
Essays in Biochemistry (2017) 61 733–749
https://doi.org/10.1042/EBC20170055

*These authors contributed
equally to this work.

Received: 17 September 2017
Revised: 08 October 2017
Accepted: 12 October 2017

Version of Record published:
12 December 2017

Review Article

Dysregulation of autophagy as a common
mechanism in lysosomal storage diseases
Elena Seranova1,*, Kyle J. Connolly1,*, Malgorzata Zatyka1, Tatiana R. Rosenstock2, Timothy Barrett1,
Richard I. Tuxworth1 and Sovan Sarkar1

1Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.; 2Department of Physiological Science,
Santa Casa de São Paulo School of Medical Science, São Paulo, SP 01221-020, Brazil

Correspondence: Sovan Sarkar (s.sarkar@bham.ac.uk) or Richard I. Tuxworth (r.i.tuxworth@bham.ac.uk)

The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus
for signalling pathways responsive to a variety of factors, such as growth, nutrient avail-
ability, energetic status and cellular stressors. Lysosomes are also the terminal degradative
organelles for autophagy through which macromolecules and damaged cellular components
and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is es-
sential for organismal physiology. Decline in autophagy during ageing or in many diseases,
including late-onset forms of neurodegeneration is considered a major contributing factor
to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a
central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class
of rare, inherited disorders whose histopathological hallmark is the accumulation of unde-
graded materials in the lysosomes due to abnormal lysosomal function. Inefficient degrada-
tive capability of the lysosomes has negative impact on the flux through the autophagic
pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease
mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but cur-
rent therapies are limited or absent; recognizing common autophagy defects in the LSDs
raises new possibilities for therapy. In this review, we describe the mechanisms by which
LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data
supporting the development of novel therapeutic approaches related to the modulation of
autophagy.

Introduction
Our perspective of the lysosome has shifted remarkably from its standing as a simple, terminal organelle
for the degradation of cellular components to become a critical mediator of fundamental metabolic pro-
cesses. Lysosomes coordinate signals from growth factors and cellular stressors and are sensitive to vari-
ous metabolites, such as amino acids, glucose, lipids and cholesterol, to pivot cells between anabolic and
catabolic processes, including autophagy [1-3]. The importance of the lysosome for cellular function is
apparent from the large number of disorders associated with lysosomal failure: collectively known as
the lysosomal storage disorders (LSDs), more than 50 inherited conditions affect lysosomal function and
many are early-onset and fatal [4-7].

A key cellular homeostatic pathway implicated in several LSDs and myriad human dis-
eases is autophagy. Autophagy is an intracellular degradation pathway essential for cellu-
lar survival and organismal health [8-10]. This process is vital for the maintenance of en-
ergy and tissue homeostasis by degrading damaged or excess intracellular components such as
aggregation-prone proteins, lipids and organelles, and recycling the breakdown products [11]. There are
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Figure 1. Schematic representation of the autophagy pathway

Autophagy initiates by the de novo synthesis and elongation of phagophores, which engulf cytosolic materials (autophagic cargo) to

form autophagosomes. Autophagosomes predominantly fuse with the late endosomes to form amphisomes and subsequently with

the lysosomes to form autolysosomes where the autophagic cargo is degraded by the lysosomal hydrolases. Autophagy can be

stimulated by chemical inducers acting via the mTOR-dependent and mTOR-independent pathways regulating autophagy. Defects

in autophagic flux at the autophagosome formation and maturation stages are indicated.

three types of autophagy: macroautophagy (herein referred to as autophagy), microautophagy and
chaperone-mediated autophagy (CMA); each type requires functional lysosomes in the final stage for degra-
dation of the cargo [12]. Consequently, disruption of the hydrolytic functions of lysosomes impairs autophagic
flux and, conversely, lysosomal function probably requires normal flux through autophagy [13]. Deregulation
of autophagy is a common disease mechanism in many LSDs [14,15]. This review will describe the connections
between autophagy and the LSDs, highlight common stages of autophagy disrupted in different disorders and discuss
autophagy as a potential therapeutic intervention for treating certain LSDs.

Autophagy machinery and signalling
Autophagy encompasses several vesicle fusion events leading to the eventual degradation of its cargo; a dynamic pro-
cess termed autophagic flux (Figure 1). Multiple autophagy (Atg) genes encoding components of the autophagic ma-
chinery are required for the initiation of autophagy, which is marked by the de novo formation of double-membrane
structures called phagophores. Two ubiquitin-like conjugation systems involving the Atg5–Atg12–Atg16 complex
and phosphatidylethanolamine-conjugated microtubule-associated protein 1 light chain 3 (LC3-II) are required for
the initiation step [16,17]. Cytosolic components such as macromolecules (including specific substrates like p62)
and organelles (including mitochondria) are sequestered in the expanding phagophores to form double-membrane
vesicles called autophagosomes. LC3-II associates with autophagosome membranes throughout their lifespan and is
hence used as a marker for autophagy [18]. Autophagosomes then undergo maturation into autolysosomes by one of
two routes: the predominant route is a multi-step process, in which autophagosomes fuse first with late endosomes
to form amphisomes, then subsequently with lysosomes; alternatively, autophagosomes can fuse directly with lyso-
somes [19,20]. This enables delivery of the autophagic cargo to the autolysosomes where these materials are degraded
by acidic lysosomal hydrolases (Figure 1). The breakdown products are then exported via lysosomal transporters for
recycling [21].

