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Abstract. curcumin is a natural product widely used due to its 
pharmacological effects. Nevertheless, only a limited number 
of studies concerning the effects of curcumin on exudative 
age‑related macular degeneration (AMd) is currently available. 
Since ophthalmic diseases, including exudative AMd, have a 
marked impact on public health, the prevention and therapy of 
ophthalmic disorders remain of increasing concern. Exudative 
AMd is characterized by choroidal neovascularization (cNV) 
invading the subretinal space, ultimately enhancing exudation 
and hemorrhaging. The exudative AMd subtype corresponds 
to 10 to 15% of cases of macular degeneration; however, the 
occurrence of this subtype has been reported as the major 
cause of vision loss and blindness, with the occurrence of 
cNV being responsible for 80% of the cases with vision loss. 
In cNV increased expression of VEGF has been observed, 
stimulated by the overactivation of Wnt/β‑catenin signaling 
pathway. The stimulation of the Wnt/β‑catenin signaling 
pathway is responsible for the activation of several cellular 
mechanisms, simultaneously enhancing inflammation, oxida‑
tive stress and angiogenesis in numerous diseases, including 
ophthalmic disorders. Some studies have previously demon‑
strated the possible advantage of the use of curcumin for the 
inhibition of Wnt/β‑catenin signaling. In the present review 
article, the different mechanisms of curcumin are described 
concerning its effects on oxidative stress, inflammation 

and angiogenesis in exudative AMd, by interacting with 
Wnt/β‑catenin signaling.
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1. Introduction

Age‑related macular degeneration (AMd) is a widely reported 
cause of blindness in elderly adults worldwide (1). The progres‑
sion of AMd is initially marked by the accumulation of debris 
during the early stages, while later stages are characterized by 
the accumulation of retinal epithelial dysregulations. AMd is 
classified into two distinct subtypes, known as ‘non‑exudative’ 
and ‘exudative’ AMD.

The early stages of AMd are characterized by the 
presence of drusen in the retina eyeground and the dysregu‑
lation of the retinal pigment epithelium (RPE). Geographical 
atrophy and choroidal neovascularization occur during the 
late atrophic and exudative phases. Exudative AMd is char‑
acterized by choroidal neovascularization (cNV) invading 
the subretinal space, concurrently enhancing the appearance 
of exudation and hemorrhaging, and it has been reported 
to be caused by angiogenesis (2‑4). The exudative AMd 
subtype corresponds 10 to 15% of AMd cases. It has been 
reported as the major cause of vision loss and blindness (5,6). 
In AMd, cNV is responsible for 80% of the cases presenting 
vision loss (7). The development of cNV has been shown to 
be associated with the involvement of the vascular endothe‑
lial growth factor (VEGF) (8). However, the implication of 
cellular signaling in exudative AMd have not yet been fully 
elucidated. However, the aging mechanism is considered one 
of the major exudative AMd risk markers. This mechanism 
can dysregulate cellular signaling, which controls homeo‑
static processes (9).
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The use of curcumin has been revealed to possibly have 
major therapeutic benefits for disease treatment in clinical 
practice, including cancer and cardiovascular diseases (10‑12). 
However, the number of available published studies concerning 
the possible therapeutic effects of curcumin in ophthalmo‑
logical disorders, and particularly in exudative AMd, remains 
limited. Since combating avoidable visual impairment and 
blindness is of utmost importance for public health, the 
application of curcumin for the treatment of ophthalmological 
disorders (age‑related cataracts, glaucoma, AMd, diabetic 
retinopathy) may bear promising results (13). The present 
review article focuses on the presentation of the possible 
effects of curcumin on exudative AMd by targeting oxidative 
stress, inflammation and angiogenesis through its mediation of 
Wingless/Int (Wnt)/β‑catenin signaling.

2. Exudative AMD

Exudative AMd has been shown to be associated with 
choriocapillaris changes, whereas the RPE monolayer remains 
intact (14), ultimately leading to hypoxia stimulation in the 
overlying of RPE cells (15). The loss of choriocapillaris may 
result in the initiation of cNV. The mechanism of cNV 
enhances immature new blood vessels, which may invade 
Bruch's membrane from the choriocapillaris to extend in the 
subretinal or sub‑RPE space (16).

