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Abstract: Nanoporous gold (np-Au) electrode coatings have shown improved neural electrophysiological
recording fidelity in vitro, in part due to reduced surface coverage by astrocytes. This reduction
in astrocytic spreading has been attributed to the influence of electrode nanostructure on focal
adhesion (FA) formation. This study describes the development and use of a microfluidic flow cell
for imposing controllable hydrodynamic shear on astrocytes cultured on gold surfaces of different
morphologies, in order to study the influence of nanostructure on astrocyte adhesion strength as
a function of np-Au electrode morphology. Astrocyte detachment (a surrogate for adhesion strength)
monotonically increased as feature size was reduced from planar surfaces to np-Au, demonstrating
that adhesion strength is dependent on nanostructure. Putative mechanisms responsible for this
nanostructure-driven detachment phenomenon are also discussed.

Keywords: nanostructure; cell-material interaction; nanoporous gold; adhesion strength; astrocyte;
focal adhesion; microfluidic flow-cell

1. Introduction

Controlling cellular responses to implanted materials has long been an important focus in
biomaterial design [1–3]. Structural modifications on the material surface influence the adsorption
of extracellular matrix (ECM) proteins, which affects integrin-ligand binding and the formation of
adhesive complexes [4]. This in turn regulates the spreading, growth, migration, and differentiation of
adhesive cells [5]. The potential to control these functions without the use of chemical or pharmaceutical
agents has motivated studies on cellular responses to material property modifications, namely substrate
stiffness, surface chemistry, and topography at both the micro- and nano-scale [6,7].

Chronically implanted neural electrodes have significant potential when studying the brain
and managing neurological disorders; however, adverse tissue responses, such as glial scar
formation and meningeal encapsulation, remain significant problems [8]. Potential improvements
to neural electrodes have been studied on many fronts, such as decreasing electrode form-factor [9],
reducing stiffness [10,11], and depositing polymer coatings [12]. In addition, interfacial nanotopography
has emerged as an important factor for influencing ECM protein layer formation and subsequently,
cell adhesion [13]. In the context of neural electrodes, coatings that selectively inhibit adhesion of
reactive cells while retaining neuronal proximity to the electrode, such as astrocytes, are highly
desirable. This, in turn, should improve the durability and fidelity of the neural interface electrodes [14].

Nanoporous gold (np-Au) is a nanostructured material [15] suitable for a wide range of
applications, from short nucleic acid sensing [16] to controlled drug delivery [17]. One important
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feature of np-Au is that its morphological features (e.g., pore width and ligament width) can be
easily tuned by varying dealloying duration [18] or by thermal annealing [19]. Its nanostructure has
also shown improvement in signal-to-noise in electrophysiological recordings [20]. As a possible
explanation for enhanced recording fidelity, Chapman et al. have previously revealed reduced
astrocytic coverage but unaffected neuronal coverage on np-Au surfaces compared to their planar gold
(pl-Au) counterparts [21]. Furthermore, astrocyte focal adhesion (FA) contact area and focal adhesion
number exhibited nanostructure-dependent changes [22], with an increase in focal adhesion number
on np-Au films with smaller ligament widths and a drastic decrease in focal adhesion contact area on
films with larger feature sizes. This suggests that different mechanisms guide focal adhesion formation
on these nanostructure length scales. Since focal adhesion formation requires integrin organization via
clustering with a critical size [23], the nanostructure may be inhibiting integrin clustering processes
and consequently affecting adhesion strength.

Using a facile microfabrication process in tandem with laser-annealed np-Au morphology
libraries that present different electrode morphologies [19], we will report on the development of
a microfluidic flow cell to study astrocyte adhesion strength on multiple nanostructured surfaces.
We used shear-induced cell detachment as an indicator of adhesion strength [24]. We employed live
cell imaging to keep track of the number of cells detached from the surfaces as a result of increasing
hydrodynamic shear imposed by fluidic flow and quantified by a computational model.

