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Neuro-immune Interactions in Metabolic Regulation: 
Brain and Adipose Tissue Crosstalk
Chan Hee Lee*
Department of Biomedical Science, Hallym University, Chuncheon, Korea

The global obesity epidemic underscores the urgent need to elucidate the mechanisms underlying metabolic 
disorders. Although excessive caloric intake and sedentary lifestyles have traditionally been viewed as primary 
contributors, recent evidence highlights significant roles for genetic, environmental, and immunological factors. 
Notably, dysfunction within the central nervous system (CNS), particularly the hypothalamus, has emerged as a 
crucial regulator of metabolic homeostasis through CNS–peripheral interactions. Hypothalamic inflammation is 
primarily mediated by microgliosis, which disrupts systemic homeostasis. This review discusses the detrimental 
effects of hypothalamic microgliosis on energy metabolism and highlights emerging evidence suggesting para-
doxically beneficial roles of hypothalamic microgliosis in metabolic regulation. Within adipose tissue, immune 
cells, including adipose tissue macrophages (ATMs), T cells, and B cells, exert significant influence over systemic 
metabolism. Short-term activation of the sympathetic nervous system (SNS) promotes the anti-inflammatory 
polarization of ATMs and enhances the induction of regulatory T cells; thereby, improving insulin sensitivity. In 
contrast, chronic SNS activation may exacerbate inflammation due to β-adrenergic receptor desensitization and 
catecholamine resistance. Parasympathetic acetylcholine signaling is also known to suppress inflammation 
through activation of α7 nicotinic receptors on macrophages; however, parasympathetic innervation within 
white adipose tissue is considerably limited. Despite the critical role of the nervous system in systemic metabo-
lism, comprehensive insight into neuro-immune interactions remains lacking. In-depth studies using advanced 
technologies are needed to deepen knowledge in this field and to cover novel therapeutic targets for obesity 
and related metabolic disorders.
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INTRODUCTION

According to the World Health Organization, more than 890 mil-
lion adults are obese, and over 40% of the global population is esti-
mated to be overweight. The global epidemic of obesity has led to 
a surge in severe, life-threatening conditions such as type 2 diabetes 
mellitus (T2DM), cardiovascular diseases, neurodegenerative dis-
eases, and cancer.1 Recently, growing interest has emerged in ‘Medi-
cine 3.0,’ a proactive, preventive, and personalized approach aimed 
at managing disease risk before the onset of major illnesses by con-

trolling metabolic disorders. Traditionally, metabolic disorders have 
been attributed primarily to excessive caloric intake and sedentary 
lifestyles; however, emerging evidence suggests that synergistic me-
diators such as genetic, environmental, and immunological factors 
contribute to the development of obesity.2 Among these factors, 
increasing evidence indicates that dysfunctions within the central 
nervous system (CNS) can lead to the development of various met-
abolic disorders.3 Consequently, a paradigm shift has emerged that 
highlights the critical role of CNS–periphery communication in 
the pathogenesis of metabolic diseases.
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Both genetic and environmental dysfunctions within the CNS 
contribute to the pathogenesis of obesity and metabolic disorders. 
Genetic syndromes such as Prader-Willi syndrome and monogenic 
mutations in key hypothalamic signaling pathways, including mela-
nocortin 4 receptor (MC4R), leptin, and leptin receptor (LEPR), 
result in impaired satiety regulation and uncontrolled hyperphagia, 
leading to early-onset obesity.4-6 Environmental insults such as hy-
pothalamic injury from surgery, tumors, or trauma disrupt critical 
neural circuits involved in appetite control, contributing to ‘hypo-
thalamic syndrome.’7 Furthermore, chronic activation of the hypo-
thalamic-pituitary-adrenal (HPA) axis due to persistent psychoso-
cial stress elevates glucocorticoid levels, promoting visceral fat ac-
cumulation and insulin resistance.8 These clinical and mechanistic 
insights collectively underscore the importance of CNS integrity in 
maintaining metabolic homeostasis. This review aimed to provide 
an integrated perspective on the neuroendocrine regulation involv-
ing the CNS and peripheral metabolic tissues.