Inflammatory mechanisms implicate macrophages (17) 
and microglia (18) in exudative AMd, along with cytokine 
release, as for example tumor necrosis factor‑α (TNF‑α) (19). 
In parallel with inflammation, several signaling pathways 
have been found to be associated with exudative AMd, 
including Wnt/β‑catenin (20,21), transforming growth factor‑β 
(TGF‑β) (22,23) and PI3K/Akt/mTOR (24). Exudative AMd 
progresses through an inflammatory‑induced angiogenesis 
process (25), with the implication of VEGF and platelet‑derived 
growth factor (PdGF) (26,27). VEGF, generated by RPE cells, 
plays a major role in cNV (28) and the enhancement of VEGF 
may function favorably against cNV (29,30). Additionally, 
VEGF is a Wnt target (31,32). Inflammatory markers, 
including TNF‑α and NF‑κB, have been reported to activate 
the β‑catenin signaling pathway, inducing its translocation 
into the nucleus and the subsequent transcription of the VEGF 
gene (33,34). An association between inflammation and the 
Wnt/β‑catenin signaling pathway for the stimulation of VEGF 
in RPE cells has been previously reported (35).

3. Wnt/β‑catenin signaling pathway

The Wnt signaling pathway receptor proteins (Fig. 1) are 
a family of secreted lipid‑modified glycoproteins (36). 
Numerous pathological mechanisms can be regulated by 
this signaling, including the fibrotic process and angiogenic 
mechanism (37‑39).

during ocular development, Wnt/β‑catenin is mainly 
activated. Wnt/β‑catenin signaling dysregulation enhances 
numerous ocular dysregulations, due to defects in cell fate 
differentiation (40). during lens development, Wnt/β‑catenin 
signaling is activated in the periocular surface ectoderm and 
lens epithelium (41,42). For the development of the retinal 
epithelium, Wnt/β‑catenin signaling is activated in the dorsal 

optic vesicle, and is also involved in the stimulation of the 
RPE at the optic vesicle stage. At this stage, Wnt/β‑catenin 
signaling is localized in the peripheral RPE (43). The retinal 
vascular development is controlled by the regulation of the 
Wnt/β‑catenin signaling (40). In the retinal vascular process, 
Wnt/β‑catenin signaling is modulated by the erythroblast 
transformation‑specific transcription factor, Erg, which plays 
a key role in the angiogenic process (44). Erg regulates the 
activation of the Wnt/β‑catenin signaling pathway through 
the concurrent enhancement of β‑catenin and Frizzled 4 
(FZd4) transcription ((44). The formation of the low‑density 
lipoprotein receptor‑related protein 5 (LRP5)/LRP6 complex 
is required for the activation of FZd4/β‑catenin signaling (45). 
LRP5 has been reported to play a crucial role through the 
formation of a complex with LRP6; however, it has a minimal 
effect on retinal vascularization (46,47). disheveled forms a 
complex with AXIN1, in order to prevent β‑catenin phosphory‑
lation by glycogen synthase kinase‑3β (GSK‑3β). β‑catenin 
accumulates into the cytoplasm, subsequently translocating to 
the nucleus and binding to the T‑cell factor/lymphoid enhancer 
factor (TcF/LEF) co‑transcription factors. The nuclear link 
enhances the activation of Wnt‑response genes, including 
cyclin d1, c‑Myc, pyruvate dehydrogenase kinase (PdK)1 and 
monocarboxylate transporter 1 (McT‑1) (48‑52).

Following the inactivation of Wnt ligands, GSK‑3β is 
activated and then phosphorylates cytoplasmic β‑catenin. The 
destruction complex is formed by the tumor suppressor adeno‑
matous polyposis coli (APc), AXIN, GSK‑3β and ultimately, 
β‑catenin. The disintegration of phosphorylated β‑catenin is 
performed in the proteasome (53). Wnt inhibitors, including 
dickkopf (dKK) family proteins and secreted Frizzled‑related 
proteins (SFRPs), modulate the Wnt/β‑catenin signaling 
through the prevention of its ligand‑receptor actions (54) 
(Fig. 1).

GSK‑3β, an intracellular serin‑threonine kinase, is 
an important regulator of the Wnt/β‑catenin signaling 
pathway (55), and controls various cell signaling routes, 
including cell membrane, neuronal polarity and inflam‑
matory processes (56‑58). GSK‑3β concurrently decreases 
β‑catenin cytoplasmic expression and β‑catenin nuclear trans‑
location (56). β‑catenin, mTOR signaling, hypoxia‑inducible 
factor 1‑α (HIF‑1α) and VEGF are downregulated, due to the 
increased activity of GSK‑3β (59).

