume ratio and are composed of both forms of silver: cationic
(Ag+) and neutral (Ag0), thereby providing further advantages over solid silver, silver salts,
or silver nanoparticles.

We reason that understanding and linking optical and antibacterial properties of
DNA-AgNCs may pave the way to the development of next generation antibacterial agents
with high potency and regulated activity. Our current work includes four representative
DNA hairpins that template the formation of DNA-AgNCs with four distinct colors and
investigates their optical properties in relation to antibacterial activity measured at different
pH, as well as in relation to cytotoxicity assessed for several human cell lines. The use of
antibacterial DNA-AgNCs formed on DNA hairpins becomes advantageous for various
antibacterial formulations and opens broader possibilities for DNA nanotechnology due
to the relative structural stability of the hairpins and their inability to participate in any
undesirable base-pairings, thus not interfering with any other DNA nanodesigns. As
proof-of-concept work, we explore the use of DNA-AgNC forming hairpins with odd
numbers of consecutive cytosines (C7, C9, C11, or C13) in their loop compositions.

2. Results
2.1. Template Design

Cytosine-rich ssDNAs are suitable capping agents for templating stable DNA-AgNCs
due to cytosine’s high affinity for silver ions, Ag+. Various sequences have been reported
to stabilize clusters with unique optical properties, including bright emission bands in
the visible part of the spectrum and excitation bands in the UV and visible regions. The
emission wavelengths can be modulated by choosing a specific DNA sequence and various
colors (e.g., yellow, green, orange, red as shown in Figure 1) of DNA-AgNCs have been
reported based on prevalent emission wavelengths for a particular nanocluster.
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Figure 1. Experimental flow of DNA-AgNC synthesis, purification, and analysis. The embedded 
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Figure 1. Experimental flow of DNA-AgNC synthesis, purification, and analysis. The embedded
image shows DNA-AgNCs after their purification upon UV excitation on a transilluminator.

While the parameters that define emissive properties of DNA-AgNCs are still not well
understood, it is generally accepted that shape, size, and overall charge state of the AgNC



Molecules 2021, 26, 4045 3 of 14

are among the main contributors. We hypothesize that the same factors are responsible for
modulating the antibacterial activity of the DNA-AgNCs. While cytosine-rich ssDNAs have
been widely used in synthesizing AgNCs, these sequences are prone to forming alternative
DNA structures [23]. Such alternative structures include i-motif and non-canonical C-Ag-C
base paring facilitated by the presence of silver cations. We have compared properties of
two C12-containing templates in which one is an opened ssDNA and another is a sequence
embedded in a hairpin loop. The results (Supporting Figure S1) clearly show the differences
observed for these two sequences after DNA-AgNC formation. As evident from AFM
images (Supporting Figure S1A,B), the single-stranded template shows various degrees of
polymerization, while the hairpin-loop template does not polymerize, forming individual
DNA-AgNCs. These results agree well with our recent study demonstrating that the
formation of alternative DNA structures in the presence of Ag+ drives the polymerization of
various sequences containing single-stranded (ss) C-rich stretches [23]. Additionally, such
polymerization also alters fluorescence properties of AgNCs (Supporting Figure S1C,D).
Hairpin-looped structures feature one single fluorescence peak for C12 sequence while
single-stranded templates show multiple peaks, suggesting the formation of AgNCs with
various sizes and shapes due to variety of the polymerized templates [23]. To avoid
structural and functional uncertainties associated with ssCN template sequences and to
make the structures suitable for further implementation in nanodesign, we have chosen to
work only with DNA hairpin templates wherein the CN sequence forms the loop of the
hairpin structure. Four representative templates were constructed with the same double-
stranded stem and a loop with a variable number of ssCs (C7, C9, C11, and C13). This
design gradually increases the number of binding sites for silver and makes the size of the
loop larger (Figure 1) [3,24]. An odd number of cytosines in the loop with +2C steps was
intended to noticeably alter properties of the DNA-AgNCs with fluorescent colors covering
the entire visible spectral region (Figure 1). We reasoned that such substantial optical
differences would provide an insight into which factors modulate the antibacterial activity
of the DNA-AgNCs and how antibacterial activity correlates with the optical signatures
of individual DNA-AgNCs. Incubation of the looped DNA templates with silver nitrate
and subsequent reduction of silver using sodium borohydride results in the formation of
optically active nanoclusters with bright emissions (Figures 1 and 2). Supporting Figure S8
shows UV-Vis spectra of all four purified AgNC samples immediately after their formation.
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Figure 2. Fluorescence measurements of DNA-AgNCs. Excitation–emission matrix spectroscopy:
top panel shows the initial readings of freshly made DNA-AgNCs, bottom panel corresponds to the
analysis of samples aged over a period of two weeks (dual fluorescence pattern with both green and
red peaks is typical for freshly prepared AgNCs producing distinct colors shown in Figure 1).