There are several molecular mediators of autophagosome maturation, including Rab7, Beclin1–Vps34–Vps15 com-
plex and SNAREs (N-ethylmaleimide-sensitive factor-attachment protein receptors). Beclin1-interacting partners
like Atg14L, Ambra1 and UVRAG promote autophagosome maturation whereas Rubicon inhibits this step [20,22,23].
Recently, gene knockout studies in mammalian cells have shown that the Atg8 family proteins (LC3 and GABARAP
subfamilies) are crucial for autophagosome–lysosome fusion [24]. GABARAPs were found to preferentially recruit
PLEKHM1 (Pleckstrin homology domain containing protein family member 1) [24], which associates with the homo-
typic fusion and protein sorting (HOPS) complex to mediate autophagosome maturation [25]. The SNARE proteins
are critical for membrane tethering and fusion; for example, autophagosomal Syntaxin-17, Atg14 and SNAP-29 in-
teract with late endosomal/lysosomal VAMP8 to mediate autophagosome maturation [26-28]. Upon autolysosome
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formation, the ATG conjugation system has been suggested to play a role in the degradation of the inner autophagoso-
mal membrane [29]. The late stage of autophagy involving autophagosome maturation is primarily affected in many
LSDs; the perturbations in the autophagy pathway in these conditions are described in subsequent sections (Table 1).

Transcriptional regulation of autophagy occurs via the transcription factor EB (TFEB), which drives the expression
of genes related to autophagy and lysosomal biogenesis [30,31]. In turn, Ca2+ stored in the lysosomal lumen has been
shown to modulate autophagy by promoting the nuclear localization of TFEB through the activation of calcineurin
[32]. Various signalling pathways influence autophagy by acting upstream of the autophagic machinery. These include
the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway (through which growth factors, nu-
trients and energy status influence autophagy) and mTOR-independent pathways (including inositol and IP3, cAMP,
Ca2+, calpain) that negatively regulate autophagy [12,33-38]. Both mTOR-dependent and mTOR-independent sig-
nalling are amenable to chemical perturbations for modulating autophagy [34,37,39-41] (Figure 1). For instance, the
mTORC1 inhibitors like rapamycin and torin1, and mTOR-independent compounds including trehalose and carba-
mazepine can stimulate autophagy [35,42-44]. Chemical inducers of autophagy have been tested in some LSDs as a
possible therapeutic intervention (Table 2) and are described below.

Lysosomal storage diseases associated with defective
autophagy
LSDs are caused by abnormal lysosomal function leading to accumulation of undegraded metabolites [4-7]. The
composition of accumulated materials in the lysosomes varies substantially between the LSDs and, while all LSDs
are inherited conditions and in many cases mutations are found in genes encoding lysosomal proteins, the types of
proteins affected are also varied. As a consequence, the underlying cell biology changes occurring in the LSDs may
vary, but each results (directly or indirectly) in reduced clearance of aggregates and diminished cellular homeostasis
and survival. Autophagic dysregulation is commonly found in LSDs but again, a spectrum of defects is seen at var-
ious stages of the autophagic pathway in different LSDs (Table 1) [14,15]. Here, we will concentrate on some of the
better-studied LSDs and detail the different autophagic defects identified.

Neuronal ceroid lipofuscinosis
While defective autophagy has been implicated in the pathology of many different disorders, including cancer and
various cardiovascular, metabolic, pulmonary and infectious diseases [10,45], the nervous system appears to be partic-
ularly susceptible [46,47]. This is likely due to a combination of the long-lived nature of post-mitotic neurons placing
particular stress on protein-clearing processes, the extreme polarization of many neurons and the high metabolic
requirements of neurons leading to higher levels of oxidative damage in lysosomes via the Fenton reaction. Con-
sistent with this, dysregulated autophagy has been identified in almost every late-onset neurodegenerative disorder
[34,47,48], and similar defects are now being recognized in the neuronal ceroid lipofuscinoses (NCLs), a sub-group
of the LSDs that are collectively the most common causes of childhood-onset neurodegeneration [5,49,50]. To date,
13 disease-causing genes have been identified to cause NCL pathology. Several of these genes encode lysosomal pro-
teins, including soluble enzymes/proteins (CLN1/PPT1, CLN2/TPP1, CLN5, CLN10/CTSD and CLN13/CTSF) and
membrane proteins (CLN3, CLN7/MFSD8 and CLN12/ATP13A2), but others include endoplasmic reticulum (ER)
membrane proteins (CLN6 and CLN8), cytosolic proteins (CLN4/DNAJC5 and CLN14/KCTD7) and one expressed
in the secretory pathway (CLN11/GRN) [51-53]. The diverse nature of these proteins, their substrates or cargos and
locations within the cell are reflective of the LSDs as a whole: multiple different cell biological processes are probably
affected but with each terminating in common pathology. However, as autophagic perturbations start to be identi-
fied in NCL disease models (Figure 2), the possibility that each disease hinges on defective autophagy becomes more
plausible.