4. Wnt/β‑catenin signaling pathway in exudative AMD

Various animal models (models of oxygen‑induced reti‑
nopathy, streptozotocin rat model, rat model of cNV, rat, 
mouse, pig, primate, rabbit) have been utilized for the inves‑
tigation of AMd (60), and previous studies have revealed that 
aberrantly activated Wnt/β‑catenin signaling may be a patho‑
genic marker for AMd (33,61). Stimulated Wnt/β‑catenin 
signaling has been observed in both human AMd macular 
tissues (21), and in murine laser‑induced cNV models (20), 
which are mainly utilized to investigate the angiogenic form 
of AMd. The phosphorylation of LRP6 and the stimulation 
of β‑catenin have been observed in a laser‑induced cNV 
animal model (20) and in very‑low‑density lipoprotein 
(VLdL) receptor gene knockout (VLdLR‑/‑) mice with 
abnormal intraretinal vessels (62,63). The downregulation 



INTERNATIONAL JOURNAL OF MOLEcULAR MEdIcINE  49:  79,  2022 3

of Wnt/β‑catenin signaling with the use of an anti‑LRP6 
antibody or a dKK‑1 agonist have been reported to impede 
the formation of neovascular lesions in murine cNV and 
VLdLR‑/‑ models (20). The decrease in Wnt gene expression 
in mouse choroidal explants is associated with the limitation 
of laser‑induced cNV severity (64).

The stimulation of the Wnt/β‑catenin signaling has been 
shown to be associated with the degeneration of the focal 
retina and the subsequent formation of exudative lesions (21). 
Kallistatin, an endogenous inhibitor of the Wnt/β‑catenin 
signaling pathway and a member of the serine proteinase 
inhibitor (SERPIN) family, has been reported to be decreased 
in patients with AMd (21). Kallistatin exerts anti‑angiogenic 
and anti‑inflammatory actions (33,65‑69). Kallistatin forms a 
complex with LRP6, decreasing Wnt/β‑catenin signaling acti‑
vation (68,69). In murine models with focal retinal AMd‑like 
lesions, the use of anti‑LRP6 antibody has been found to 
decrease the Wnt/β‑catenin signaling and arrest the initiation 
of lesions of the retina (21) (Table I).

Wnt/β‑catenin signaling and angiogenesis in exudative 
AMD. Tissue factor (TF), a transmembrane cell‑surface 
receptor for plasma coagulation factor VII, is one of the 
main regulators of the extrinsic coagulation signaling 
pathway (70). TF exerts angiogenic effects during the 
different stages of cNV development (71‑73). The stimula‑
tion of TF has been found to be associated with exudative 
AMd retina (72), with its increase leading to the develop‑
ment of exudative AMD due to the inflammatory (72,74‑76) 
and angiogenetic processes (76,77). TF stimulates VEGF 
activity and leads to the formation of vascular vessels, 
through the stimulation of the Wnt/β‑catenin signaling (78). 
Mab2F1, a monoclonal antibody specific for LRP6, has been 
reported to directly inactivate Wnt/β‑catenin signaling, 
in exudative AMd. In particular, the inhibition of the 
Wnt/β‑catenin signaling in cNV by Mab2F1 leads to the 
reduction of the retinal vascular leakage (20,63). Moreover, 
the decrease in dKK‑1 circulating levels has been shown 
to be associated with the initiation of exudative AMd (79).

Figure 1. Activation and inactivation of Wnt/β‑catenin signaling. during the activation of Wnt ligands, the stimulation of FZd4/β‑catenin signaling requires 
the formation of the LRP5 /LRP6 complex. LRP5 plays a crucial role in the vascularization of the retina, whereas LRP6 has a less integral role in this. dsh 
forms a complex with AXIN, to prevent the β‑catenin phosphorylation by GSK‑3β. β‑catenin accumulates in the cytoplasm, to translocate to the nucleus 
and bind to the TcF/LEF co‑transcription factors. The nuclear link enhances the activation of Wnt‑response genes, including cyclin d1, c‑Myc, PdK1 and 
McT‑1. during the inactivation of Wnt ligands, GSK‑3β phosphorylates cytoplasmic β‑catenin. The destruction complex is formed by APc, AXIN, GSK‑3β 
and finally, β‑catenin. In the proteasome, the destruction of phosphorylated β‑catenin operates. Wnt inhibitors, including dKKs and SFRPs, modulate the 
Wnt/β‑catenin signaling through the prevention of its ligand‑receptor actions. dsh, disheveled; FZd, frizzled; LRP, low‑density lipoprotein receptor‑related 
protein; GSK‑3β, glycogen synthase kinase‑3β; TcF/LEF, T‑cell factor/lymphoid enhancer factor; APc, tumor suppressor adenomatous polyposis coli; PdK1, 
pyruvate dehydrogenase kinase 1; McT‑1, monocarboxylate transporter 1; dKK, dickkopf; SFRPs, secreted Frizzled‑related proteins.