2. Materials and Methods

2.1. Morphology Library Fabrication

The coating morphology libraries were prepared on polished 100 mm-diameter silicon wafers
(University Wafer, South Boston, MA, USA), which were cut into thirds. A 1:4 solution (by volume)
of hydrogen peroxide to sulfuric acid, called piranha solution, was used for sample cleaning.
Caution: Piranha solution is corrosive and reactive with organic materials and must be handled
with extreme care. Wafers were immersed in piranha solution for 5 min, then washed in deionized
(DI) water and dried with nitrogen gas. Gold patterns were then deposited onto the chips via direct
current sputtering (Kurt J. Lesker, Phillipsburg, NJ, USA) through a laser-cut polydimethylsiloxane
(PDMS) film as the stencil mask. Two distinct masks were used: one consisted of 16 squares of size
2.6 mm × 2.6 mm, arranged in two rows (channels) by eight columns, while the other mask consisted
of 8 rectangles of size 2.4 mm-width × 4.8 mm-height, arranged in a single row. The unstructured gold
(pl-Au) libraries consisted of a chromium adhesion layer 160 nm-thick, with an overlaid 200 nm-thick
gold layer. The preparation of np-Au libraries began by sputtering a 160 nm-thick chromium adhesion
layer, followed by a 80 nm-thick gold corrosion barrier layer and a co-sputtered 600 nm-thick layer of
gold and silver alloy (64% silver and 36% gold; atomic %). Gold-silver alloy samples were dealloyed
by immersion in heated (55 ◦C) nitric acid (70%) for 15 min, resulting in the nanoporous morphology.
Dealloyed samples were then kept in deionized (DI) water for one week, with a complete water change
every 24 h.

The chips with np-Au patterns were dried with nitrogen gas and annealed with a custom 532 nm
continuous-wave laser, as previously reported [19]. A laser power of 600 mW at the surface was
used in an alternating pattern with unannealed squares, yielding two sets of four similar coatings per
microfluidic channel (to be described next). The annealing patterns for the two channels were mirrored
to mitigate any discrepancies between the chips along the length of the channel. Characterization
of each nanoporous morphology was performed using scanning electron microscopy (FEI Nova
Nano-SEM430, FEI Company, Hillsboro, OR, USA). ImageJ, MATLAB, and Python scripts from
previous studies were used in the analysis of feature sizes [19,25]. Ligament widths and pore areas are
presented as a mean value plus or minus the standard error from three different image locations in
three separate images.
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2.2. Flow Cell Preparation

Molds for microchannel fabrication were prepared from printable foil stickers (Silhouette, Lindon,
UT, USA) [26]. The stickers were placed in 100 mm-diameter petri dishes, laser cut with a UV laser
with parameters specified by an AutoCAD guide. After cutting, the sticker was peeled, resulting in
a mold with raised channel regions measuring 3.5 mm × 40 mm for the first design (referred to as the
high-throughput chip) and 3.5 mm × 22 mm for the second design (referred to as the real-time chip).
Channel height was determined by measurements from both the petri dish and the PDMS mold surface
using a 2D profilometer (Bruker Dektak XT, Billerica, MA, USA).

PDMS microchannels were prepared from Sylgard 184, using a 1:10 ratio of curing agent to
elastomer base. The mixture was poured into the petri dish mold and placed under vacuum for
1 h to remove air bubbles. The petri dishes were then placed on a hot plate at 80 ◦C for 2 h.
The PDMS was peeled from the petri dish and cut into individual pieces with two channels per
chip. Holes were punched at both ends of each channel using a 3 mm biopsy punch (Miltex, York,
PA, USA). The morphology libraries were treated with oxygen plasma for 60 s on each side, followed
by bonding the channels to the morphology libraries after plasma treatment for 30 s. After bonding,
samples were placed under vacuum for 30 min, followed by 1 h incubation in cell culture media at
37 ◦C, with sterile glass cloning cylinders (Sigma, St. Louis, MO, USA) placed over channel inlets and
outlets as media reservoirs. A small amount of silicone grease (Dow Corning, Barry, Vale of Glamorgan,
UK) was applied around the base of each cloning cylinder to prevent liquid leakage.