Several studies in NCL mouse models have indicated deregulation of autophagy in vivo. A recent study in
Cln7-deficient mice reported accumulation of autophagosomes and autophagic substrates coupled with lysosomal
dysfunction in the brain, suggesting that a block in autophagic flux may be occurring [54]. A similar build-up of
autophagic compartments and substrates was also seen in mouse models of CLN5 and CLN6 diseases, as well as in
CLN6 patient-derived fibroblasts [55-57]. The most common form of NCL is Batten disease, caused by mutations in
the membrane protein, CLN3 [51]. Defective autophagosome maturation associated with increased autophagic and
lysosomal compartments was observed in the Cln3-deficient mouse that models Batten disease, and also in patient
fibroblasts as well as patient-specific induced pluripotent stem cell (iPSC)-derived neuronal cells [58-60]. The mech-
anism underpinning the changes to autophagy in CLN3-deficient cells is not fully understood, and the functions
of the CLN3 protein remain unknown, but one potential mechanism may be due to altered Ca2+ homeostasis and
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Table 1 Overview of defective autophagy in lysosomal storage disorders

Disease Gene Protein Function
Storage
material

Autophagy
phenotype Autophagic flux Mechanism

NEURONAL CEROID LIPOFUSCINOSES

CLN2 CLN2/TPP1 Tripeptidyl peptidase 1 Serine protease ATPase subunit c,
lipofuscin

Inhibition of
autophagosome
formation;
Reduction in
autophagosomes
and autophagic
degradation [60]

Inhibition Up-regulation of
mTOR signalling [60]

CLN3 CLN3 CLN3 Unknown function;
Lysosomal
membrane protein

ATPase subunit c,
lipofuscin

Defect in
autophagosome
maturation;
Accumulation of
autophagosomes
and autophagic
cargo [58-60]

Block Not known; Possibly
due to alteration in
Ca2+ homeostasis
[61] and deregulation
of ARF1–Cdc42
pathway [62]

CLN5 CLN5 CLN5 Unknown function;
Lysosomal protein

ATPase subunit c,
lipofuscin

Accumulation of
autophagosomes
and autophagic
cargo [56]

Block Not known

CLN6 CLN6 CLN6 Unknown function;
ER membrane
protein

ATPase subunit c,
lipofuscin

Accumulation of
autophagosomes
and autophagic
cargo [55,57]

Block Not known

CLN7 CLN7 CLN7 Putative lysosomal
transporter

ATPase subunit c,
lipofuscin

Accumulation of
autophagosomes
and autophagic
cargo [56]

Block Not known; Possibly
due to impairment in
lysosomal function
[54]

CLN10 CLN10/CTSD Cathepsin D Aspartyl protease ATPase subunit c,
saposins A/D,
lipofuscin

Accumulation of
autophagosomes
and autophagic
cargo [64,66]

Block Not known; Possibly
due to loss of
cathepsin D function
[64]

SPHINGOLIPIDOSES

Niemann–Pick type
C1

NPC1 NPC1 Cholesterol
transporter

Unesterified
cholesterol,
sphingolipids

Defect in
autophagosome
maturation;
Accumulation of
autophagosomes
and autophagic
cargo [73-80]

Block Disruption in SNARE
machinery [73];
Reduction in
sphingosine kinase
activity and VEGF [80]

Niemann–Pick type
C2

NPC2 NPC2 Putative role in
cholesterol
metabolism and
transport

Unesterified
cholesterol,
sphingolipids

Accumulation of
autophagosomes
and autophagic
cargo [84]

Block Not known; Possibly
due to impairment in
lysosomal function
[84]

Gaucher disease GBA1 Glucocerebrosidase Sphingolipid
degradation

Glucosylceramide Defect in
autophagosome
maturation;
Accumulation of
autophagosomes
and autophagic
cargo [91,93-97]

Block Not known; Possibly
due to
down-regulation of
TFEB and reduction
in lysosomes [91]

PSAP Prosaposin, saposin C Sphingolipid
hydrolase cofactor

Glucosylceramide Defect in
autophagosome
maturation;
Accumulation of
autophagosomes
and autophagic
cargo [92,93]

Block Not known; Possibly
due to reduction in
cathepsin B/D activity
[92]

Mucolipidosis type
IV

MCOLN1 TRPML1 Late
endo-lysosomal
Ca2+ transporter

Gangliosides,
phospholipids, mu-
copolysaccharides

Accumulation of
autophagosomes
and autophagic
cargo
[104,105,109]

Block Not known; Possibly
due to impairment in
lysosomal function
[107]

GLYCOGENOSES

Pompe disease GAA Acid α-glucosidase Glycogen
degradation

Glycogen Accumulation of
autophagosomes
and autophagic
cargo [116-118]

Block Not known; Possibly
due to defects in
lysosomal
acidification [116]

Continued over

736 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Essays in Biochemistry (2017) 61 733–749
https://doi.org/10.1042/EBC20170055

Table 1 Overview of defective autophagy in lysosomal storage disorders (Continued)

Disease Gene Protein Function
Storage
material

Autophagy
phenotype Autophagic flux Mechanism

Danon disease LAMP2 Isoform LAMP2b Putative role in
autophagosome–lysosome
fusion

Glycogen Accumulation of
autophagosomes
and autophagic
cargo [123-126]

Block Not known; Possibly
due to defects in
lysosomal function
[124]

X-linked myopathy
with excessive
autophagy

VMA21 VMA21 Regulates
v-ATPase

Glycogen Accumulation of
autophagosomes
[128,129]

Block Not known; Possibly
due to defects in
lysosomal
acidification and
function [128]

The list in Table 1 highlights selected LSDs where defective autophagy has been demonstrated.