VALLÉE:  cURcUMIN IN EXUdATIVE AMd4

Table I. The different pathways involved in the stimulation of Wnt/β‑catenin signaling in exudative AMd and the possible 
actions of curcumin. 

 Model Target Action (Refs.)

Wnt/β‑catenin ARPE‑19 cells Stimulation of Activation of VEGF, NF‑κB and TNF‑α  (33)
signaling  Wnt/β‑catenin signaling
 Adult rats and laser‑induced Wnt/β‑catenin signaling Mab2F1 inhibited the hypoxia‑induced  (20)
 cNV mouse models  activation of Wnt signaling in cultured 
   RPE cells
 Murine models of cNV Activation of dKK‑1 diminution of Wnt signaling (20,203)
 and VLdLR‑/‑ mice expression
 AMd patients Kallistatin decrease Serpin expression and (21)
   Wnt signaling
 Mouse model Kallistatin Blockage of LRP6 (compound of (68)
   the β‑catenin complex); decrease in 
   inflammatory cytokines, including tumor 
   necrosis factor α, interleukin 1β and 
   interleukin 6
 KS‑TG mice Kallistatin Wnt/β‑catenin signaling is suppressed (6)
 Murine ccl2/cx3cr1 TF activation cNV development (71)
 deficiency
 Ccl2/Cx3cr1‑deficient mice TF activation AMD retina development (72)
 ARPE‑19 cells TF activation Stimulation of the Wnt signaling (78)
   subsequently stimulating VEGF
 ARPE‑19 cells Activation of Mab2F1 decreased Wnt signaling and retinal (63)
   vascular leakage
 AMd patients decreased dKK‑1 Increased Wnt signaling, development and (79)
  expression severity of exudative AMd
 AMd patients Increased TNF‑α Higher risk of choroidal (111,112)
   neovascularization
 AMD patients Inflammatory process Stimulation of the Wnt signaling (25,115,
   which stimulates VEGF 116)
 AMd patients Stimulation of TNF‑α Stimulation of VEGF (113‑116)
 AMd patients Stimulation of Stimulation of VEGF (31,117)
  Wnt/β‑catenin pathway
 choroid and retinal Activation of HIF‑1α Stimulation of the Wnt signaling which (118‑120)
 endothelial cells  stimulates VEGF
curcumin Human ARPE‑19 cells Modulation of p44/42 decreased oxidative stress (150)
  (ERK) Bax and Bcl‑2
 In vivo models Diminution of IL‑1,  Decrease inflammation (178)
  IL‑6 and TNF‑α, 
  cOX‑2, NF‑kB
 U937 and Raji cells decreased VEGF  decreased angiogenesis (179)
 Hepatocellular carcinoma decreased VEGF and decreased angiogenesis (180)
 cell‑implanted nude mice cOX‑2 expression
 In vivo models decreased bFGF decreased corneal neovascularization (182)
  expression
 Ehrlich ascites tumor  decreased bFGF decreased neovascularization (183)
 (EAT) cells expression

cNV, choroidal neovascularization; VLdLR, very‑low‑density lipoprotein receptor; AMd, age‑related macular degeneration; LRP, low‑density 
lipoprotein receptor‑related protein; KS‑TG, kallistatin‑transgenic; TF, tissue factor; ccL2, chemokine (c‑c motif) ligand 2; cx3cr1, cX3c 
chemokine receptor 1; VEGF, vascular endothelial growth factor; Mab, monoclonal antibody; dKK‑1, dickkopf‑related protein 1; TNF‑α, 
tumor necrosis factor‑α; cOX‑2, cyclooxygenase 2; HIF‑1α, hypoxia‑inducible factor 1‑α; NF‑κB, nuclear factor‑κB; IL, interleukin; bFGF, 
basic fibroblast growth factor.
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Wnt/β‑catenin signaling and oxidative stress in exudative 
AMD. The downregulation in the levels of dKK‑1 has been 
found to be associated with the severity of exudative AMd 
and cNV development (79). Nevertheless, the cause for the 
decrease in the dKK‑1 expression level remains unclear; 
however, previous research has revealed that circulating dKK‑1 
expression is produced from platelets (80). Wnt/β‑catenin 
signaling stimulates the process of aerobic glycolysis (also 
known as the Warburg effect), by the simultaneous stimulation 
of PI3K/Akt signaling and HIF‑1α, two crucial regulators of 
the Warburg effect (81‑83).

The activation of PI3K/Akt signaling leads to the stimu‑
lation of glucose metabolism and the prevention of reactive 
oxygen species (ROS) production through the activation of 
HIF‑1α, which diverts the glucose from the tricarboxylic acid 
cycle and the production of lactate (84).