HYPOTHALAMIC STRUCTURAL 
SPECIALIZATIONS IN SENSING 

PERIPHERAL SIGNALS

Among various regions of the CNS, the hypothalamus is consid-
ered a key therapeutic target for combating obesity and metabolic 
disorders.9,10 This functional importance largely stems from its unique 
structural features, enabling the sensing and integration of periph-
eral signals and the coordination of neuroendocrine outputs.11 No-
tably, the median eminence (ME), one of the circumventricular or-
gans within the hypothalamus, contains fenestrated capillaries rath-
er than a typical blood-brain barrier.12 This specialized vascular struc-
ture permits real-time detection of circulating metabolic or inflam-
matory signals and enables the secretion of hypothalamic hormones 
into the pituitary gland via the hypophyseal portal system.13

The vascular permeability of ME can be modulated by metabolic 
challenges. For instance, fasting for 24 hours elevates vascular en-
dothelial growth factor-A (VEGFA) expression in tanycytes within 
the ME, leading to an increased number of fenestrated vessels.14 
This structural change enhances the access of circulating ghrelin 
into the hypothalamus; thereby, promoting appetite.14 Chronic ex-
posure to a high-fat diet (HFD) also increases vascular permeabili-

ty and the number of fenestrated vessels in the ME, facilitating ele-
vated entry of circulating free fatty acids.15 This alteration induces 
proliferation of perivascular macrophages and disrupts neuronal 
circuitry.16,17 These structural adaptations collectively establish the 
hypothalamus as a dynamic interface between the CNS and pe-
ripheral metabolic states.

Within the hypothalamus, distinct neuronal populations in the 
arcuate nucleus (ARH) play central roles in regulating systemic en-
ergy homeostasis. Pro-opiomelanocortin (POMC) neurons exert 
anorexigenic effects via the release of α-melanocyte-stimulating 
hormone (α-MSH).18 α-MSH activates MC4R in the paraventricu-
lar hypothalamus (PVH) to suppress appetite and enhance energy 
expenditure.18 POMC neurons also project to the dorsomedial hy-
pothalamus and lateral hypothalamus, contributing to sympathetic 
outflow and thermogenic regulation.18 In contrast, agouti-related 
peptide (AgRP)/neuropeptide Y (NPY) neurons antagonize MC4R 
signaling and inhibit PVH activity; thereby, promoting orexigenic 
responses and reducing energy expenditure.19 These neurons also 
send direct gamma-aminobutyric acid (GABA)-ergic projections 
to POMC neurons.19 The activity of these hypothalamic neurons 
is primarily regulated by circulating signals that enter the brain 
through the ME.

HYPOTHALAMIC INFLAMMATION AND 
METABOLIC DISORDERS

Under HFD conditions or during chronic inflammation, circu-
lating signals, including metabolic and inflammatory mediators 
such as saturated fatty acids (e.g., palmitate) and proinflammatory 
cytokines (e.g., tumor necrosis factor-alpha [TNF-α] and interleu-
kin-6 [IL-6]), enter the hypothalamus and accumulate in the ARH.14,15 
Notably, this influx occurs within hours to days following HFD ex-
posure (before the onset of obesity) and results in the activation of 
resident glial cells, including microglia and astrocytes (Fig. 1).14,15,20 
Microglia adopt a proinflammatory phenotype characterized by 
the release of cytokines such as IL-1β, IL-6, and TNF-α, which ini-
tiate and sustain hypothalamic inflammation.9 Astrocytes respond 
to hypothalamic inflammation with histological changes such as 
somatic hypertrophy and increased expression of glial fibrillary 
acidic protein (GFAP).9 Moreover, astrocytes contribute to neuro-
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inflammation by disrupting synaptic coverage, impairing metabolic 
support to neurons, and releasing proinflammatory mediators, in-
cluding IL-1β, TNF-α, and calcium-binding protein B (S100B).21 
As a consequence of this glial cell-mediated inflammation, hypo-
thalamic neurons such as POMC and AgRP neurons exhibit im-
paired leptin and insulin signaling, partially mediated by the upreg-
ulation of suppressor of cytokine signaling 3 (SOCS3) and protein 
tyrosine phosphatase 1B (PTP1B).22-24 These neurons may display 
reduced synaptic plasticity and altered electrophysiological proper-
ties, underscoring the essential role of hypothalamic neuronal in-
tegrity in maintaining systemic energy balance and metabolic ho-
meostasis.