2.2. Fluorescence

The formation of DNA-AgNCs is tracked by the changes in solution that are observed
after the addition of silver nitrate and sodium borohydride reducing agent followed by
incubation in the dark for 24 h. We have characterized the optical properties of these
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DNA-AgNCs using fluorescence excitation-emission matrix spectroscopy (EEM). EEM
represents the excitation–emission relationships of the optical response of the DNA-AgNCs
presented as 2D contour maps [25]. Figure 2 shows EEM maps for all four DNA-AgNCs in
the 300–800 nm range for the excitation while recording the emission spectrum spanning
300–800 nm wavelengths. Initial readings of the EEMs after purification (top panel of
Figure 2) indicates that all four samples show a great degree of similarity in the behavior of
emission. All four samples are dominated by one peak in the red region of the spectrum.
While similar in general, the peaks show detectable differences.

In Table 1, we summarize peak positions for the maximum excitation and maximum
emission for all four DNA-AgNCs. It appears that smaller loop DNA-AgNCs have maxima
for both excitation and emission shifted to longer wavelengths. It is very pronounced
for C7 and C9 with λEXC/λEM = 600/685 nm and λEXC/λEM = 580/661 nm, respectively.
Further shifts to λEXC/λEM = 562/647 nm and λEXC/λEM = 562/645 nm are observed for
C11 and C13, respectively. C11 DNA-AgNC also features an extra shoulder of emission at
shorter excitation wavelengths. C9, C11, and C13 peaks appear to be elongated featuring
red edge emission shift (REES) as reported previously and is common for AgNCs [23,26,27].
Interestingly, C7 DNA-AgNC does not have REES-based elongation of the emission peak
that is well-pronounced for other samples. These observations emphasize the differences
of DNA-AgNCs formed by the four looped templates despite all samples having “red”
emission.

Table 1. Spectral position of excitation and emission for “red” emitting peak in initial EEMs.

Wavelength, nm C7 C9 C11 C13

EXCMAX 600 580 562 562
FLUMAX 685 661 647 645

The differences in observed optical properties intensify further as samples are allowed
to age. Changes in emission pattern with time develop very quickly during “maturation”
stage of the AgNCs typical for our preparation procedure. These changes represent the
conversion of AgNCs from “red” to “green” emission upon interaction with ambient
conditions as we have previously reported [26]. ”Red” to “green” conversion can be
linked to the interactions of AgNCs with species dissolved in the solution that are capable
of oxidizing silver atoms (Ag0 → Ag+), such as molecular oxygen [26]. Many reports
documented the “blue” shift with aging and some protocols call for bubbling oxygen
through to stimulate this transition [28]. All four of our samples also experience such
“blue” shift and eventually develop a pattern of multi-peaked emission spectra with some
samples more noticeable than others (for example, C9 vs. C13). Figure 2 summarizes
in detail all changes in emission patterns when C7-C13 DNA-AgNCs age over a period
of two weeks. The appearance of additional emission peaks in the “green” region are
obvious for C7, C9, and C11, while C13 remained primarily as a single peak. The changes
in C13 DNA-AgNCs include the loss of elongated shape with the near-IR part of the peak
disappearing over time. Shorter loops C7, C9, and C11 develop an obvious multipeak
excitation–emission pattern over time. These new peaks appear in the “orange” and
“green” spectral regions. Additionally, these peaks differ significantly in their position and
intensity. C7 DNA-AgNCs have only one new peak of λEXC/λEM = 465/547 nm—“green.”
The intensity of this new peak is 27% the intensity of the original “red” peak. Both C9
and C11 have multi-peak patterns of newly appeared “orange” and “green” emission
labeled O (longer wavelengths) and G (shorter wavelengths). The positions of these two
new peaks are very similar for both C9 and C11 DNA-AgNCs: λEXC/λEM = 475/606 nm
(O-C9), λEXC/λEM = 480/606 nm (O-C11), λEXC/λEM = 408/530 nm (G-C9), and λEXC/λEM
= 410/536 nm (G-C11). Similar spectral positions indicate the same nature of “green” states
for both C9 and C11 DNA-AgNCs. The differences for these two samples, however, include
the position of the “red” peak as listed in Table 1. Another major difference is the relative
intensities of orange and green peaks, O and G. O peak dominates in the C11 sample,
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while G is more pronounced in the C9 sample. The following are the relative intensities as
compared to the original “red” peak: 22% (O-C9), 360% (O-C11), 112% (G-C9), and 29%
(G-C11). The observed intensities suggest that C9 DNA-AgNCs primarily stabilize G state
while C11 DNA-AgNCs prefer O. The O peak is not observed in the fluorescence of the
aged C7 sample, while C13 remains “red” during aging.