ROS, a production of normal cell metabolism, can act 
either favorably or negatively for cells, depending mainly on 
the concentration. The principal source of ROS production 
is oxidative mechanisms in the mitochondria and several 
enzymatic interactions catalyzed by the oxidoreductase 
enzymes (85). decreased concentrations of ROS interact as 
cell proliferation enhancers and subsequently pro‑apoptotic 
enhancers. ROS stimulate a number of transcription factors, 
including NF‑κB and activator protein 1 (AP‑1) (86). ROS 
have also been reported to enhance angiogenic process and 
inflammation (87,88). However, increased ROS concentrations 
may be toxic and mutagenic, damaging lipids, proteins, dNA 
and ultimately enhancing apoptosis. The endogenous antioxi‑
dant defense mechanism is composed of antioxidant enzymes, 
including superoxide dismutase (SOd), catalase, glutathione 
peroxidase, heme oxygenase (HO‑1) and non‑enzymatic 
antioxidants, including decreased molecular weight scaven‑
gers [glutathione (GSH), uric acid, lipoic acid, ascorbic acid, 
tocopherol. Exogenous antioxidant defense system consists 
of antioxidants grouped into natural products and identical 
to natural ones but synthesized by the industry, including 
vitamins (89). The imbalance between ROS production and 
antioxidant processes defines oxidative stress (OS). OS plays a 
major role in disease initiation, including AMd, as well as in 
physiological processes, including aging (90‑92).

HIF‑1α is transcriptionally involved through PI3K/Akt 
signaling by eukaryotic translation initiation factor 4E‑binding 
protein 1 and STAT3 (93‑98). c‑Myc has been reported to acti‑
vate HIF‑1α (99). HIF‑1α stimulates the activity of numerous 
glycolytic enzymes, including PdK, responsible for the phos‑
phorylation of pyruvate dehydrogenase (PdH). This results 
in PdH inactivation and leads to cytoplasmic pyruvate being 
converted into lactate by the activation of lactate dehydrogenase 
A (LdH‑A) (100). HIF‑1α and c‑Myc are the main controlling 
factors of LdH‑A (101‑104). This process is characterized by 
increased levels of cytoplasmic lactate production (105), and 
has also been observed in exudative AMd (59,106). In exuda‑
tive AMd, the overstimulation of the Wnt/β‑catenin signaling 
pathway results in the activation of the Warburg effect and the 
subsequent enhancement of photoreceptor protection in retina 
cells, against OS damage (107,108).

Wnt/β‑catenin signaling and inflammation in exudative 
AMD. Previous studies have revealed an association between 

Wnt/β‑catenin signaling and inflammation, due to their effects 
on TNF‑α and NF‑κB signaling targets (37,109,110). TNF‑α has 
been reported to be stimulated in AMd (111,112), while inter‑
cellular adhesion molecule (IcAM)‑1 is produced in the RPE 
and exerts a marked effect on leukocyte adherence (113,114). 
Inflammation plays a crucial role in exudative AMD through 
the activation of the Wnt/β‑catenin signaling pathway, ulti‑
mately resulting in the activation of VEGF (25,33,115,116). 
Thus, Wnt/β‑catenin signaling activation has been consid‑
ered to play an integral role in the development of AMd. 
Wnt/β‑catenin signaling stimulation is associated with the 
degeneration of the focal retina and exudative lesions (21). 
The stimulation of Wnt/β‑catenin signaling has been shown 
to be associated with the initiation of exudative lesions by its 
associations with pro‑inflammatory markers (33).

5. Cellular signaling for CNV formation in exudative AMD

The mechanism of inf lammation plays a crucial role 
in the development of cNV by the stimulation of 
VEGF (25,33,115,116). The stimulation of NF‑κB signaling, 
a main inflammatory factor, has been found to be associated 
with the activation of Wnt/β‑catenin signaling in AMd (35). 
The stimulation of Wnt/β‑catenin signaling induces the 
upregulation of various factors, including VEGF, TNF‑α and 
IcAM‑1 (31,33,117). Subsequently, the stimulation of VEGF 
by TNF‑α plays a role in cNV (118‑121).

The downregulation of Wnt inhibitors, including dKK‑1, 
has been shown to be associated with exudative lesions and the 
severity of cNV (79). In exudative AMd, VEGF overexpres‑
sion may be enhanced by the stimulation of the Wnt/β‑catenin 
signaling (31,33,117) and this occurs by a direct targeting 
link (20,122).