Table 2 Beneficial effects of the chemical inducers of autophagy in models of lysosomal storage disorders

Autophagy inducer
Mechanism of autophagy
induction LSD Beneficial effects in LSD models

mTOR-DEPENDENT AUTOPHAGY INDUCER

Rapamycin [42] Inhibition of mTORC1 [42] NPC1 Rescue of autophagic flux and improvement
in cell viability in mutant Npc1 MEFs [73],
mouse neurons with Npc1 knockdown [73]
and NPC1 patient iPSC-derived neuronal
and hepatic cells [74]

NPB Reduction in mitochondrial ROS and lipid
droplets, and induction of lysosomal
exocytosis in NPB patient B lymphocytes
[148]

PD Reduction in muscle glycogen in
Gaa-deficient mice when treated together
with recombinant human GAA [167];
Improved autophagic flux and GAA
maturation in Pompe disease patient
myotubes [117]

GD Improvement in lifespan and locomotor
activity in GD Drosophila model [97]

mTOR-INDEPENDENT AUTOPHAGY INDUCER

Trehalose [44] Inhibition of SLC2A glucose transporters
[145]; Activation of TFEB by Akt inhibition
[144]

NPC1 Rescue of autophagic flux and
improvement in cell viability in NPC1 patient
iPSC-derived neurons [74]

CLN3 Clearance of ceroid lipopigment deposits in
CLN3 patient fibroblasts, and attenuation of
neuropathology and extension of lifespan in
Cln3-deficient mice [144]

Carbamazepine [35] Reduction in inositol and IP3 levels [35] NPC1 Rescue of autophagic flux and
improvement in cell viability in NPC1 patient
iPSC-derived neurons and hepatic cells [74]

Lithium [35] Inhibition of IMPase and reduction in
inositol and IP3 levels [35]

NPC1 Rescue of autophagic flux in mutant Npc1
MEFs [73]

CLN3 Rescue of autophagic flux and
improvement in cell viability in mutant Cln3
cerebellar cells [146]

L-690,330 [35] Inhibition of IMPase and reduction in
inositol and IP3 levels [35]

CLN3 Rescue of autophagic flux and
improvement in cell viability in mutant Cln3
cerebellar cells [146]

Verapamil [36] Inhibition of L-type Ca2+ channel and
reduction in cytosolic Ca2+ [36]

NPC1 Rescue of autophagic flux and
improvement in cell viability in NPC1 patient
iPSC-derived neurons [74]

BRD2716, BRD5631, BRD34009 [142] Unknown NPC1 Rescue of autophagic flux and
improvement in cell viability in NPC1 patient
iPSC-derived neurons [142]

Abbreviations: CLN, ceroid lipofuscinosis neuronal disease; GD, Gaucher disease; IMPase, inositol monophosphatase; IP3, inositol 1,4,5-trisphosphate;
iPSC, induced pluripotent stem cells; LSD, lysosomal storage disorder; mTORC1, mechanistic target of rapamycin complex I; NPB, Niemann–Pick type
B disease; NPC1, Niemann–Pick type C1 disease; PD, Pompe disease; SLC2A, Solute carrier 2A; TFEB, Transcription factor EB.
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Figure 2. CLN protein distribution and their link to autophagy defects in neuronal ceroid lipofuscinoses

Many CLN proteins reside in the lysosomal matrix (CLN1, 2, 5, 10, 13) or at the lysosomal membrane (CLN3, 7), while others localize

to different cellular compartments such as the ER membrane (CLN6). Disease-causing mutations in some of the CLN proteins inhibit

autophagosome maturation (dashed red lines) and block autophagic flux, but the underlying mechanisms are unknown. Mutated

lysosomal hydrolases (CLN1, 2, 10, 13) are unable to degrade autophagic cargo, which subsequently accumulate and impair

lysosomal function.

deregulation of the ARF1–Cdc42 pathway identified in CLN3 mutant cells that can impact on vesicular trafficking
[61,62].

Several forms of NCL are caused by mutations in lysosomal proteases, including Ppt1 (CLN1), Ppt2 (CLN2) and
Cathepsin D (CLN10) [53,63]. Loss of cathepsin function commonly leads to dysregulated autophagy, presumably by
reducing autophagic flux due to defective cargo clearance. Autophagosomes and mitochondrial proteins accumulate
in cultured neurons of mice lacking cathepsin D or B and L [64-66], while in vivo, cathepsin D-deficient mice exhibit
widespread accumulation of storage material in the lysosomes (indicating lysosomal dysfunction) and accumulation
of autophagosomes. These changes likely lead to the neurodegeneration present in these mice that mimics the human
disease [66]. However, a reduction in autophagic flux has been reported in CLN2 patient fibroblasts due to inhibition
of autophagosome formation, which is linked to increased ROS and Akt–mTOR signalling pathway [60].

Sphingolipidoses
Sphingolipids are a major class of lipids enriched in the nervous system and are critical for neural development and
function [67,68]. Sphingolipid turnover is therefore tightly regulated with their degradation mediated by a multi-step
process requiring numerous lysosomal hydrolases [69]. The sphingolipidoses are a class of LSDs caused by deficien-
cies in functional hydrolases, culminating in the accumulation of wholly or partially undegraded sphingolipids [68].
Members of the sphingolipidoses include Niemann–Pick, Gaucher and Fabry diseases, mucolipidosis, and GM1/2
gangliosidoses such as Tay-Sachs and Sandhoff diseases [68]. Alterations in autophagy have been reported in some
of the sphingolipidoses; the most extensively studied being Niemann–Pick type C1 (NPC1) disease.