To complete the description of the emissive properties of C7-C13 DNA-AgNCs, we
also visualized the emission of nanoclusters under UV excitation on a trans-illuminator
(at 254 nm). Such excitation is typically discussed as a means of excitation via DNA bases
that contact silver atoms in the nanocluster. The 254 nm excitation results in a color palette
of the employed samples (colors under trans-illuminator excitation, Figure 1—top). This
picture reflects the rich emission pattern observed for C7-C13 DNA-AgNCs in the visible
part of the spectrum.

2.3. Cell Culture Experiments

To assess the relative effects of representative DNA-AgNCs on bacterial cells, TOP10F’
E. coli are grown in liquid cultures and treated with the panel of DNA-AgNCs at a final
concentration of 4 µM DNA (Figure 3A). A decrease in the bacterial growth is observed
over a 20 h period for all E. coli cultures treated with DNA-AgNCs when compared to the
non-treated control. There is a strong dose-dependence noted for all DNA-AgNCs (Sup-
porting Figure S2) with 4 µM to be the lowest DNA concentration that shows reasonable
antibacterial effectiveness for all constructs. As such, all experiments are carried out at 4
µM in order to best resolve differences between four tested DNA-AgNCs. To quantitatively
examine the inhibition of E. coli growth, we compare the changes in the amount of time
(∆t1/2) required for bacteria cultured with each DNA-AgNC to grow to half of their maxi-
mum optical density when referenced to untreated cells from the same experimental group.
C13 is the most effective DNA-AgNC at slowing bacterial growth as the calculated ∆t1/2 for
C7, C9, C11, and C13, shown with their 95% confidence intervals, are 5.5± 0.2 h, 5.8± 0.3 h,
8.8± 0.2 h, and 10.7± 0.2 h, respectively. The effect of free silver at the concentrations used
to synthesize the DNA-AgNCs can be considered minimal since the control experiment
with 650 µM of Ag+, the highest of the concentrations used for CN synthesis, has a minimal
effect on the growth curve after being reduced with NaBH4 (Supporting Figure S3). The
antibacterial effect of the DNA-AgNCs greatly increases at lower pH. When E. coli grown
in pH 5.5-buffered LB are treated with 4 µM of each DNA-AgNC, the growth is nearly
fully inhibited over the entire 20 h (Figure 3A). From these experiments, the performance
of C7 and C9 as antibacterial agents are similar, though it is clear that C13 outperforms
C11 significantly. From these data, it appears that there may be a correlation between the
number of cytosines and the antibacterial efficacy of the DNA-AgNC for larger hairpins.
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Figure 3. Biological activity of DNA-AgNCs. (A) The growth curves of E. coli when treated with 4
µM DNA-AgNC are shown at pH 7.4 (the pH of standard LB) and pH 5.5. The standard error of
the mean of each measurement is shown as a dotted line on both sides of the solid line in the same
color. The lines for C11, C13, and Carbenicillin overlap at pH 5.5. (B) The normalized cell viability
of THP1-DualTM, Jurkat, and 293FT cells after incubation with 4 µM AgNC for 20 h, as assessed by
MTS assay.

To test the same conditions in mammalian cells, we use several human cell lines and
all DNA-AgNCs are again introduced at a 4 µM final concentration. The cell viability is
assessed after 20 h of incubation using an MTS assay (Figure 3B). No statistically significant
reduction in cell viability is observed after incubation with DNA-AgNCs for Jurkat, THP1,
or 293FT cells. To ensure the safety of DNA-AgNCs for mammalian cells, the same
experiments are repeated at a final concentration of 8 µM DNA-AgNC with all three cell
lines and the results are similar (Supporting Figure S4). Therefore, AgNCs remain non-toxic
to mammalian cells at concentrations two-fold higher than required to efficiently inhibit
bacterial growth.
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2.4. Stoichiometry Determination