The activation of HIF‑1α, enhanced by Wnt/β‑catenin 
signaling, may result in the stimulation of VEGF activity, 
ultimately damaging choroid and retinal endothelial cell func‑
tions, subsequently stimulating angiogenesis (123‑125).

LdH‑A activation directly stimulates the expression 
of VEGF (106,126‑128). Moreover, cytoplasmic lactate 
accumulation has been reported to lead to the upregulation 
of VEGF (129‑131), and particularly in exudative AMd, 
the formation of cNV is enhanced by the stimulation of 
VEGF (118‑121).

6. Curcumin

Curcumin, classified as bis‑α, β‑unsaturated β‑diketone, is 
a natural well‑known compound. curcumin is the active 
component of Curcuma longa L., which has been reported to 
exert a wide range of beneficial effects, including anticancer 
properties (132,133). Additionally, curcumin has been revealed 
to possess a number of therapeutic properties, including 
anti‑inflammatory and anti‑aging properties (134). In 1815, 
curcumin was initially investigated by Vogel and Pelletier from 
the rhizomes of Curcuma longa (135). Subsequently, in 1842, 
Vogel Jr purified curcumin. In 1910, another study revealed 
the chemical structure of curcumin, as diferuloylmethane, or 
1,6‑heptadiene‑3,5‑dione‑1,7‑bis (4‑hydroxy‑3‑methoxyphenyl)‑ 
(1E,6E) (135). In 1913, for the first time, a method was devel‑
oped for curcumin synthesis (136).
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The predicted benefits of curcumin are restricted due to its 
reduced oral bioavailability, which can be attributed to its poor 
absorption, a high rate of metabolism and a rapid systemic 
increase in curcumin levels.

Previous studies have observed that curcumin pharmaco‑
kinetics include a reduced bioavailability (137), and increased 
pharmacological and clinical applications (138). However, 
several potential processes to overcome this poor bioavail‑
ability could be counteracted through alternative approaches. 
Various strategies can improve its bioavailability, including 
phospholipid complexes, liposomes and nanoparticles. A 
number of polymers h utilized to synthesize nano‑formulations 
for curcumin use to enhance its biological metabolism (139). 
Biocompatible and biodegradable polymers have been utilized 
in the administration of therapeutics, due to their low toxicity 
risk (140). Previous findings of liposome formulations have 
resulted in the improvement of treatments for drug‑resistant 
cancers and in the reduction of toxicity (141). Furthermore, 
other curcumin delivery processes have been applied, including 
nanogels (142), peptide and protein formulations (143) and 
cyclodextrin complexes (144).

Curcumin in exudative AMD. As regards AMd, curcumin 
has been reported to possibly counteract cell death 
through the effects on several cellular signaling pathways 
(i.e. VEGF, PI3K/Akt, TGF, FGF, cOX‑2, I‑cAM‑1, 
V‑cAM‑1) (145). These processes include the decrease in 

apoptotic rates of RPE cells and the diminution of inflam‑
matory mechanisms (146). curcumin may also reduce free 
radical concentrations and oxidative biomarker expression 
levels, including superoxide dismutase. curcumin inhibits 
apoptosis to increase the viability of cells (147). It has been 
previously reported that, specific microRNAs controlling 
the antioxidant process, may be modulated by the admin‑
istration of curcumin (148). Apart from this, the expression 
of HO‑1, an enzyme serving cellular defense processes in 
AMd, is augmented by the effects of curcumin. curcumin 
simultaneously decreases NF‑κB activity and inflammatory 
gene expression (TNF, IL‑1) (149).

Another protective effect of curcumin has been observed 
by counteracting OS induced in ARPE‑19 cells (150). In 
ARPE‑19 cells, curcumin can decrease p44/42 (ERK) apop‑
totic signaling, with a consecutive decrease in Bax and Bcl2 
levels (Fig. 2). Furthermore, curcumin exerts a protective effect 
against OS, which may be a possible therapeutic approach for 
AMd (Table I).

Curcumin inhibits Wnt/β‑catenin signaling. The use of 
curcumin has been reported to lead to cell cycle arrest 
in the G2/M stage of tumor cells, due to the decrease in 
Wnt/β‑catenin signaling (151). curcumin activates GSK‑3β 
to decrease nuclear β‑catenin translocation and subsequently, 
to inhibit the action of cyclin d1. In cancer cells, curcumin 
analogs dysregulate the translocation of β‑catenin into 