2.3. Numerical Simulation of Shear Stress

To relate volumetric flow rate with shear stress at the cell membrane, a multiphysics computational
model (COMSOL, Burlington, MA, USA) was developed (Figure A1 in Appendix A). The simulation
was based on a study using a similar model [27]. The simulation assumed laminar flow, which was
realistic for the maximum experimental flow rate by calculation of the Reynolds number,

Re =
ρvDh

µ
, (1)

where ρ is flow medium density, v is the mean fluid velocity, Dh is the characteristic or hydraulic
diameter, and µ is the fluid dynamic viscosity. Values used were estimates: a density of 1000 kg/m3,
a velocity of 0.34 m3/s, and a characteristic diameter equal to twice the channel height, or 280 µm,
were assumed. The Reynolds number did not exceed 100 for these calculations, indicating laminar
flow conditions. The entrance length was estimated similarly as

Lh = 0.05ReDh (2)

Using the same hydraulic diameter and a Reynolds number of 100, the entrance length did not
exceed 1.4 mm, which was below the minimum length from the channel entrance/exit to the gold
sample, at approximately 5 mm. The simulation volume was 140 µm high, 300 µm long, and 50 µm
wide. Walls with an applied no-slip boundary condition were defined at the top and bottom of the
channel. The inlet velocity was set to 0.33 m/s, which was the average linear velocity for a flow rate
of 10 mL/min in a 0.14 mm × 3.5 mm cross-section. Symmetry was assumed for both sides of the
simulation. The cell shape was approximated by a dome shape, with a radius of 18 µm and a height of
5 µm. The radius was estimated by averaging actin immunofluorescence and normalizing to the cell
count. The chosen height was consistent with measurements of primary astrocyte cell heights [28].
By the symmetry specification, only half of the cell was included in the simulation. Shear stress over
the surface of the cell was calculated as shear rate multiplied by dynamic viscosity. The model assumed
that the channel geometry would not deform due to pressure.
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2.4. Astrocyte Cell Culture

Primary rat cortical cells were obtained from day 0 perinatal Sprague-Dawley rats (Charles River
Laboratories, Hollister, CA, USA), following procedures described elsewhere [29,30]. All studies were
conducted according to protocols approved by the Institutional Animal Care and Use Committee
of the University of California, Davis. Dissociated cortical cells were plated initially in T75 flasks
(Corning, NY, USA) at a density of 40,000 cells/cm2 in growth media (Dulbecco’s Modified Eagle’s
Medium (DMEM) + L-glutamine and sodium pyruvate, 10% heat inactivated fetal bovine serum,
1% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). Cells were incubated at 37 ◦C in
5% CO2 for at least 7 d, with a complete medium change after the first 24 h and every 4 d
thereafter. After sufficient time to expand, astrocytes were isolated following previously established
protocols, which are known to produce 98% pure astrocyte cultures [31,32]. Briefly, cytosine
β-D-arabinofuranoside (Ara-C, a mitotic inhibitor purchased from Sigma-Aldrich) was added to the
flasks at a final concentration of 1 µM to suppress fast-dividing cells such as fibroblasts and microglia,
as well as to prevent astrocytes from balling up and detaching during cell division. The flasks were
moved to an orbital shaker to remove unwanted cell types (e.g., microglia) and were left overnight
(≥6 h) at a setting of approximately 70 rpm, with total media replacement after removal from the
shaker. Cells were then given at least 2 d to allow for adhesions to return to normal before seeding
them into microfluidic devices.

To prepare for seeding, cells in T75 flasks were first washed in phosphate buffered saline (PBS)
without calcium, trypsinized for 2–5 min, and then transferred to a centrifuge tube with added culture
media. Tubes were centrifuged, supernatant was discarded, and cells were resuspended at a density
of approximately 750,000 cells/mL. Media was aspirated from reservoirs at either end of the device,
and the suspension was introduced into the reservoir at one end. Chips were placed in the incubator
and cells were given 20 min to settle before removing the suspension from both reservoirs. Media was then
replenished every 2 h by removing media from reservoirs and filling one reservoir with 450 µL fresh media.

2.5. Cell Imaging

After approximately 4 h, cells were prepared for live counting. One reservoir was emptied,
and the opposite reservoir was filled with media to 450 µL, with one drop of NucBlue Reagent
(Invitrogen, Carlsbad, CA, USA) added. Chips were incubated for 15 min before cloning cylinders were
removed and inlet and outlet holes were temporarily plugged with sealed silicone tubing. Chips were
imaged with an inverted fluorescent microscope (Zeiss, Oberkochen, Germany). Depending on chip
design, samples were used in high-throughput experiments or real-time experiments as detailed below.
In both experiments, cells were sheared after 6 h in culture.