In order to quantify the number of silver atoms bound to each ssDNA oligonucleotide,
energy dispersive X-ray spectroscopy (EDS) elemental analysis is performed and micro-
graphs of dried AgNC solutions are recorded using scanning electron microscopy. The
ratio of the relative atomic percentages of the Ag and P calculated from the EDS spectrum
are used for evaluating the stoichiometric ratio of silver per hairpin-loop DNA template.
From these experiments, we determine that each C7 DNA-AgNC binds an average of 9.9
± 0.6 silver atoms (± SEM), C9 DNA-AgNC binds an average of 8.5 ± 0.5 silver atoms,
C11 DNA-AgNC binds an average of 11.7 ± 0.5 silver atoms, and C13 DNA-AgNC binds
an average of 10.2 ± 0.9 silver atoms. The differences in the number of silver atoms bound
were not found to be statistically significant between each templating strand. A represen-
tative micrograph of a DNA-AgNC sample is shown in Figure 4, and the micrographs
of all samples analyzed by EDS are shown in the Supplementary Materials (Supporting
Figure S5).
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Figure 4. (A) The general workflow for the SEM and EDS experiments is shown. The drying is done
at ambient conditions with the silicon wafer covered by a Petri dish. (B) A representative SEM image
is shown of a DNA-AgNC C9 sample and (C) the raw EDS spectrum of the same sample. The purple
line in (B) defines the outer perimeter of the area that is scanned to obtain the EDS spectrum. (D) The
number of bound silver atoms on each templating DNA hairpin is shown as determined by EDS.
Error bars shown as a dotted line on both sides of the solid line are the standard error of the mean for
each measurement.

3. Discussion

Silver has long been used as a disinfectant. The most recent applications include
the use of silver nanoparticles in many different areas including food packaging, water
and air disinfection, the textile sector, and medical applications (Silver Soaker® Catheters,
Acticoat™, SilvaSorb® Gel) [29,30]. The search for new therapeutic agents to combat multi-
drug resistant bacteria is ongoing. While silver nanoparticles have been recently extensively
studied for their use as antibacterial agents [31], novel silver nanoclusters have been largely
overlooked [18] primarily because most studies have focused on biosensing applications
due to the unique optical properties of AgNCs [27,32,33]. DNA-AgNCs have several
advantages which position them as excellent candidates for antibacterial applications. First,
DNA-AgNCs are small in size—they are comprised of only a few atoms of silver capped
with stabilizing cytosine-rich ssDNA oligonucleotides. Since DNA-AgNCs are bound to
DNA, in addition to serving as a host for AgNCs, DNA can also be utilized for embedding
AgNCs into a structured network of functional assemblies leading to novel properties and
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functions of hybrid nanomaterials [23,26]. In this study, we show that AgNCs are capable
of inhibiting bacterial growth at a much lower concentration (4 µM) than carbenicillin
(132 µM), which is a bactericidal antibiotic from the penicillin group and was used as
a positive control in this study. We confirm, herein, that DNA-AgNCs show very little
toxicity against human cells. In addition to serving as a template for AgNC synthesis, DNA
templates may further contribute to better solubility and biocompatibility of clusters. Thus,
DNA-AgNCs could potentially be used against a broad range of various bacteria without
harmful side effects. Furthermore, the robust fluorescence of AgNCs can be coupled with
biocompatibility and antibacterial properties to produce label-free bioimaging agents with
dual purpose.

Our additional experiments indicate that DNA-AgNCs exhibit antibacterial activity
against Lactobacilli (Supporting Figure S6), suggesting that DNA-AgNCs might cause
undesirable effects to the gut microbiota, and should be avoided in applications involving
oral ingestion of these materials, e.g., in food packaging. This is especially concerning, given
the increased antibacterial efficacy of AgNCs at lower pH (Figure 3A). Previous work has
shown that decreasing the pH will increase the antibacterial efficacy of silver nanoparticles
that likely arises from an increased production of reactive oxygen species and that DNA-
AgNCs are capable of catalyzing the production of reactive oxygen species [18,34]. It is
possible, therefore, that DNA-AgNCs produce an increased amount of reactive oxygen
species as pH decreases. Another possibility for the increased antibacterial activity of DNA-
AgNCs at lower pH is leaching silver into solution through cytosine protonation. However,
the pKa of cytosine is close to 4.4, so less than 10% of cytosines would be expected to be
protonated at pH = 5.5 [35]. Additionally, DNA-AgNCs retain their fluorescence pattern
over a wide pH range, down to a pH of 5, implying stabile character of the DNA-AgNCs at
pH = 5.5 [36]. Therefore, we consider it unlikely that the decreased pH would cause silver
ions to leach from the AgNC causing enhanced inhibition of bacterial growth.