Figure 2. Potential actions of curcumin by inactivating the Wnt/β‑catenin signaling for protective effects on exudative AMd. As regards oxidative stress, 
curcumin may enhance SIRT1 and modulate SOd and HO‑1 to control ROS production. curcumin may regulate apoptotic function through Bcl‑2 and Bax, 
and also invasion by modulating MMPs and cOX‑2. Via the interaction between Wnt/β‑catenin signaling (c‑Myc and cyclin d1) and HIF‑1α and subsequently 
VEGF expression, curcumin can reduce angiogenesis and cell proliferation. Moreover, by controlling the expression of inflammatory markers (TNF‑α, IL‑1 
and IL‑6) activated by Wnt/β‑catenin signaling, curcumin can exert an anti‑inflammatory effect. AMD, age‑related macular degeneration; SOD, superoxide 
dismutase; HO‑1, heme oxygenase 1; ROS, reactive oxygen species; MMPs, matrix metalloproteinases; cOX‑2, cyclooxygenase 2; HIF‑1α, hypoxia‑inducible 
factor 1‑alpha; VEGF, vascular endothelial growth factor; TNF‑α, tumor necrosis factor‑α; NF‑κB, nuclear factor‑κB; IL, interleukin; SIRT1, sirtuin‑1. 
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the nucleus (152). In xenograft mouse models, curcumin 
decreases 12‑0‑tetradecanoylphorbol‑13‑acetate‑induced 
Wnt signaling (153). Additionally, curcumin and its analog, 
cHc007, may decrease complex β‑catenin/TcF/LEF levels 
in various tumor cells (154). Furthermore, curcumin increased 
the GSK‑3β mRNA level in dAOY medulloblastoma cells to 
decrease Wnt/β‑catenin signaling (155). By the decrease in 
Wnt/β‑catenin signaling, curcumin diminishes cyclin d1 and 
is responsible for the diminution of brain tumor growth (155) 
(Fig. 2).

Antioxidant properties of curcumin in exudative AMD. 
curcumin belongs to natural antioxidants. The effects of 
curcumin on OS involve numerous processes. curcumin may 
scavenge different forms of OS, including the production 
of ROS and reactive nitrogen species (156). It can directly 
regulate GSH activity (157). Moreover, curcumin may 
decrease ROS‑generating enzymes, including cyclooxygenase 
2 (cOX‑2) (158).

In vitro biochemical have studies revealed that the cOX‑2 
pathway catalyzes the oxidation of the 5‑lipoxygenase (5‑LOX) 
product 5S‑HETE to form a di‑endoperoxide (158) and 
5‑OH‑PGH2, equivalent to the prostaglandin endoperoxide 
PGH2 of the cOX‑2 pathway (159). A previous study has 
suggested that the stimulation of 12/15‑lipoxygenase may 
lead to the dysregulation of the retinal endothelial cell barrier, 
demonstrated as increased vascular permeability through 
the involvement of NAdPH oxidases and the subsequent 
activation of VEGF (160). An inhibitor of 5‑LOX, pigment 
epithelium‑derived factor receptor, obstructed RPE cell death 
signaling which is involved by oxidative stress (161). Lipid 
peroxidation stimulates redox‑sensitive inflammatory factors, 
including the NF‑κB pathway, resulting in inflammation 
during the progression of AMd (162,163). curcumin may 
exert beneficial anti‑inflammatory effects via the modulation 
of the 5‑LOX pathway (159,164). curcumin inhibits 5‑LOX 
activity in polymorphonuclear leukocytes and reduces leukot‑
riene c4 biosynthesis in limb edema and in anaphylaxis animal 
models (165,166).

Moreover, curcumin is a chain‑breaking antioxidant and 
a lipophilic component; this renders it an efficient scavenger 
of peroxyl radicals (136,167). curcumin can enhance the 
levels of GSH (168), but can decrease the activity of nitric 
oxide synthase in murine macrophages and can enhance the 
HO expression in several cell subtypes (169). A decrease in 
sirtuin‑1 (SIRT1) levels has been shown to be associated with 
a reduction in SOd levels. SIRT1 deacetylates SOd (170). 
SIRT1 is an NAd‑dependent enzyme deacetylating several 
substrates and regulating metabolism, including aging. The 
main role of SIRT1 is the alleviation of inflammatory process 
by the decrease in NF‑κB signaling and by the reduction of 
OS. Previous findings have observed that the inhibition of 
SIRT1 is associated AMd (171). SIRT1 has also been reported 
to decrease OS by possessing neuroprotective action in mice 
with optic nerve crush injury (172). Moreover, a recent study 
observed that curcumin activated SIRT1 to decrease OS (173) 
(Fig. 2).