Niemann–Pick disease
Niemann–Pick disease is a recessively inherited neurodegenerative condition characterized by an accumulation of
unesterified cholesterol deposits in various tissues, particularly the brain. The disease is subdivided into types A, B,
C1 and C2. Types A and B are caused by mutations in SMPD1, leading to loss of acid sphingomyelinase activity,
whereas types C1 and C2 are due to defective cholesterol transport [70]. Ninety-five per cent of cases are attributed to
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Figure 3. Autophagy defects in NPC1 disease and the bypass mechanism of autophagosome maturation for restoring

autophagic flux

Mutant NPC1 protein prevents cholesterol efflux from the endo-lysosomal compartments and impairs autophagosome maturation

in the multi-step route due to failure in the SNARE machinery. Induction of autophagy by chemical inducers bypasses this block and

restores autophagic flux via direct autophagosome–lysosome fusion. A combinatorial treatment strategy is shown with cholesterol

depletion agents. The green arrows indicate therapeutic effects of autophagy induction and cholesterol depletion.

mutations in the lysosomal cholesterol transporter NPC1, with the lysosomal glycoprotein NPC2 that possibly aids
in cholesterol trafficking affected in the remainder [71,72].

A number of studies have demonstrated a major role for autophagy in the pathology of NPC1 disease and po-
tentially in treatment options. Various experimental platforms, including Npc1 mutant mice and disease-relevant
cells (such as neurons) differentiated from human embryonic stem cells (hESCs) with NPC1 knockdown or
patient-derived iPSCs, have revealed an accumulation of autophagosomes and lysosomes both in vivo and in vitro
[73-80]. We previously reported that this autophagy phenotype is related to a block in autophagic flux (Figure 3).
Consistent with this, we characterized a failure in the Syntaxin17/VAMP8 SNARE machinery that retards amphi-
some formation and significantly stalls the multi-step route of autophagosome maturation [73]. While it is possible
that loss-of-function of the NPC1 protein, which normally resides on the late endosomal/lysosomal compartments,
directly perturbs amphisome formation, accumulation of lysosomal cholesterol has also been reported to cause aber-
rant sequestration of SNAREs and prevent autophagosome maturation [81]. Another study, although consistent with
dysfunctional autophagosome maturation, reported a distinct mechanism in which diminished sphingosine kinase
activity and reduced levels of vascular endothelial growth factor (VEGF) lead to the accumulation of sphingosine
that, in turn, impairs autophagic flux [80]. In addition to these mechanisms, depletion of lysosomal Ca2+ stores due
to sphingosine storage was seen in NPC1 disease models, and this could possibly influence autophagy via calcineurin
or calpain [32,36,82,83]. Similar to the autophagy phenotype in NPC1 disease, a block in autophagic flux has been
reported in NPC2 disease as evident by the accumulation of autophagosomes and autophagic substrates as well as
impaired lysosomal activity in Npc2-knockdown mouse adipocytes [84].

The reduced cell viability seen in NPC1 mouse and patient-specific iPSC models has been attributed to dysreg-
ulated autophagy [73,74,78,80]. Importantly, since autophagy regulates the clearance of lipids including cholesterol
(via lipophagy), autophagy-deficient Atg5–/– cells also exhibited accumulation of these materials similar to the cellu-
lar phenotypes observed in NPC1 disease [73,85]. Therefore, the underlying autophagy defects in NPC1 disease can
further aggravate the accumulation of lipids and cholesterol, and thus, defective autophagy should be considered a
major disease mechanism in Niemann–Pick disease.

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

739



Essays in Biochemistry (2017) 61 733–749
https://doi.org/10.1042/EBC20170055

Figure 4. Cellular effects of TFEB that might be of therapeutic benefit in lysosomal storage disorders

Lysosomal Ca2+ efflux through TRPML1 activates the Ca2+-dependent phosphatase calcineurin, which mediates dephosphoryla-

tion-dependent nuclear translocation of TFEB. Nuclear TFEB up-regulates the transcription of genes involved in lysosome biogen-

esis and autophagy, thereby enhancing autophagic flux. In addition, Ca2+ efflux from peripheral lysosomes promotes lysosomal

exocytosis and the secretion of non-degraded materials.

Gaucher disease
Gaucher disease is the most common form of sphingolipidosis [86], and is caused by a deficiency in glucocerebrosi-
dase (GCase) activity which catalyses the final step in glycosphingolipid degradation [87]. The loss of enzyme function
in Gaucher disease directly impairs this process leading to accumulation of glucocerebroside and widespread pathol-
ogy that particularly affects the liver and, in severe cases, the CNS [88]. Gaucher disease is most frequently caused
by mutations in the GBA1 gene which encodes GCase [87]; however, there are rare cases of Gaucher disease caused
instead by mutations in the PSAP gene [89,90]. PSAP encodes the lysosomal glycoprotein prosaposin, the precur-
sor saposins A-D, which are essential cofactors for various sphingolipid hydrolases. Saposin C is required for GCase
activity, and thus mutations in PSAP that lead to saposin C deficiency also cause Gaucher disease [89,90].