We show that C13 DNA-AgNC produces the highest antibacterial activity among the
four studied DNA template sequences followed by C11, while C7 and C9 DNA-AgNCs
show lower activity (Figure 3A). While several factors might contribute to antibacterial
activity, the number of silver atoms comprising the AgNCs does not appear to be the
decisive factor. Using EDS elemental analysis, we confirmed that there is no statistical
significance in the number of silver atoms bound by each DNA-AgNC (Figure 4A). It
is unlikely that the amount of silver in the DNA-AgNCs determines their antibacterial
properties as all templates stabilize clusters of nearly the same size with N≈10-11 bound
in them. Our observation is supported by a previous report which also ruled out the
amount of silver atoms per cluster [18]. Emission color has been proposed to correlate
with DNA-AgNCs’ antibacterial properties with “red” emissive clusters being the most
active [18]. We also turned to fluorescence properties in search of a possible explanation
for the antibacterial activity of DNA-AgNCs. It is unclear how exactly DNA-AgNCs act in
terms of antibacterial properties and this uncertainty in their mechanism of antibacterial
action has triggered the current study. There are clear changes in fluorescent properties of
DNA-AgNCs which we can correlate with the increased antibacterial activity of AgNCs. It
appears that a single-peak emission pattern might be the key. The mere presence of “red”
fluorescence does not define antibacterial properties; all samples are “red” initially, but the
abilities to inhibit bacterial growth differ among C13, C11 and C9, C7. C13 remains “red”
during aging while C11 effectively converts to “orange.” At the same time, C13 provides
better antibacterial efficacy as compared to C11. Additionally, C7 remains primarily “red”
while its activity is lower than C11 and C13. C9 is the only sample that develops a “green”
peak with high intensity, but it is also less effective at inhibiting bacterial growth. As such,
we hypothesize that the stability of the “red” fluorescence upon aging may be one of the
most decisive factors for the antibacterial efficacy of DNA-AgNCs.

It is commonly accepted that DNA-AgNCs include both Ag0 and Ag+ atoms in their
composition. The ratio of Ag0/Ag+ defines the overall charge state and the color of the nan-
ocluster’s emission [37]. It has been proposed that distinct “green” and “red” fluorescence



Molecules 2021, 26, 4045 9 of 14

occurs for a “magic number” of neutral silver atoms in the nanocluster [37,38]. Four neutral
atoms produce green fluorescence and six Ag0 atoms produce red fluorescence regardless
of the number of Ag+ [37]. Recent studies indicated that such conversion does not change
the overall number of silver, N, in the cluster as this conversion is reversible [26,31].

“Red,” “orange,” and “green” emissive states of AgNCs that we observe may represent
different ratios of Ag+ to Ag0. Aging of the samples can therefore be explained by the
interaction of AgNCs with species dissolved in the solution that are capable of oxidizing
silver atoms (Ag0 → Ag+). For example, dissolved “molecular oxygen” might effectively
convert “red” to “orange” and to “green” emitting species. Controlled oxidation with
hydrogen peroxide confirms our conclusion (Supporting Figure S8). The addition of
hydrogen peroxide gradually converts emissive patterns which resembles “aging” of all
samples. We have previously confirmed that gradual aging or oxidation due to addition
of hydrogen peroxide can be reversed by re-reduction of resultant AgNCs [26]. This
process is reversible and can be done multiple times suggesting that red-ox state of the
AgNCs rather than size plays a critical role in fluorescence pattern that we observe here
for hairpin-loop templated DNA-AgNCs. Many studies relate the antibacterial activity
of silver nanoparticles to the oxidative release of Ag+ [39]. In this regard, DNA-AgNCs
already have silver ions in their composition and can therefore act as antibacterial agents.
Furthermore, the ratio of Ag+/Ag0 can modulate the antibacterial activity of DNA-AgNCs.
It is tempting to suggest that the increased number of silver ions in DNA-AgNCs may
explain higher antibacterial activity. However, C9 is dominated by “green” emitting
species which would supposedly have the highest number of cations in the DNA-AgNC
composition, while we observe that C9 has the second lowest antibacterial effect. It is
possible that the looped hairpin templates used herein while varying in length may have
different protective properties for DNA-AgNCs depending on the final conformation of the
loop wrapping around silver nanoclusters. For example, faster conversion of C13 to a non-
emitting species might indicate lesser protection of the clusters and thus correlate better
with higher antibacterial activity of C13. Additional studies will be required to identify
whether intact DNA-AgNCs act as the antibacterial agent or if their activity requires
nanocluster dissolution with the release of silver ions into the solution.