The high-throughput experiment was divided into two groups: shear and no-shear. Cultures were
sheared with warmed (37 ◦C) PBS with calcium and magnesium, delivered via a syringe pump
(Harvard Apparatus, Holliston, MA, USA) set to infuse mode. Flow rate was set at 10 mL/min
for a duration of 2 min. Cells were immediately fixed using 4% paraformaldehyde in PBS
(Affymetrix, Santa Clara, CA, USA). The no-shear control group, to which no flow was delivered,
was fixed after gently washing with PBS with calcium and magnesium, delivered via gravity-driven
flow. The PDMS layer was peeled with a razor blade before staining. Cells were stained using Alexa
Fluor-conjugated phalloidin (1:500) for cytoskeletal visualization. Samples were also counterstained
with 4′,6-diamidino-2-phenylindole (DAPI) to quantify cell number (Figure A2). All antibodies were
purchased from ThermoFisher Scientific.

Images were taken at 5x magnification in the same approximate areas before and after shearing
for the high-throughput experiment. Overlapping images were stitched with the ImageJ stitching
plugin [33]. Stitched images were cropped to equal sizes before thresholding. The Otsu threshold
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method was chosen for pre-experiment cell counts, whereas the Triangle threshold method was chosen
for post-experiment cell counts. Cellular detachment was quantified by

x0 − x f

x0
, (3)

where x0 is the pre-experiment count and x f is the post-experiment count (Figure A2).
For the real-time experiment, chips were removed from the incubator, reservoirs were detached,

and channel entrances and exits were plugged except for the channel to be sheared. Tubing was
connected and chips were placed upside-down onto the microscope stage. Cultures were sheared
with warmed (37 ◦C) PBS with calcium and magnesium, delivered via a programmable syringe pump
(World Precision Instruments, Sarasota, FL, USA) set to infuse mode. Before starting real-time image
acquisition, the pump was set to infuse at 0.1 mL/min for roughly one min to remove floating cells
from the imaging area. A flow rate regimen consisting of 30 s of flow at successive rates of 2, 4, 6, and
8 mL/min were performed, followed by 60 s of flow at 10 mL/min. One area of the gold surface was
imaged at 5× magnification exactly every 5 s. Cell counts in these regions ranged from 15 to 80 cells at
the start of the experiment. Trials were carried out sequentially by successive channels, then by chips.

Studies involving morphology libraries were performed with an internal sample size of four
repeats per np-Au morphology. All reported values are averages with error bars corresponding to the
standard deviation of each averaged data set unless otherwise noted. A two-tailed Student’s t-test
assuming unequal variance was used to identify differences between two different sample groups.
Statistical significance was determined by p-values below 0.05.

3. Results and Discussion

3.1. Device Fabrication

The devices consisting of microchannel-encapsulated thin film coatings allowed for a controlled
study of the influence of fluidic shear and coating morphology on astrocyte attachment. Schematics of
the platform are shown for the high-throughput chip (Figure 1a) and for the real-time chip (Figure 1b).
Each morphology library chip was composed of either all pl-Au or all np-Au. For np-Au, an alternating
pattern of annealed and unannealed squares was obtained by in situ laser annealing. The sample areas
were chosen to accommodate a sufficient population of cells (order of magnitude 100) while fitting
within the microchannel. Media replenishment was provided via reservoirs at channel entrances and
exits (Figure 1c).
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Figure 1. Illustration of the microfluidic flow cell. (a) Colorized schematic of high-throughput chip
with nanoporous gold (np-Au) morphology library. Gold color patterns reflect the extent of annealing,
where lighter squares represent annealed np-Au and darker squares representing unannealed np-Au.
(b) Colorized schematic of real-time experiment chip with planar gold (pl-Au) substrate. (c) Photograph
of a representative assembled np-Au chip with culture media in reservoirs.
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The microchannel height was obtained by profilometer measurements and was 138.0 µm on
average, with a standard deviation of 0.3 µm. Channel lengths were 40 mm for the high-throughput
chip and 22 mm for the live chip. All channel widths were 3.5 mm. The maximum shear stress
obtainable by syringe pump-driven flow was nominally 200 dyne/cm2, which was lower than reported
shear stresses required to detach 50% of well-spread cells, but was within the range required to detach
cells seeded on micropatterned surfaces [34]. Our simulation (Figure A1) provided an estimate of the
shear stress that an average astrocyte experiences, although we observed variations in spreading on all
surfaces (Figure A2).