HYPOTHALAMIC MICROGLIOSIS AND 
METABOLIC IMPROVEMENT

Paradoxically, recent findings have revealed that hypothalamic 
microglial activation can exert unexpectedly beneficial effects on 
systemic energy metabolism (Fig. 1).25 Specifically, the absence of 
microglial nuclear factor-kappa B (NF-κB) signaling under HFD 

conditions leads to impaired glucose and insulin metabolism, high-
lighting the beneficial role of microglial inflammatory pathways in 
maintaining metabolic homeostasis.25 In contrast, chemogenetic 
activation of microglia significantly improves both glucose tolerance 
and insulin sensitivity. These metabolic improvements are mediat-
ed through microglial TNF-α signaling and POMC neuron-driven 
parasympathetic output.25 

Consistent with this, we recently demonstrated that hypothalamic 
microgliosis induced by IL-2 reverses HFD-induced insulin resis-
tance through hypothalamic-adipose interaction.26 In the study, 
central administration of IL-2 suppressed food intake and enhanced 
systemic insulin sensitivity. Hypothalamic microglia express IL-2 
receptor subunits, including IL-2Rα, IL-2Rβ, and IL-2Rγ, and are 
activated by central IL-2 administration. Once activated, the mi-
croglia may stimulate adjacent POMC neurons, leading to enhanced 
sympathetic activity innervating gonadal white adipose tissue 
(gWAT).26 This signaling cascade promotes the differentiation of 
regulatory T cells (Tregs) and establishes an anti-inflammatory mi-
lieu within the gWAT.26 Notably, these immunometabolic effects 
occur independently of IL-2’s anorexigenic properties. However, 

Figure 1. Conventional and emerging views on hypothalamic inflammation. Traditional perspectives link hypothalamic inflammation to metabol-
ic disorders (left panel), whereas recent findings suggest hypothalamic microgliosis can improve metabolic function via pro-opiomelanocortin 
(POMC) neuron activation (right panel). IL, interleukin; TNF-α, tumor necrosis factor-alpha; S100B, calcium-binding protein B; 3V, third ventricle; 
CVO, circumventricular organ; ME, median eminence; gWAT, gonadal white adipose tissue. 
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these findings still have several limitations. First, the precise role of 
the three IL-2R chains expressed in microglia in regulating microg-
lial polarization remains unknown. Second, the current study rep-
resents pharmacological rather than physiological conditions, given 
that endogenous IL-2 levels are significantly lower compared to 
those in peripheral tissues.27 Therefore, further in-depth investiga-
tions on microglial differentiation and activation are required, con-
sidering potential differences according to disease type and dura-
tion of inflammation.

IMMUNE CELL-MEDIATED REGULATION 
OF METABOLIC HOMEOSTASIS IN 

ADIPOSE TISSUES

The inflammatory balance within adipose tissue plays a pivotal 
role in regulating systemic energy homeostasis.28 Under HFD con-
ditions, chronic inflammation contributes to the development of 
metabolic disorders such as hyperlipidemia, atherosclerosis, and 
T2DM.28 Both resident and infiltrating immune cells, including ad-
ipose tissue macrophages (ATMs), T cells, and B cells, tightly regu-
late this process.28,29 The balance between pro-inflammatory and 
anti-inflammatory immune cell subsets within adipose depots ulti-
mately determines the extent of energy metabolism.