Another possible explanation for different activities observed for the four analyzed
samples is that the nature of emissive and non-emissive states may play a role. We observed
that all four samples age and react with hydrogen peroxide very differently (Supporting
Figure S7). It is also apparent that partial oxidation is involved in “red” to “orange” or
“red” to “green” conversion of emissive DNA-AgNC states. We have evaluated the rate of
“red” peak conversion as a function of hydrogen peroxide concentration (Figure 5) for all
four DNA-AgNCs using a modified Stern–Volmer relationship (Equation (1)) [40].

F0/F = (1 + KDCH2O2)(1 + KSCH2O2) (1)
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quenching mechanisms: static and dynamic.

Generally, a linear Stern–Volmer plot indicates a single class of fluorophores which
are all equally vulnerable to quenching by hydrogen peroxide [40]. All four DNA-AgNC
samples show non-linear F0/F vs. H2O2 concentration dependence (Figure 5). This sug-
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gests a complex nature of fluorescence quenching with at least two deactivation pathways:
intermolecular quenching due to H2O2 (dynamic quenching, KD, most likely due to in-
tersystem crossing from singlet S* to triplet T*) and intramolecular conversion of “red”
to “orange” or “green” (static quenching, KS, due to change of the overall charge state of
AgNC). While C7 and C9 DNA-AgNCs exhibit slightly upward curvature, C11 and C13
show clear downward curvature. This observation indicates that these two groups have
different mechanisms of quenching while interacting with hydrogen peroxide. Typically,
downward curvature is associated with fluorophores which are inaccessible to the quencher,
suggesting a more protective nature of larger loops [40]. Interestingly, C13 also shows
the highest antibacterial activity and the largest downward curvature among the studied
C-loop templates. While it is difficult to specify exact details of interactions between the
“quencher” and certain states of AgNCs without further studies, it is apparent that the
charge state of the DNA-AgNC can play a critical role in defining the antibacterial activity
of nanoclusters. Several reports have indicated that silver nanoclusters are capable of
generating excessive amounts of intracellular reactive oxygen species, which is proposed as
the major contributing factor defining DNA-AgNCs’ antibacterial ability [18,41]. It is also
becoming increasingly apparent from recent studies both theoretical [42] and experimen-
tal [43] that certain shape, composition, and charge states of DNA-AgNCs can increase the
chances of optically “dark” states to exist with highspin multiplicity (doublet and triplet).
Therefore, it is not unreasonable to propose that highspin AgNC states may interact with
highly abundant triplet oxygen removing the “spin-forbidden” condition and stimulating
the transition of triplet to singlet oxygen: 3O2 → 1O2. Since singlet oxygen is far more
reactive compared to triplet oxygen, this can explain various antibacterial properties of
different DNA-AgNCs and the generation of reactive oxygen species.

In conclusion, nucleic acid-based nanomaterials are often designed based on two ratio-
nales: the delivery of functional moieties that can be implemented into the nanoscaffolds
and the patterns in recognition of nucleic acids which contribute to the cellular response.
DNA-AgNCs offer an approach by which functional fluorescent moieties can contribute
to selective growth inhibition of bacterial cultures. The results of this study suggest that
the rich optical behavior of the DNA-AgNCs may be tightly linked to the antibacterial
properties of this novel class of nanostructures. Excitation–emission pattern, interconver-
sion of emissive states, and their connection with environmental changes are the keys
to understanding the mechanism of DNA-AgNC inhibitive action. The results obtained
herein warrant further exploration of the antibacterial effects of DNA-AgNCs on both
pathogenic and non-pathogenic bacteria species.

4. Materials and Methods

Synthesis of DNA-AgNCs. All DNA oligonucleotides were purchased from Integrated
DNA Technologies (IDT), Inc. (Coralville, IA, USA) as desalted products and used without
further purification. All sequences are listed in the Supplementary Materials. Nuclease-free
water was obtained from IDT. Sodium borohydride was purchased from TCI America, Inc.
(Portland, OR, USA). In a typical preparation, DNA template (C13, C11, C9, or C7) and
AgNO3 aqueous solutions were mixed and incubated for 25 min at room temperature in
ammonium acetate buffer (100 mM NH4OAc, pH 6.9). Next, NaBH4 aqueous solution was
added and samples were placed on ice and stirred vigorously. The final concentrations (C)
of the components were as follows: CDNA-template = 50 µM; CAgNO3 was adjusted to match
the number of cytosines in the loop according to n*AgNO3:Cn;CNaBH4:CAgNO3 was taken at
1:1 ratio and CNH4Ac = 4 mM. The solution was then incubated in the dark for 24 h at 4 ◦C.
Synthesized DNA-AgNCs were then purified via a NAP-5 (Cytiva) filtration gel column
purchased from Sigma-Aldrich, Inc. (Saint Louis, MO, USA) for fluorescence measurements.
Purification was performed according to the protocol supplied by the manufacturer. Final
concentrations of DNA-AgNCs obtained after filtration varied between 8–15 µM and
were evaluated by taking DNA absorption at 265 nm wavelength. For antibacterial and
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mammalian cell viability experiments, DNA-AgNCs were purified using 3 kDa Amicon
centrifugal filters by washing twice with buffer and diluting to 50 µM.