Photo-thermal annealing resulted in np-Au coarsening due to enhanced surface diffusion of
gold atoms and smoothing of gold ligaments with small radius of curvature, as described in detail
elsewhere [19]. Figure 2 presents each substrate in increasing order of ligament width. The planar
gold control group modeled a surface of infinite ligament width and zero pore width. Laser annealing
caused a substantial increase in both ligament and pore width, increasing to 376 ± 17 nm from
84 ± 2 nm in ligament width and to 95 ± 3 from 42 ± 1 in pore width, compared to the unannealed
sample. The ligament width of unannealed np-Au is larger than a previously computed value (30 nm)
from our group [22], primarily due to the wider ligaments near surface cracks in the current study
(Figure 2).

Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 13 

 

reported shear stresses required to detach 50% of well-spread cells, but was within the range 
required to detach cells seeded on micropatterned surfaces [34]. Our simulation (Figure A1) 
provided an estimate of the shear stress that an average astrocyte experiences, although we observed 
variations in spreading on all surfaces (Figure A2).  

Photo-thermal annealing resulted in np-Au coarsening due to enhanced surface diffusion of 
gold atoms and smoothing of gold ligaments with small radius of curvature, as described in detail 
elsewhere [19]. Figure 2 presents each substrate in increasing order of ligament width. The planar 
gold control group modeled a surface of infinite ligament width and zero pore width. Laser 
annealing caused a substantial increase in both ligament and pore width, increasing to 376 ± 17 nm 
from 84 ± 2 nm in ligament width and to 95 ± 3 from 42 ± 1 in pore width, compared to the 
unannealed sample. The ligament width of unannealed np-Au is larger than a previously computed 
value (30 nm) from our group [22], primarily due to the wider ligaments near surface cracks in the 
current study (Figure 2). 

 

Figure 2. Comparison of morphology of annealed and unannealed nanoporous gold (np-Au) and 
planar gold (pl-Au). Scanning electron microscopy (SEM) images are shown at 50,000× magnification 
(inset: 100,000× magnification). Ligament and pore widths are reported as averages ± standard error. 

3.2. Influence of Coating Morphology on Adhesion 

Each flow cell was subjected to either shear or no-shear conditions after 6 h incubation, which 
provided sufficient but not permanent attachment that was essential for conducting the detachment 
study with respect to varying shear stress. A previous study by Gallant et al. reported that NIH3T3 
fibroblasts reached steady-state adhesion after about 4 h [34]. While the 6 h incubation duration in 
this study is longer, purified primary astrocytes, which are not as homogeneous as NIH3T3 
fibroblasts, may require a longer duration to reach full adhesion strength. The percent detachment 
(difference in pre- and post-experiment counts normalized to the initial cell count) at each condition 
is reported in Figure 3. Each morphology pair was statistically different (p < 0.05 by Student’s t-test) 
when the no-shear and shear groups were compared. While each morphology was different within 
the shear group, only unannealed np-Au exhibited a statistically significant difference compared to 
all other morphologies in the no-shear group. In the no-shear control group, there were between 20% 
to 40% fewer cells in the counts after fixation, suggesting that the initial estimate included some 
non-adhered cells which were washed away in the fixation step. The detachment on unannealed 
np-Au was statistically significant (p < 0.05) compared to the other two morphologies at no-shear. In 
the shear group, detachment appeared to decrease as ligament width increased: the unannealed 
np-Au group experienced the greatest detachment at 76%, for annealed np-Au, an intermediate 
detachment level of 59%, and for pl-Au, the lowest detachment at 42%. Taking the difference 
between the shear and no-shear groups, the adjusted detachment for both np-Au morphologies was 
approximately 40%. For pl-Au, the difference was lower at roughly 15%. The general trend of 
reduced cellular attachment with decreasing ligament width was consistent with what has been 

Figure 2. Comparison of morphology of annealed and unannealed nanoporous gold (np-Au) and
planar gold (pl-Au). Scanning electron microscopy (SEM) images are shown at 50,000× magnification
(inset: 100,000×magnification). Ligament and pore widths are reported as averages ± standard error.