Adipose tissue macrophages
ATMs constitute approximately 5% to 10% of stromal vascular 

cells in lean adipose tissue, with this proportion increasing up to 
40%–50% in obesity.30,31 These macrophages express F4/80 and 
CD11b and are broadly classified into two main phenotypes: CD11c 
and inducible nitric oxide synthase (Nos2)-expressing classically 
activated macrophages (M1 ATMs) and arginase1 (Arg1) and 
mannose receptor C-type 1 (Mrc1, CD206)-expressing alterna-
tively activated macrophages (M2 ATMs).32 In lean adipose tissue, 
M2-like ATMs are predominant and contribute to tissue homeo-
stasis by limiting adipocyte inflammation and supporting tissue re-
modeling.33 In contrast, obesity induces a phenotypic shift toward 
pro-inflammatory M1-like ATMs.33 These M1 ATMs secrete pro-
inflammatory cytokines, including IL-1β, IL-6, TNF-α, and mono-
cyte chemoattractant protein-1 (MCP-1, also known as CCL2); 
thereby, promoting local and systemic insulin resistance by activat-

ing serine kinases such as c-Jun N-terminal kinases (JNK) and IκB 
kinase β (IKKβ).34

Previously, clodronate has been employed to suppress the expan-
sion of ATMs under HFD conditions. Clodronate liposomes are 
widely utilized to selectively deplete macrophages via macrophage-
mediated uptake.35 In a study by Bu et al.36, long-term administra-
tion of clodronate liposomes improved obesity and metabolic pa-
rameters in HFD-fed C57BL/6J mice. This treatment reduced the 
presence of crown-like structures in adipose tissue and significantly 
suppressed the expression of pro-inflammatory cytokines such as 
TNF-α and MCP-1.36 However, contrasting results were reported 
by Bader et al.37, where clodronate treatment failed to ameliorate 
HFD-induced metabolic disorders or obesity and instead induced 
neutrophilia. These discrepancies may reflect differences in the 
timing of macrophage depletion. Beneficial effects were observed 
when long-term depletion was initiated early in the course of HFD 
feeding, whereas clodronate administration after the establishment 
of obesity and adipose tissue inflammation failed to improve meta-
bolic outcomes. Another study showed that clodronate liposomes 
had no beneficial metabolic effects under short-term HFD condi-
tions.38 These findings highlight the need for further investigation 
into the specific roles of ATMs in adipose tissue metabolism.

T cells
T cells are essential components of the adaptive immune system 

and are broadly classified into CD4+ helper T cells and CD8+ cyto-
toxic T cells.39 They are also found in adipose tissue, where they re-
spond to changes in the metabolic environment. Obesity drives a 
shift in T cell differentiation toward pro-inflammatory subsets such 
as T helper 1 (Th1) and CD8+ T cells, along with a concomitant 
reduction in anti-inflammatory subsets such as Tregs.40 T cell dif-
ferentiation is influenced by neighboring immune cells, cytokines, 
and hormones. Leptin, an adipocyte-derived hormone elevated in 
obesity, promotes the differentiation of naïve T cells into Th1 cells 
and inhibits their differentiation into Treg cells.41,42 This mechanism 
is closely associated with both hyperleptinemia and the increased 
Th1 cells commonly observed in obesity. The role of leptin in T 
cell differentiation and inflammatory regulation is supported by 
studies demonstrating that ob/ob mice, which lack leptin, exhibit 
resistance to various inflammatory diseases, including mouse mod-
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els of multiple sclerosis and arthritis.43-45 These diverse and com-
plex regulatory processes of T cells contribute to local inflamma-
tion and potentially control systemic metabolic homeostasis.40,46

In adipose tissue, naïve CD4+ T cells differentiate into specific ef-
fector subsets in response to antigen presentation by local antigen-
presenting cells (APCs) and the surrounding cytokine milieu.47,48 
In obesity, APCs such as dendritic cells and macrophages become 
activated and enhance their antigen-presenting efficiency through 
upregulation of costimulatory molecules (e.g., CD80/CD86) and 
major histocompatibility complex class II expression.49 These fac-
tors promote CD4+ T cell activation and polarization into inflam-
matory subsets.49 Specifically, obesity-associated APCs preferen-
tially secrete cytokines like IL-12 and IL-23, driving the polariza-
tion of CD4+ T cells toward a Th1 phenotype characterized by in-
terferon-gamma (IFN-γ) production, which subsequently enhanc-
es pro-inflammatory macrophage activation.50-52 Similarly, the adi-
pose tissue microenvironment in obesity promotes differentiation 
of CD4+ T cells into Th17 cells, further amplifying tissue inflam-
mation through secretion of IL-17.50 This dysregulated interplay 
between APCs and CD4+ T cells perpetuates chronic inflamma-
tion in adipose tissue and contributes significantly to obesity-asso-
ciated metabolic dysfunction.