Fluorescence measurements. The excitation and emission spectra were acquired on a
Duetta–Fluorescence and Absorbance Spectrometer (Horiba, Inc., Chicago, IL, USA). In all
the measurements, the concentration of the templating sequence was kept the same at ~6
µM. Fluorescence measurements were carried out in a Sub-Micro Fluorometer Cell, model
16.40F-Q-10 (from StarnaCells, Inc., Atascadero, CA, USA) at room temperature of ~22
◦C. The excitation–emission matrix spectra (EEMS) were recorded with 0.5 nm resolution.
Fluorescence spectra were recorded with the emission wavelength range from 300 nm
to 1000 nm, the initial excitation wavelength was set to 280 nm, and the final excitation
wavelength was set to 800 nm with an increment of 0.5 nm. Matrix data were then used
for 2D contour plot using MagicPlot Pro software (v2.9, Magicplot Systems, LLC, Saint
Petersburg, Russia).

Bacterial growth assays. TOP10F’ E. coli were purchased from ThermoFisher Scientific
(Walham, MA, USA) and grown in Luria broth (LB) purchased from Sigma. Where shown,
the pH of LB was adjusted to pH 5.5 with 100 mM 2-morpholin-4-yl ethanesulfonic acid
(MES). E. coli were grown in LB from single colonies while shaking at 200 rpm at 37 ◦C in a
GeneMate Incubated Shaker (VWR International, LLC, Radnor, PA, USA). For treatment
with AgNCs, bacteria were diluted in LB to an optical density at 600 nm (OD600) of 0.018–
0.020. Next, 50 µL of diluted bacteria were added to each well of a 96-well flat-bottom,
black-walled plate. Purified DNA-AgNCs were added with LB to reach a final volume of
100 µL in each well with 4 µM final concentration of DNA-AgNCs. Carbenicillin was used
as a positive control at a final concentration of 50 µg/mL (132 µM). The lids of the plates
were hydrophobically treated by filling them with 10 mL of 20% ethanol, 0.05% Triton
X-100 for 30 s [44]. The excess liquid was drained, and the lid was leaned against the back
of a fume hood to dry for 30 min [44]. The lids were parafilmed to the microwell plates
to prevent excess evaporation. Microplate optical density measurements were recorded
using a Tecan Spark (Tecan Group Ltd., Männedorf, Zürich, Switzerland) microwell plate
reader. The plates were shaken for 30 s between each measurement and were incubated
at 37 ◦C with OD600 measurements taken every 15 min over 20 h. A minimum of six
technical repeats and three biological repeats of each experiment were performed. The
time required for each growth curve to reach half its maximum optical density, t1/2, was
calculated with GraphPad Prism 9 (San Diego, CA, USA) using a non-linear fit of the data.
The difference between the untreated control t1/2 and the treatment t1/2 is reported as
∆t1/2. Additional experiments in Lactobacillus cultures were conducted to understand the
effects of DNA-AgNCs on normal microflora (Supplementary Materials).

Mammalian cell viability assays. For all experiments, cells were maintained and cultured
at 37 ◦C, 5% CO2. THP1-Dual™ cells were purchased from InvivoGen (San Diego, CA,
USA) and were maintained in RPMI 1640, 2 mM L-glutamine, 25 mM HEPES, 10% heat-
inactivated fetal bovine serum (FBS), and PenStrep (100 U/mL,100 µg/mL). 293FT cells
were cultured in DMEM, 2 mM L-glutamine, 10% FBS, and PenStrep (100 U/mL, 100
µg/mL). Jurkat cells were cultured in RPMI 1640, 2 mM L-glutamine, 25 mM HEPES, 10%
FBS, and PenStrep (100 U/mL, 100 µg/mL). For cell viability studies, cells were plated
in a 96-well flat-bottom plate at a density of 40,000 cells per well along with DNA-AgNC
solution at final concentrations of 4 or 8 µM and final well volumes of 100 µL. After
incubation with AgNC treatments for 20 h, 20 µL of CellTiter 96® AQueous One Solution
Cell Proliferation Assay (MTS) were added to each well. Plates were incubated for an
additional 75 min at 37 ◦C, 5% CO2. The plates were then read on a Tecan Spark microplate
reader for absorbance at 490 nm. Sixteen reads per well were averaged for each value.