3.2. Influence of Coating Morphology on Adhesion

Each flow cell was subjected to either shear or no-shear conditions after 6 h incubation,
which provided sufficient but not permanent attachment that was essential for conducting the
detachment study with respect to varying shear stress. A previous study by Gallant et al. reported
that NIH3T3 fibroblasts reached steady-state adhesion after about 4 h [34]. While the 6 h incubation
duration in this study is longer, purified primary astrocytes, which are not as homogeneous as NIH3T3
fibroblasts, may require a longer duration to reach full adhesion strength. The percent detachment
(difference in pre- and post-experiment counts normalized to the initial cell count) at each condition
is reported in Figure 3. Each morphology pair was statistically different (p < 0.05 by Student’s t-test)
when the no-shear and shear groups were compared. While each morphology was different within
the shear group, only unannealed np-Au exhibited a statistically significant difference compared to
all other morphologies in the no-shear group. In the no-shear control group, there were between
20% to 40% fewer cells in the counts after fixation, suggesting that the initial estimate included some
non-adhered cells which were washed away in the fixation step. The detachment on unannealed np-Au
was statistically significant (p < 0.05) compared to the other two morphologies at no-shear. In the
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shear group, detachment appeared to decrease as ligament width increased: the unannealed np-Au
group experienced the greatest detachment at 76%, for annealed np-Au, an intermediate detachment
level of 59%, and for pl-Au, the lowest detachment at 42%. Taking the difference between the shear
and no-shear groups, the adjusted detachment for both np-Au morphologies was approximately
40%. For pl-Au, the difference was lower at roughly 15%. The general trend of reduced cellular
attachment with decreasing ligament width was consistent with what has been observed previously
for reduced cell coverage on np-Au surfaces [35], suggesting that adhesion strength plays a role in
cellular spreading.
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Figure 3. Detachment results for batch experiments. Two min of hydrodynamic shear flow detached cells
seeded in the channels for 6 h. The no-shear control group at 0 dyne/cm2 was only gently washed with
phosphate buffered saline (PBS) before fixation. Percent detachments are reported as averages ± one
standard deviation. Sample sizes (n) for each group, from left to right: 24, 24, 47, 11, 7, 28 coating patterns.

In order to study the influence of shear stresses that lay between the two extremes illustrated
in Figure 3, we employed a real-time imaging approach to monitor cell detachment. We specifically
focused on unannealed np-Au and pl-Au, since they exhibited the largest difference in detachment
(Figure 3). By increasing flow rate with a step-wise manner in 30 s intervals, we obtained a range of
shear stresses and tracked detachment over a three min-long duration (Figure 4). With increasing flow
rate (hence shear stress), there was a gradual increase in the number detached cells. Consistent with
what has been observed earlier, more cells detached from the np-Au coating. The gradual increase in
cell detachment highlights that while np-Au overall hinders cellular adhesion, there is a distribution
of different cell adhesion strengths.
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Figure 4. Real-time monitoring of cell detachment (surrogate for adhesion strength) as a function of
increasing shear stress. Cells were subjected to increasing levels of shear stress as shown by the red
staircase curve. Images were taken every 5 s. Two trials were performed for each morphology and
were plotted as averages. Each data point for fractional cells remaining was normalized to the cell
count at the start of each experiment.

3.3. Influence of Focal Adhesions on Adhesion Strength

It has been reported that focal adhesion assembly accounts for approximately 30% of total cellular
adhesive strength [34]. The remaining percentage was attributed to intracellular integrin-actin binding
and clustering mechanisms. In addition, the same study showed that stable adhesion requires only
a small fraction of the total available adhesive area, as adhesion strength maximizes before adhesive
area allows for complete spreading. Furthermore, different integrin subtypes are known to contribute
to adhesion strength. Integrin α5β1, for example, has been implicated in adhesion strengthening,
whereas integrin αvβ3 is responsible for mechanotransduction and does not significantly contribute to
adhesion strength [36]. A fibronectin patterning study showed that there is a nanoscale area threshold
for mature focal adhesion formation [37], which is dependent on cytoskeletal tension. The size threshold
was determined to be between 250 × 250 nm and 333 × 333 nm, which lies between the average
length scale (i.e., ligament width) for the annealed and unannealed np-Au films used in this study.
Also, a critical RGD peptide spacing (corresponding to pore width in this study) of 58 nm is required
for focal adhesion formation [38]. Larger ligand spacings decrease stability of focal adhesion formation
and reduce spreading substantially. While we attributed the differences in astrocyte detachment
(adhesion strength) mainly to the substrate nanotopography, it is important to mention that other
factors such as surface chemistry and mechanical stiffness can play an important role in dictating
cellular adhesion strength [39]. In addition, as described in our previous study, for short incubation
durations, the probability of cells forming focal adhesion to a pitted surface upon reaching the surface
may play a role [35].