In contrast, a subset of CD4+ T cells differentiates into Tregs in 
response to IL-2 and transforming growth factor beta (TGF-β).53 
CD4+CD25+forkhead box P3 (FoxP3)+ Tregs actively suppress in-
flammation by inhibiting the activation of both macrophages and 
effector T cells.53 Depletion of Tregs using anti-CD25 antibody ex-
acerbated inflammation and insulin resistance in db/db (LEPR-de-
ficient) mice, whereas adoptive transfer of CD4+FoxP3+ Tregs im-
proved glucose metabolism.54 In a separate study using ob/ob 
(leptin-deficient) mice, administration of anti-CD3 antibody to-
gether with β-glucosylceramide induced CD4+latency-associated 
peptide (LAP)+ Tregs, resulting in reduced inflammation and im-
proved glycemic control.55

However, conflicting reports also suggest that adoptive Treg trans-
fer may not always yield metabolic benefits and could even be det-
rimental. Van Herck et al.56 demonstrated that the adoptive transfer 
of CD4+CD25+FoxP3+ Tregs failed to expand within visceral adi-
pose tissue and aggravated liver pathology in mice fed a high-fat, 
high-sucrose diet. These findings may reflect obesity-induced reduc-

tions in peroxisome proliferator-activated receptor-gamma (PPARγ) 
expression, which impairs long-term Treg maintenance.56 In anoth-
er study, adipose tissue-specific knockout (KO) of Tregs improved 
glucose and insulin metabolism in aged mice.57 These findings sug-
gest that the metabolic roles of Tregs may vary depending on the 
temporal context or the surrounding microenvironment, presenting 
critical limitations for the therapeutic application of Tregs in meta-
bolic disorders.

HFD feeding leads to a marked increase in CD8+ T cell numbers 
within adipose tissue.58 These activated CD8+ T cells produce IFN-γ 
and CCL5, which contribute to local inflammation and monocyte 
recruitment.58 These cytokines promote the polarization of adipose-
resident macrophages toward a classically activated phenotype, 
thereby sustaining the inflammatory state of adipose tissue.59 Nota-
bly, systemic administration of anti-CD8 antibodies significantly 
reduced HFD-induced adipose tissue inflammation and macro-
phage infiltration compared to immunoglobulin G (IgG)-treated 
controls.58 Moreover, improvements in glucose metabolism and in-
sulin sensitivity were also observed.58 These effects were further 
confirmed in CD8α KO mice. In CD8α KO mice, the adoptive 
transfer of splenic CD8+ T cells re-established adipose inflamma-
tion and M1 macrophage infiltration.58 Collectively, these findings 
highlight the critical role of CD8+ T cells in initiating and sustain-
ing adipose tissue inflammation.

B cells
Adipose-resident B cells include multiple subsets, such as anti-in-

flammatory B1 cells and regulatory B cells (Bregs), as well as pro-
inflammatory B2 cells and memory-like B cells.60 Each subset pos-
sesses distinct immunological functions during the progression of 
metabolic disorders. B cells, which are increased in adipose tissue 
during HFD feeding, promote insulin resistance through modula-
tion of T cells and the production of pathogenic IgG antibodies.61 
B cell-deficient mice exhibit improved glucose metabolism and in-
sulin sensitivity, along with reduced M1 macrophage polarization 
and adipose tissue inflammation.61,62 These effects occur indepen-
dently of changes in body weight, suggesting that B cells specifically 
contribute to inflammatory responses and metabolic dysfunction.61,62