Various lines of evidence suggest defective autophagy in Gaucher disease. Impaired autophagosome maturation
and down-regulation of TFEB, including a reduction in lysosomal gene expression, were found in neurons differenti-
ated from patient-specific iPSCs [91]. A similar impairment in autophagosome degradation was also seen in primary
fibroblasts deficient in saposin C; in this case associated with reduced cathepsin B/D activity [92]. Mouse models of
Gaucher disease have also revealed similar autophagy phenotypes: accumulation of various autophagic cargo such
as dysfunctional mitochondria, ubiquitinated protein aggregates, insoluble α-synuclein and p62, together with au-
tophagosomes and lysosomes were found in the brain or neurons and astrocytes cultured from mice deficient for
Gba, Psap or glucosylceramidase [93-96]. Recently, a Drosophila model of neuropathic Gaucher disease generated
by knocking out the Gba gene revealed severe lysosomal defects, GCase accumulation and a block of autophagic flux
in the brain, resulting in reduced lifespan, neurodegeneration and age-dependent locomotor deficits [97]. Together,
multiple model systems highlight deregulation of autophagy in Gaucher disease.
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Mucolipidosis type IV
Mucolipidosis type IV (MLIV) is a neurodegenerative condition, caused by mutations in the MCOLN1 gene that
result in the loss of TRPML1 function [98,99]. TRPML1 is an inward rectifying, non-selective cation channel of the
transient receptor potential family that transports divalent cations, such as Ca2+, Fe2+ and Zn2+, from the lysosomal
intraluminal space into the cytosol [100-102]. TRPML1 and TFEB positively regulate each other and together have the
potential to impact on autophagy: Ca2+ release by TRPML1 activates the Ca2+-dependent phosphatase, Calcineurin,
which mediates dephosphorylation-dependent nuclear translocation of TFEB leading, in turn, to increased expression
of several lysosomal and autophagy-related proteins including TRPML1 [32 ] (Figure 4). Indeed, enhancing TRPML1
activity either by overexpression or by pharmacological stimulation increases autophagic flux [103].

Several models of MLIV have highlighted a defect in autophagy. Accumulation of lysosomes, autophagosomes and
autophagy substrates including polyubiquitinated protein aggregates was reported in patient-derived primary fibrob-
lasts, in Mcoln1-deficient mice, and in Caenorhabditis elegans and Drosophila models [104-108]. These studies also
implicated a role for wild-type TRPML1 in regulating lysosomal acidification and autophagosome maturation (alka-
linization of lysosomes, for instance by inhibiting the vacuolar H+ATPase, inhibits hydrolase function). Furthermore,
defects in CMA have been reported in MLIV, possibly through the interaction between TRPML1 with the molecular
chaperones Hsc70 and Hsc40 that are required for protein translocation to the lysosome during CMA [109].

Glycogenoses
The glycogenoses are LSDs with profound autophagy defects that particularly affect skeletal and cardiac muscle
[110,111]. As such, these diseases are often referred to as autophagic vacuolar myopathies (AVMs), although neu-
ropathology is also present in some cases [112]. Diseases that lead to AVM are linked to genes involved in lysosome
acidification, glycogen hydrolysis, and autophagosome maturation and fusion with lysosomes [113]. They include
Pompe disease, Danon disease and X-linked myopathy with excessive autophagy (XMEA).

Pompe disease
Pompe disease is caused by mutations in acid α-glucosidase (GAA), a lysosomal glycogen hydrolase [114]. Enzyme
activity is completely absent in Pompe disease and consequently the accumulation of intra-lysosomal glycogen, as well
as of autophagosomes, is a hallmark of the disease [115]. Primary myoblasts from Gaa-deficient mice have enlarged
endosomes, lysosomes and autophagic vacuoles, in addition to delayed endosomal acidification and mobility [116].
These features have been attributed to a block in autophagic flux since elevated levels of the autophagosomal marker
LC3-II and autophagic substrate p62 were observed in Gaa-deficient mice and in the myotubes of infantile-onset
patients [117,118]. Interestingly, autophagy has been shown to play a role in the maturation of GAA [117] and the
clearance of glycogen [119,120], and thus, defective autophagy is implicated as a disease mechanism in Pompe disease.

Danon disease
Danon disease is an X-linked disorder caused by mutations in the LAMP2 gene, which encodes a lysosomal mem-
brane protein [121]. While LAMP2a is required for protein translocation in CMA [122], mutations in the LAMP2b
isoform are associated with Danon disease [121]. Various tissues including liver, skeletal and heart muscle from
Lamp2-deficient mice displayed accumulation of autophagic compartments, along with a decline in the lysosomal
degradation of long-lived proteins in the hepatocytes that are unresponsive to amino acid starvation [123,124]. Muscle
biopsies from patients also exhibit accumulation of LC3-II+ autophagic vesicles and large p62 aggregates [125]. These
studies point to a likely block in flux affecting the late stage of autophagy. Consistent with this scenario, impaired au-
tophagy associated with defective mitochondrial clearance (mitophagy) was found in cardiomyocytes differentiated
from patient-specific iPSC cells with LAMP2 mutations as well as in Lamp2-deficient mice [126].