Anti‑inflammatory properties of curcumin in exudative 
AMD. curcumin has been proven to inhibit NF‑κB 

signaling (174,175). Recent research has demonstrated 
that curcumin may counteract inflammation by acting as 
a peroxisome proliferator‑activated receptor agonist (176). 
Moreover, curcumin may decrease TNF‑α expression and 
downregulate the production of cytokines, including inter‑
leukin (IL)‑1, IL‑6 and IL‑8, and chemokines. curcumin 
may also reduce proinf lammatory enzyme expression, 
including cOX‑2 (157,177). In parallel, curcumin can exert 
anti‑inflammatory effects by decreasing IL‑1, IL‑6 and 
TNF‑α levels (178) (Fig. 2).

Anti‑angiogenic properties of curcumin in exudative AMD. 
curcumin has been shown to inhibit angiogenesis through 
the suppression of VEGF production in U937 and Raji 
cells (179). Moreover, cOX‑2 and VEGF have been found 
to be directly suppressed by curcumin in HepG2 hepatoma 
cells (180).

curcumin (3,000 mg/kg body weight) administration has 
been also associated with a decrease in tumor angiogenesis, 
through the inhibition of VEGF and cOX‑2 expression (180). 
These effects have been also reported to be exerted through 
the liposomal availability of curcumin and by attenuating 
the NF‑κB signaling pathway (181). Moreover, curcumin 
may decrease angiogenesis in basic fibroblast growth 
factor (bFGF)‑induced corneal neovascularization (182). 
Furthermore, curcumin may decrease the activity of 
FGF‑induced neovascularization (183). Previous studies have 
revealed the angiogenic synergy between bFGF and VEGF 
pathway (184‑186). bFGF may also increase the expression 
of pro‑angiogenic factors, including VEGF, to regulate the 
angiogenic processes (187,188). As a result, curcumin may 
decrease the expression of VEGF through the inhibition of 
bFGF expression.

curcumin may inhibit the activity of the urokinase plas‑
minogen activator system (uPA; (189). uPA complexes with 
a specific receptor (uPAR), through the EGF‑like domain in 
the urokinase amino‑terminal fragment (ATF). This effect has 
been reported to result in a decrease in endothelial cell migra‑
tion and a decrease in bFGF, TGF, TNF‑α, hepatocyte growth 
factor and VEGF release (190). Additionally, curcumin may 
inhibit MMP‑2 expression by interacting via FGF‑2 angio‑
genic signaling (191) (Fig. 2).

Limitations of curcumin use and new particles. different 
properties of curcumin confer anti‑inf lammatory and 
antioxidant activities. curcumin has been investigated 
in congenital and degenerative eye disorders of both the 
anterior and posterior segments, and has been previously 
utilized as a possible therapeutic (192‑194). However, the 
major issue concerning the oral use of curcumin remains 
the reduced curcumin bioavailability, due to a low gastro‑
intestinal absorption with a rapid hepatic and intestinal 
metabolism. Therefore, to counteract these limitations, 
numerous methods are investigated, including curcumin 
analogues, enhancers and delivery systems. Promising 
substances are the pro‑drug diphosphorylated curcumin, 
marked by a high molecular stability in the aqueous 
media (195) and the curcumin pro‑drug curcumin diethyl 
disuccinate (196). Bioavailability enhancers have been 
considered, with the use of piperine being highly promising, 
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having the ability to diminish curcumin hepatic and intes‑
tinal glucuronidation (197), leading to increase curcumin 
bioavailability (198). Nanoparticles and liposomes present 
high interest to also enhance curcumin bioavailability (199). 
Nevertheless, to the best of our knowledge, the aforemen‑
tioned strategies have not yet been investigated for ocular 
disorder treatment, with the sole exception of the use of 
a biodegradable curcumin‑loaded scleral plug for therapy 
of posterior ocular diseases in rabbit ocular model (200). 
Furthermore, a curcumin‑phospholipid lecithin formula‑
tion, known as Meriva®, has been reported to enhance visual 
acuity and can diminish macular edema among diabetic 
retinopathy patients (201). Nevertheless, in the therapy of 
chronic anterior uveitis with complications, curcumin has 
demonstrated promising results (202).

7. Conclusion and future perspectives

curcumin presents a wide range of pharmacological actions, 
including antioxidant, anti‑inflammatory and anti‑angiogenic 
activities in exudative AMd. The role of curcumin in OS, 
angiogenesis and inflammatory mechanisms, through its 
action of de‑activating the Wnt/β‑catenin signaling pathway, 
may indicate that it can decrease these pathological conditions 
and may prove to be an interesting pharmacological agent in 
exudative AMd. However, future clinical and pre‑clinical 
studies are warranted to investigate the role of curcumin as a 
therapeutic agent in AMd.
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