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Abstract

Quality control of MRI is essential for excluding problematic acquisitions and avoiding bias

in subsequent image processing and analysis. Visual inspection is subjective and impracti-

cal for large scale datasets. Although automated quality assessments have been demon-

strated on single-site datasets, it is unclear that solutions can generalize to unseen data

acquired at new sites. Here, we introduce the MRI Quality Control tool (MRIQC), a tool for

extracting quality measures and fitting a binary (accept/exclude) classifier. Our tool can be

run both locally and as a free online service via the OpenNeuro.org portal. The classifier is

trained on a publicly available, multi-site dataset (17 sites, N = 1102). We perform model

selection evaluating different normalization and feature exclusion approaches aimed at

maximizing across-site generalization and estimate an accuracy of 76%±13% on new sites,

using leave-one-site-out cross-validation. We confirm that result on a held-out dataset (2

sites, N = 265) also obtaining a 76% accuracy. Even though the performance of the trained

classifier is statistically above chance, we show that it is susceptible to site effects and

unable to account for artifacts specific to new sites. MRIQC performs with high accuracy in

intra-site prediction, but performance on unseen sites leaves space for improvement which

might require more labeled data and new approaches to the between-site variability. Over-

coming these limitations is crucial for a more objective quality assessment of neuroimaging

data, and to enable the analysis of extremely large and multi-site samples.

Introduction

Image analysis can lead to erroneous conclusions when the original data are of low quality

(e.g. [1–4]). MRI images are unlikely to be artifact-free, and assessing their quality has long

been a challenging issue [5]. Traditionally, all images in a sample under analysis are visually

inspected by one or more experts, and those showing an insufficient level of quality are

excluded (some examples are given in Fig 1). Visual assessment is time consuming and prone

to variability due to inter-rater differences (see Fig 2), as well as intra-rater differences arising
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from factors such as practice or fatigue. An additional concern is that some artifacts evade

human detection entirely [6], such as those due to improper choice of acquisition parameters.

Even though magnetic resonance (MR) systems undergo periodic inspections and service,

some machine-related artifacts persist unnoticed due to lenient vendor quality checks and

drift from the system calibration settings. In our experience, automated quality control (QC)

protocols help detect these issues early in the processing stream. Furthermore, the current

trend towards acquiring very large samples across multiple scanning sites [7–9] introduces

additional concerns. These large scale imaging efforts render the visual inspection of every

image infeasible and add the possibility of between-site variability. Therefore, there is a need

for fully-automated, robust and minimally biased QC protocols. These properties are difficult

to achieve for three reasons: 1) the absence of a “gold standard” impedes the definition of rele-

vant quality metrics; 2) human experts introduce biases with their visual assessment; and 3)

cross-study and inter-site acquisition differences introduce uncharacterized variability.

Machine-specific artifacts have generally been tracked down in a quantitative manner using

Fig 1. Visual assessment of MR scans. Two images with prominent artifacts from the Autism Brain Imaging

Data Exchange (ABIDE) dataset are presented on the left. An example scan (top) is shown with severe

motion artifacts. The arrows point to signal spillover through the phase-encoding axis (right-to-left –RL–) due

to eye movements (green) and vessel pulsations (red). A second example scan (bottom) shows severe coil

artifacts. On the right, the panel displays one representative image frame extracted from the animations

corresponding to the subjects presented on the left, as they are inspected by the raters during the animation.

This figure caption is extended in Block 1 of S1 File.

https://doi.org/10.1371/journal.pone.0184661.g001
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phantoms [10]. However, many forms of image degradation are participant-specific (e.g. the

examples in Fig 1) or arise from practical settings (for instance, aliasing produced by the use of

headsets during acquisition).

The automated quality control of magnetic resonance imaging (MRI) has long been an

open issue. Woodard and Carley-Spencer [11] conducted one of the earliest evaluations on a

large dataset of 1001 T1-weighted (T1w) MR images from 143 participants. They defined a set

of 239 no-reference (i.e. no ground-truth of the same image without degradation exists) image-

quality metrics (IQMs). The IQMs belonged to two families depending on whether they were

derived from Natural Scene Statistics or quality indices defined by the JPEG consortium. The

IQMs were calculated on image pairs with and without several synthetic distortions. In an

analysis of variance, some IQMs from both families reliably discriminated among undistorted

images, noisy images, and images distorted by intensity non-uniformity (INU). Mortamet

et al. [12] proposed two quality indices focused on detecting artifacts in the air region sur-

rounding the head, and analyzing the goodness-of-fit of a model for the background noise.