However, anti-inflammatory B cell subsets exert beneficial effects 
on adipose tissue inflammation and metabolic homeostasis. Expan-
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sion of B1 B cells, one of the anti-inflammatory subsets, alleviates 
HFD-induced obesity, adipose tissue inflammation, and insulin re-
sistance in B cell-specific Id3 KO mice.62,63 Similar to Tregs, Bregs 
exhibit immunosuppressive properties and play a crucial role in 
mitigating HFD-induced chronic inflammation. Studies have report-
ed a reduction in Breg cell numbers within the adipose tissue of in-
dividuals with obesity, suggesting a potential link between Breg de-
ficiency and the development of metabolic dysfunction.64,65

Beyond metabolic disorders, Bregs ameliorate several inflamma-
tory conditions, including experimental autoimmune encephalo-
myelitis, transplantation tolerance, and sepsis, highlighting their 
immunosuppressive effects.66-69 These immunoregulatory effects 
are primarily mediated through the production of IL-10.70 Although 
Bregs have not been studied as extensively as Tregs, emerging evi-
dence supports the potential of targeting Breg function as a thera-
peutic strategy for metabolic disorders.

CONTRIBUTION OF THE NERVOUS SYSTEM 
TO IMMUNOMETABOLIC FUNCTIONS

Sympathetic nervous system 
The sympathetic nervous system (SNS) plays a critical role in 

regulating metabolic homeostasis, particularly through the modula-
tion of adipose tissue function.71 Sympathetic nerve terminals dense-
ly innervate adipose depots and release neurotransmitters such as 
norepinephrine (NE), which profoundly influence adipocyte lipol-
ysis and thermogenesis.72 Importantly, SNS activation in adipose 
tissues exhibits distinct, depot-specific patterns among brown adi-
pose tissue (BAT), inguinal WAT (iWAT), and gWAT. Distinct 
sympathetic stimuli, such as cold exposure, food deprivation, glu-
coprivation, and MC4R activation, induce unique SNS activation 
patterns across various adipose tissues.73-75 This phenomenon has 
been described as a ‘Sympathetic fingerprint.’

Beyond its classical role in lipid mobilization, recent studies have 
revealed that SNS activation and subsequent NE release significantly 
affect immune cell polarization (Fig. 2A).76,77 These neuro-immune 
interactions contribute to obesity-associated inflammation and in-
sulin resistance. A recent study demonstrated that hypothalamic 
microgliosis and chemogenetic activation of POMC neurons in-
duce SNS activation, resulting in enhanced lipolysis and thermo-
genesis in BAT and iWAT while concurrently modulating immune 
cell activity and insulin sensitivity in gWAT.26,71 Sympathetic activa-
tion predominantly promotes anti-inflammatory M2 macrophage 
polarization and suppresses the expression of macrophage-derived 

Figure 2. Autonomic and endocrine regulation of immune cell polarization. (A) The sympathetic nervous system (SNS) and parasympathetic ner-
vous system (PNS) regulate immune cell responses through neurotransmitters norepinephrine (NE) and acetylcholine (Ach), respectively. (B) The 
hypothalamic-pituitary-adrenal axis modulates inflammation and metabolic responses via glucocorticoid receptor signaling pathways. CRH, corti-
cotropin-releasing hormone; GRE, glucocorticoid response element; AP-1, activator protein-1; NF-κB, nuclear factor-kappa B; TNF-α, tumor necro-
sis factor-alpha.

A B
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pro-inflammatory cytokines such as TNF-α and MCP-1.78,79 This 
response is mediated through β-adrenergic receptor signaling path-
ways.78 Systemic administration of the β-blocker propranolol, sym-
pathetic denervation, or central administration of AgRP inhibits 
NE-mediated adrenergic signaling and reduces the expression of 
TNF-α and MCP-1 in WAT.78,79 T cells are also sensitive to sympa-
thetic signals. NE released from sympathetic nerve terminals binds 
to β2-adrenergic receptors (β2-ARs) expressed on choline acetyl-
transferase (ChAT)+ T cells and stimulates the secretion of acetyl-
choline by these cells.80 Subsequently, acetylcholine binds to α7-
nicotinic acetylcholine receptors (α7nAChR) on macrophages, 
promoting M2 polarization and suppressing TNF-α production.79-82 
Additionally, increased sympathetic activity induced by cold expo-
sure or β3-adrenergic receptor activation promotes the induction 
of FoxP3+ Tregs.83