Based on the literature reports and the cell detachment (adhesion strength) data (Figures 3 and 4),
we propose that nanostructure (i.e., ligament width and pore width) influences both focal adhesion
formation and integrin clustering (Figure 5), thus dictating the overall adhesion strength observed. It is
plausible that different mechanisms play a dominant role with respect to the length scales embodied
in the different np-Au morphologies. For pl-Au, that provides a continuous smooth surface for cell
spreading, no restriction on focal adhesion formation (Figure 5c), and the least cellular detachment
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(highest adhesion strength) was observed (Figures 3 and 4). For annealed np-Au, as ligaments
thickened in the annealing process, the pore width increased accordingly (Figure 2). The mean spacing
between the ligaments (95 nm) therefore became too large to allow for FA formation across pores
(58 nm), as illustrated in Figure 5b. However, the larger ligament width (376 nm) was above the
threshold for individual focal adhesion formation (250 nm), thus stable focal adhesions could form.
For unannealed np-Au, while the mean pore width (42 nm) permit FA assembly across several
ligaments (Figure 5a), the ligament width (84 nm) was below the critical threshold for FA formation.
The substantial loss of adhesion strength would therefore be due to a decrease in integrin cluster
density, leading to numerous nascent FAs which cannot mature. Without sufficiently high generation
of traction force, cytoskeletal tension on these nascent FAs would lead to destabilization and the
observed high levels of cell detachment. It is important to end the discussion by stating that the
putative mechanisms described in Figure 5 would plausibly be most prominent for cells reaching
a steady-state or close-to-steady-state adhesion strength. However, the cell adhesion behavior following
short attachment duration was still significantly dependent on the coating morphology as shown in
Figures 3 and 4. It is expected that the behavior in this transitional cell attachment regime was driven by
a combination of the aforementioned FA formation and integrin clustering mechanisms as well as the
kinetics of FA establishment on the complex nanotopography (composed of ligaments and voids) [35].
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Figure 5. Illustration of different putative mechanisms of cellular adhesion onto coatings of various
morphology. (a) On unannealed np-Au, integrin clusters may bridge multiple ligaments due to
smaller pore widths but adhesive complexes cannot mature due to small ligament width (red arrows).
(b) On annealed np-Au, integrin clustering is limited by the larger pore widths (blue arrows),
limiting focal adhesion (FA) formation to individual ligaments. (c) On planar gold, FA maturation is
uninhibited and FA size is large.

4. Conclusions

We have shown that nanoporous gold morphologies reduce cell adhesion strength relative to
planar surfaces, as judged by higher levels of cell detachment under fluidic shear stress. We attributed
the differences in cell adhesion to an interplay between integrin clusters ability to span pore widths
and to mature on ligaments of a critical width, both of which are differentially pronounced in fine and
coarse np-Au coating morphologies, respectively. In addition, we noted that in this transitional cell
attachment regime (close-to-steady-state cell adhesion state), the kinetics of focal adhesion formation
on the complex nanotopography also played a role. The flow cell design coupled with the coating
morphology libraries allowed for high-throughput investigation of morphology and shear stress on
cell adhesion. The issue of FA destabilization due to cytoskeletal tension could be further explored by
comparing wild-type cells with mutants expressing vinculin or talin head domains [37], which drive
integrin-ligand clustering without linking the adhesive complex to the cytoskeleton. Further studies
should provide insight into mechanotransduction events invoked at the gene level using RNA-seq of
the astrocytes cultured on different coating morphologies.
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Figure A1. Simulation results for shear stress distribution across the cell membrane. The model assumes
symmetry and simulates only half of the cell membrane. Shear stress (dyne/cm2) is plotted only on the
cell membrane area and is maximized at the top of the dome. Cell dimensions: 18 µm radius, 5 µm height.
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Figure A2. Representative images of pre- and post-experiment cell counting. (a) Pre-experiment
image of cells seeded for 4 h, stained with NucBlue Live Reagent, with threshold mask shown to
the right. The threshold method was chosen to minimize the number of (dim, low-contrast) floating
cells in the count. An example of out-of-plane cells absent from the thresholded image are circled
in red. (b) Fluorescence microscopy images of fixed cells, showing nuclei (DAPI) in blue and f-actin
(phalloidin) in green. Thresholds were computed only for the DAPI channel.
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