X-linked myopathy with excessive autophagy
X-linked myopathy with excessive autophagy (XMEA) is characterized by progressive vacuolation and atrophy of
skeletal muscle, and is caused by mutations in the VMA21 gene [127]. The VMA21 protein regulates the assembly of
the vacuolar ATPase (v-ATPase) required for lysosomal acidification, and thus XMEA is associated with a reduction
in the activity of lysosomal hydrolases [128]. Skeletal muscle biopsies show diminished lysosomal degradation and
accumulation of autophagic compartments, suggesting a likely block in autophagic flux [128,129].
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Why is defective autophagy relevant for LSD pathology?
Deregulation of autophagy has been observed in myriad human diseases including many forms of cancer and neu-
rodegeneration [10,45,47]. Despite appearing at first glance to have diverse changes in both the cell biology and
the genetics underpinning them, deregulated autophagy has been reported in most (or possibly all) LSDs where in-
vestigated (Table 1) [14,15]. Potentially, dysfunctional autophagy is the common link between the LSDs but why is
impaired autophagy such an important component of disease and how does it contribute to cell death? Clues have
emerged from in vivo experiments aimed at depleting basal autophagy in a tissue-specific manner in mice. These re-
sult in degeneration and dysfunction of the targeted organ, indicating an essential role for autophagy in maintaining
tissue homeostasis [130]. For example, brain-specific deletion of Atg5 or Atg7 in mice results in a neurodegener-
ative phenotype in the absence of any disease-causing, aggregation-prone proteins [131,132]. These genetic studies
suggest that the decline in autophagic capability in the LSDs is likely a major contributory factor to the neuropathol-
ogy that characterizes many of these disorders. Secondly, some of the non-degraded materials in LSDs such as lipids,
cholesterol and glycogen are cleared by autophagy [85,119,120]. Hence, deficient autophagy will contribute to the
build-up of these components with ever increasing impact on lysosomal function and autophagic flux. For example,
as discussed in NPC1 disease where lipids and cholesterol are the primary non-degraded materials, impairment in
autophagy will lead to a further accumulation of these macromolecules by reducing lipophagy [73]. This is because
lipophagy is retarded due to loss of autophagy, as evident in autophagy-deficient mouse models [85,133]. Finally, im-
pairment in functional autophagic flux can retard the clearance of autophagic cargo including damaged mitochondria
and other undesirable materials, which leads to enhanced oxidative damage of lipids and proteins within the lyso-
somal membrane and a further reduction in efficiency of clearance [134-137]. Therefore, targeting this common
pathway underlying several LSDs could be a promising therapeutic intervention.

Autophagy as a potential therapeutic intervention for LSDs
Autophagy has been exploited for therapeutic benefits in diverse transgenic models of human diseases, including
several neurodegenerative disorders, certain liver diseases, myopathies and infectious diseases [34,40,41,138,139].
In most of the conditions studied, induction of autophagy ameliorated the disease phenotypes and, in many cases,
improved organismal longevity [140,141]. Multiple lines of evidence suggest that autophagy could also be targeted in
LSDs as a treatment strategy [14,15] (Table 2). The most suitable disease contexts for this approach are likely to be
LSDs where the lysosomal hydrolytic function is not overtly compromized (e.g., by direct mutation of an enzyme) so
that the accumulated autophagic cargo can still be digested efficiently if autophagic flux is stimulated. Some of the
mechanisms of how autophagy might be beneficial in LSDs are discussed below.

Bypassing stalled autophagosome maturation by small-molecule
autophagy inducers
The dysregulated autophagy underpinning many of the LSDs occurs primarily due to failure of autophagosome mat-
uration, which stalls autophagic flux (Table 1). This phenotype probably arises due to a block in the multi-step route
of autophagosome maturation. However, this block may not be absolute because we have recently characterized a
bypass mechanism in NPC1 disease models which restores functional autophagic flux [73]. We have shown that
induction of autophagy facilitates direct autophagosome–lysosome fusion without requiring the formation of am-
phisomes in the multi-step route (Figure 3). Restoration of autophagic flux enables cargo clearance, which correlates
with improved cell viability in primary mouse neurons with Npc1 knockdown and in NPC1 patient iPSC-derived
neuronal and hepatic cells [73,74]. Interestingly, we observed cell-type specificity of small molecule autophagy en-
hancers in these patient-derived cells: rapamycin and carbamazepine rescued cell death and defective autophagy in
both iPSC-derived neuronal and hepatic cells but other autophagy inducers including trehalose, verapamil, BRD2716,
BRD5631 and BRD34009 were effective only in neurons [74,142]. Strikingly, enhanced autophagic flux did not reduce
the cholesterol load in NPC1 mutant cells, meaning a combination strategy coupling autophagy induction with low
doses of a cholesterol-depletion agent such as 2-hydroxypropyl-β-cyclodexterin (HPβCD) may be especially effective
for NPC1 disease [73,74,143].

Treatment with autophagy inducers has also been found to be beneficial in other LSDs, including CLN3 disease
(Batten disease). Administration of trehalose, an mTOR-independent autophagy inducer [44], in a mouse model of
CLN3 disease promoted cellular clearance of undegraded materials, attenuated the neuropathology and extended
lifespan [144]. Interestingly, although the autophagy-inducing property of trehalose has been recently attributed to
the inhibition of the SLC2A family of glucose transporters [145], trehalose was found to activate TFEB by inhibiting
Akt independently of mTORC1 [144]. Furthermore, inositol monophosphatase (IMPase) inhibitors such as lithium
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and L-690,330, which induce mTOR-independent autophagy by reducing inositol and IP3 levels [35], rescued au-
tophagic flux and improved cell viability in mutant Cln3 cerebellar cells [146]. However, further studies are required
to determine whether the bypass mechanism of restoring autophagic flux is mediating the beneficial effects of au-
tophagy induction in these contexts.

Induction of autophagy via the classical mTORC1 pathway also had some beneficial effects in LSD models. Al-
though TORC1 activity is dysregulated in a Drosophila model of Gaucher disease [97], the mTORC1 inhibitor
rapamycin [42] partially corrects the shortened lifespan and locomotor defects [97], whereas reactivation of dys-
regulated mTORC1 by knockdown of the Rheb inhibitor, TSC2, in a mouse model of Pompe disease rescued the
muscular atrophy and autophagy defects [147]. Rapamycin, while commonly used in research contexts, particular
in cell-based assays in vitro, is unlikely to be useful clinically in all LSDs, in part because its efficacy appears to be
context-dependent in vivo and subject to feedback loops. Even in vitro rapamycin has differential effects. For ex-
ample, it reduces mitochondrial ROS and lipid droplets and induces lysosomal exocytosis in Niemann–Pick type B
lymphocytes [148], and improves autophagic flux and GAA maturation in Pompe disease patient myotubes [117],
but is toxic in neuronal cells differentiated from Gaucher disease patient-derived iPSCs [91]. Since mTOR governs
critical cellular function like cell growth and translation [38], the use of mTOR inhibitors for induction of autophagy
can produce potential side-effects [149]. Consequently, the mTOR-independent autophagy inducers are considered
more desirable for clinical applications in patients [34,40,41,138].