However, prolonged activation of SNS can induce β-adrenergic 
receptor desensitization and reduced receptor expression (also known 
as catecholamine resistance) in adipose tissue.84,85 Moreover, sym-
pathetic axonal degeneration triggered by prolonged metabolic stress 
may shift adipose tissue toward a pro-inflammatory environment, 
further exacerbating metabolic disturbance.86-88 Further elucidation 
of the molecular and cellular mechanisms underlying SNS-im-
mune cell interactions will enhance the understanding of obesity 
pathogenesis and support the development of novel immunometa-
bolic therapeutic strategies.

Sympathetic signals influence diverse cell populations within adi-
pose tissue, affecting both immune cells and adipocytes. Specifical-
ly, thermogenic adipose tissues, such as BAT or beige adipose tis-
sue, undergo lipolysis through NE-β3-AR signaling.89,90 Numerous 
studies have demonstrated that moderate SNS activation can exert 
anti-obesity effects and improve energy metabolism.71,90 However, 
chronic metabolic stress or pandemic-like extreme conditions may 
lead to intense SNS activation and insulin resistance.91,92 Elevated 
levels of free fatty acids induced by excessive lipolysis can enter sys-
temic circulation, contributing to systemic inflammation and induc-
ing insulin resistance in various tissues, including the hypothalamus, 
liver, and skeletal muscle.16,93-95 Circulating fatty acids, such as pal-
mitate, can activate Toll-like receptor 4 (TLR4) signaling pathways; 
thereby, increasing the expression of pro-inflammatory cytokines 
including IL-6 and TNF-α.96 Although the direct role of palmitate 

as a TLR4 agonist remains controversial,97 prolonged activation of 
these inflammatory signals ultimately induces insulin resistance. 
Further studies will need to apply more refined approaches and 
optimized experimental conditions to delineate the extent of SNS 
activation and the cell-specific responses mediated via distinct re-
ceptor subtypes.

Parasympathetic nervous system 
In contrast to the SNS, parasympathetic innervation within WAT 

remains largely uncharacterized.98 Nevertheless, parasympathetic 
acetylcholine signaling is fundamentally recognized for its anti-in-
flammatory properties and its capacity to attenuate systemic im-
mune responses.99 This signaling significantly improves systemic 
metabolism in obesity by reducing adipose tissue inflammation 
through neuro-immune interactions.99 In general, parasympathetic 
acetylcholine acts on the α7nAChR expressed on macrophages, 
suppressing pro-inflammatory cytokines like TNF-α and IL-6 and 
promoting polarization of macrophages toward the anti-inflamma-
tory M2 phenotype (Fig. 2A).79 Genetic ablation or pharmacologi-
cal inhibition of α7nAChR exacerbates inflammatory responses 
and insulin resistance, highlighting the critical anti-inflammatory 
and metabolic properties of the parasympathetic nervous system 
(PNS).100 A recent study reported that optogenetic stimulation of 
the vagus nerve improves diabetes and metabolic dysregulation by 
promoting pancreatic β-cell proliferation and enhancing insulin se-
cretion.101 In addition to these beneficial effects on metabolic disor-
ders, vagus nerve stimulation has also been shown to reduce inflam-
mation and endotoxin shock induced by lipopolysaccharide.100,102,103

The anti-inflammatory functions of the parasympathetic cholin-
ergic signaling can be attributed to interactions between the PNS 
and secondary lymphoid organs, such as the spleen and lymph 
nodes. The spleen serves as a crucial reservoir for immune cells, in-
cluding monocytes, and exerts anti-inflammatory effects by mobi-
lizing these cells during inflammatory conditions.104 Specifically, 
undifferentiated monocytes within the subcapsular red pulp region 
of the spleen rapidly mobilized to inflammatory sites, effectively 
mitigating inflammation in a myocardial infarction model.104 This 
protective effect was abolished in splenectomized mice.104 Another 
study identified the spleen as a key reservoir and source of innate-
like B cells within visceral adipose tissue.105 These innate-like B cells 
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produce IL-10; thereby, suppressing adipose tissue inflammation 
and ultimately improving insulin resistance.105 Although direct neu-
ral circuits connecting the PNS to secondary lymphoid organs have 
yet to be fully elucidated, further research is essential for a compre-
hensive understanding of immune cell regulation within the pro-
posed PNS-lymphoid organ-adipose tissue network.