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) ele-
mental analysis. Solutions of 50 µM C7, C9, C11, and C13 in buffer were pipetted onto a
polished silicon wafer as 10 µL droplets. Droplets were allowed to dry in a covered Petri
dish overnight at room temperature. The solid residue was analyzed with SEM/EDS to
determine the atomic ratio between P and Ag. Dried solutions on the Si substrate were
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analyzed with a JEOL JSM-6480 SEM. Micrographs were taken in secondary electron mode
with an accelerating voltage of 5 kV. EDS spectra were collected using an Oxford Instru-
ments INCA EDS behind a beryllium window. Atomic percentages were calculated by
the INCA instrument software based on the intensities of phosphorus Kα (2.013 keV) and
silver Lα (2.984 keV) characteristic X-rays.

Statistical analysis. All data is presented as the mean ± standard deviation or standard
error of the mean (specified for each case) for a minimum of N = 3 independent biological
replicates. For statistical analysis, a one-way ANOVA was performed, followed by a t-test
using GraphPad Prism 9.0.0 Software for Windows. P-values of p < 0.05 were considered
statistically significant.

Supplementary Materials: Figure S1. Comparison of C12 template as a single-stranded nucleotide
or as a loop in a hairpin structure. (A) AFM image of AgNCs formed on a template containing
single-stranded C12 sequence, (B) AFM image of AgNCs formed on a template containing C12 loop,
(C) EEM of AgNCs templated on a template containing single-stranded C12 sequence, (D) EEM of
AgNCs templated on a template containing C12 loop. Figure S2. Liquid culture growth curves are
shown of E. coli which have been treated with varying concentrations of AgNC. Each is shown with
the standard deviation as a dotted line on either side of the solid line in the same color. There is a
strong dose-dependence for each AgNC with 8 µM C11 eliminating growth for almost the full 20
hours. Figure S3. To see the effects of free silver that may not have bound to DNA, 650 µM AgNO3
solution was reduced with an equimolar amount of NaBH4, just as in the synthesis of the C13 AgNC.
E. coli was then treated with the same amount of this solution as would be present in 4 µM C13 AgNC
treatments. While there was a slight reduction in growth rate and the maximum OD600, these were
minimal compared to the effects of the C13 AgNC at 4 µM. Figure S4. Additional mammalian cell
viability assays were conducted with 8 µM AgNC concentrations following the methods described in
the main text. Following 20 hours of incubation at 37 ◦C and 5% CO2, MTS was added and incubated
for an additional 75 minutes at the same conditions. The absorbance was recorded at 490 nm and
the relative cell viability was calculated. No statistically significant reduction in cell viability was
found at the elevated AgNC conditions. Figure S5. Secondary electron micrographs of all of the dried
AgNC samples which were used for the stoichiometry calculations are shown. Figure S6. (A) Plates
of Lactobacilli treated with C7 or C9 AgNCs and the resulting colonies formed. (B) Colony forming
units (CFU)/mL after treatment with C7 or C9 were compared to the control sample Significance
of p < 0.05 is denoted with an asterisk. Figure S7. Titration of AgNCs with hydrogen peroxide. (I)
C7 DNA-AgNCs, (II) C9 DNA-AgNCs, (III) C11 DNA-AgNCs, (IV) C13 DNA-AgNCs. Progressive
addition of hydrogen peroxide shows changes in oxidative state of DNA-AgNCs. (a–f) are different
ratios of CAgNC/CH2O2 = 1/0 (a), 1/1.9 (b), 1/3.8 (c), 1/5.7 (d), 1/7.6 (e), 1/9.5 (f), 1/11.4 (g).
Figure S8. Evaluation of optical properties. UV-Vis spectra of (A) C7, (B) C9, (C) C11, (D) C13 samples
immediately after purification. Emission spectra with 254 nm excitation mimicking color observation
shown in Figure 1, (E) C7, (F) C9, (G) C11, (H) C13. Excitation spectra for 525 nm emission peak,
(I) C7, (J) C9, (K) C11, (L) C13. Excitation spectra for 635 nm emission peak, (M) C7, (N) C9, (O)
C11, (P) C13. Table S1. The calculated number of silver atoms from the atomic percentages obtained
from the EDS reports are shown with the average and standard error of the mean for each AgNC.
References [7,45] are cited in the Supplementary Materials.
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