TFEB promotes lysosomal biogenesis and exocytosis
Genetic up-regulation of autophagy via overexpression of TFEB has shown potential as a therapeutic strategy. Over-
expression of TFEB enhances the clearance of proteinaceous aggregates in transgenic models of late-onset neurode-
generation disorders [150-152], and improves autophagy and lysosomal defects while rescuing disease severity in
some LSDs [153,154]. Apart from mediating the transcription of genes required for autophagy and lysosomal bio-
genesis [30,31], TFEB also facilitates lysosomal exocytosis via the recruitment and fusion of the lysosomes to the
plasma membrane by increasing local Ca2+ concentrations through its target, the TRPML1/MCOLN1 cation channel
(Figure 4) [32,155]. This mechanism may underpin some of the beneficial effects of overexpression because enhanced
secretion may enable the clearance of pathologically enlarged lysosomes and undegraded materials associated with
LSDs that have an impact on autophagic flux.

Experimentally, overexpression of TFEB reduces glycogen load and the size of lysosomes, and promotes autophago-
some maturation and lysosomal exocytosis in immortalized myogenic cells from Pompe disease patients [156] and
rescues tissue pathology in vivo in autophagy-dependent manner [155,156]. In addition, overexpression of TFEB
together with GAA cooperatively facilitated glycogen clearance and improved pathology in skeletal muscles differ-
entiated from Pompe disease patient-derived iPSCs [157]. Similarly, lysosomal exocytosis and reduction in cellular
vacuolization occur after TFEB overexpression in various cell and mouse models of LSDs, including multiple sulfa-
tase deficiency (MSD) and mucopolysaccharidosis type IIIA (MPS-IIIA) where a block in autophagy was previously
reported [155,158]. Overexpression of TFEB also causes reduction in substrate accumulation in various cell models
of Pompe disease, MSD, MPS-II, MPS-IIIA and Batten disease [150,155,156], although it did not rescue the lysoso-
mal depletion phenotype in neuronal cells differentiated from Gaucher disease patient-derived iPSCs [91]. However,
TFEB did enhance lysosomal biogenesis in the presence of recombinant GCase in these cells [91]. Taken together,
these studies highlight TFEB as a promising therapeutic target with the potential to be manipulated in multiple LSDs.

Combining ERT with autophagy induction
Enzyme replacement therapy (ERT) to replace the absent or non-functional hydrolytic enzyme is approved for pa-
tients with Gaucher, Pompe and Fabry diseases and some mucopolysaccharidoses, including MPS type I [159,160].
For Gaucher disease, ERT for the GCase enzyme is a relatively mature therapy with several drugs on the market, in-
cluding imiglucerase, velaglucerase alfa and taliglucerase alfa [161-163], along with two substrate reduction therapies,
miglustat and eliglustat [164,165]. Recent data demonstrate that ERT for the GAA enzyme deficient in Pompe disease
improves muscle mass and autophagic flux in muscle biopsies of some patients after treatment [117,166]. As with the
Gaucher disease experiments described above [91], combination strategies that include induction of autophagy may
prove more effective in Pompe disease and similar LSDs than ERT alone, in this case possibly by stimulating clearance
of the accumulating glycogen and facilitating GAA maturation [117,157]. Indeed, experiments with a Pompe mouse
model in vivo demonstrated increasing autophagic flux with rapamycin or its analogue CCI-779 alongside ERT for
the GAA enzyme reduced muscle glycogen levels compared with either treatment alone [167]. These emerging data
highlight the potential benefits of combinatorial treatment strategies in the LSDs.
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Conclusions
The LSDs are characterized by accumulation of undegraded macromolecules due to defective or absent lysosomal
hydrolases, or because of dysregulated endosomal–lysosomal processes, including altered vesicular trafficking, au-
tophagosome maturation, lysosomal acidification or transport of molecules across the lysosomal membrane. The
separate classes of LSDs represent several different defects in lysosomal biology and to some extent require tailored
therapies to overcome them. However, one feature apparent in many of the LSDs is dysregulated autophagy (Table 1),
and this may be the common therapeutic target that can be exploited similarly in different disorders. Based on the
common blockage of autophagic flux, therapies designed to stimulate autophagy and alleviate the block are a logical
option to trial. While autophagy inducers have already shown benefit in a few LSDs (Table 2), a broader evaluation
of autophagy modulation in the LSDs is urgently required. Autophagy induction shows particular promise in com-
bination with existing therapeutic options such as ERT. However, ERT is applicable to only a subset of the LSDs and
the treatment costs are high, and therefore, identifying novel therapeutic interventions for the LSDs that are cheaper
and more widely useful is essential. Ultimately, different combinations of therapies are likely to be required for each
of the LSDs but autophagy regulators may play a significant role in many.

Summary
• Autophagy is a vital cellular process requiring the degradative function of lysosomes.

• Abnormal lysosomal function leading to accumulation of undegraded metabolites occurs in the LSDs.

• Defects in autophagy are emerging to be a common disease mechanism underlying LSDs.

• Stimulation of autophagy is a potential therapeutic intervention in LSDs.
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