Hypothalamic-pituitary-adrenal gland axis
The HPA axis plays a critical role in coordinating physiological 

stress responses and intricately modulates peripheral immune ac-
tivity and metabolic processes (Fig. 2B).106 Under acute stress con-
ditions, the hypothalamic secretion of corticotropin-releasing hor-
mone (CRH) rapidly stimulates the anterior pituitary gland to re-
lease adrenocorticotropic hormone (ACTH), triggering glucocor-
ticoid (cortisol/corticosterone) secretion from the adrenal cortex.107 
Corticosterone exerts context-dependent immunomodulatory ef-
fects, demonstrating both anti-inflammatory and pro-inflammatory 
properties depending on exposure duration and physiological con-
ditions.

Research has provided substantial mechanistic insights into the 
anti-inflammatory effects of the HPA axis.108-110 Glucocorticoids 
rapidly modulate gene expression through the activation of gluco-
corticoid receptors (GRs) by inhibiting NF-κB and activator pro-
tein-1 (AP-1)—two key transcription factors that drive the produc-
tion of inflammatory cytokines, including TNF-α and IL-1β.111-113 
Recent research further demonstrated that GR activation in macro-
phages promotes their polarization towards an anti-inflammatory 
M2 phenotype; thereby, conferring protection against insulin resis-
tance.114 This protective effect depends on cooperative interactions 
with signal transducer and activator of transcription 6 (STAT6), 
highlighting the critical role of GR signaling in modulating both in-
flammatory and metabolic responses in adipose tissue.114

Despite the intrinsic anti-inflammatory function of corticosterone, 
prolonged activation of the HPA axis paradoxically induces inflam-
mation. Although the specific molecular mechanisms remain in-
completely understood, one possible explanation involves SNS ac-
tivation, which enhances lipolysis and increases circulating levels of 
free fatty acids.115,116 Elevated free fatty acids or catecholamine-in-
duced adipocyte death elicit the infiltration of pro-inflammatory 
M1 macrophages; thereby, enhancing the expression of inflamma-

tory cytokines.117 Another potential mechanism involves glucocor-
ticoid-driven upregulation of 11beta-hydroxysteroid dehydroge-
nase type 1 (11β-HSD1) in adipose tissue.118,119 11β-HSD1 is well-
known to induce insulin resistance.118 Mice deficient in 11β-HSD1 
exhibit reduced levels of circulating fatty acids and are protected 
against metabolic disorders, including insulin resistance, hepatic 
steatosis, and obesity.119 Furthermore, administration of an 11β- 
HSD1 inhibitor in ob/ob mice resulted in improved blood glucose 
levels, reduced serum lipids, and enhanced insulin sensitivity.120 
However, these results do not directly demonstrate that immune 
cells undergo pro-inflammatory differentiation following long-term 
exposure to corticosterone. Future studies utilizing in vivo techniques 
such as chemogenetics or optogenetics are necessary to conclusive-
ly establish this link.

CONCLUSION

Despite growing evidence underscoring the importance of neuro-
immune interactions in metabolic regulation, the current under-
standing of the underlying mechanisms remains limited. This re-
view comprehensively describes how the CNS modulates periph-
eral immune cell functions and how immune cells in adipose tissue 
contribute to metabolic disorders. Nonetheless, several key research 
directions require further investigation, including (1) identification 
of the specific neuronal populations involved in this network, (2) 
clarification of depot-specific differences across various adipose tis-
sues, and (3) delineation of the distinct effects of short-term versus 
long-term autonomic stimulation. Continued advancements in di-
verse methodologies, expanded use of various animal models, and 
the application of emerging tools such as adeno-associated viruses 
are expected to enable more in-depth studies of neuro-immune in-
teractions in the near future.
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