One principle underlying their proposal is that most of the artifact signal propagates over the

image and into the background. They applied these two IQMs on 749 T1w scans from the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) dataset. By defining cutoff thresholds for

the two IQMs, they assigned the images high or low quality labels, and compared this classifi-

cation to a manual assessment. They concluded that more specific research was required to

Fig 2. Inter-rater variability. The heatmap shows the overlap of the quality labels assigned by two different

domain experts on 100 data points of the ABIDE dataset, using the protocol described in section Labeling

protocol. We also compute the Cohen’s Kappa index of both ratings, and obtain a value of κ = 0.39. Using the

table for interpretation of κ by Viera et al. [16], the agreement of both raters is “fair” to “moderate”. When the

labels are binarized by mapping “doubtful” and “accept” to a single “good” label, the agreement increases to

κ = 0.51 (“moderate”). The “fair” to “moderate” agreement of observers demonstrates a substantial inter-rater

variability. The inter- and intra- rater variabilities translate into the problem as class-noise since a fair amount

of data points are assigned noisy labels that are not consistent with the labels assigned on the rest of the

dataset. An extended investigation of the inter- and intra- rater variabilities is presented in Block 5 of S1 File.

https://doi.org/10.1371/journal.pone.0184661.g002
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determine these thresholds and generalize them to different datasets. However, many potential

sources of uncontrolled variability exist between studies and sites, including MRI protocols

(scanner manufacturer, MR sequence parameters, etc.), scanning settings, participant instruc-

tions, inclusion criteria, etc. For these reasons, the thresholds they proposed on their IQMs are

unlikely to generalize beyond the ADNI dataset.

Later efforts to develop IQMs appropriate for MRI include the Quality Assessment Protocol

(QAP), and the UK Biobank [13]. MRIQC extends the list of IQMs from the QAP, which was

constructed from a careful review of the MRI and medical imaging literature [14]. Recently,

Pizarro et al. [15] proposed the use of a support-vector machine classifier (SVC) trained on

1457 structural MRI images acquired in one site with constant scanning parameters. They pro-

posed three volumetric features and three features targeting particular artifacts. The volumet-

ric features were the normalized histogram, the tissue-wise histogram and the ratio of the

modes of gray matter (GM) and white matter (WM). The artifacts addressed were the eye

motion spillover in the anterior-to-posterior phase-encoding direction, the head-motion spill-

over over the nasio-cerebellum axis (which they call ringing artifact) and the so-called wrap-

around (which they refer to as aliasing artifact). They reported a prediction accuracy around

80%, assessed using 10-fold cross-validation. These previous efforts succeeded in showing that

automating quality ratings of T1w MRI scans is possible. However, they did not achieve gener-

alization across multi-site datasets.

The hypothesis motivating the present study is that the quality ratings of an expert on previ-

ously unseen datasets (with dataset-specific scanning parameters) can be predicted with a

supervised learning approach that uses a number of IQMs as features. The first limitation we

shall encounter when trying to answer this question is the inter-site variability of features

extracted from MRI. Many efforts have been devoted to the normalization across sites of the

intensities of T1w MRI [17]. Particularly, this inter-site variability renders as a batch effect
problem in our derived IQMs (Fig 3), a concept arising from the analysis of gene-expression

arrays [18]. Furthermore, the inherent subjectivity of the ratings done by experts, the difficulty

of minimizing inter-rater variability and the particular labeling protocol utilized all introduce

class-noise in the labels manually assigned. To demonstrate that the trained classifier correctly

predicts the quality of new data, we used two unrelated datasets to configure the training and a

Fig 3. Inter-site variability renders as a batch effect on the calculated IQMs. These plots display features extracted by MRIQC (columns) of all

participants (rows), clustered by site (17 centers from the ABIDE datasets, plus the two centers where DS030 was acquired –“BMC” and “CCN”–). The plot of

original features (left panel) shows how they can easily be clustered by the site they belong to. After site-wise normalization including centering and scaling

within site (right), the measures are more homogeneous across sites. Features are represented in arbitrary units. For better interpretation, the features-axis

(x) has been mirrored between plots.

https://doi.org/10.1371/journal.pone.0184661.g003
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held-out (test) datasets [19]. We first select the best performing model on the training dataset

using a grid strategy in a nested cross-validation setup. We use the ABIDE dataset [8] as a

training set because data are acquired in 17 different scanning sites with varying acquisition

parameters (Table 1). These data show great variability in terms of imaging settings and

parameters, which accurately represents the heterogeneity of real data and introduces the

batch effect into modeling. The best performing classifier is then trained on the full ABIDE

dataset and tested on the held-out dataset (DS030 [20]), which is completely independent of

ABIDE, to evaluate prediction on new sites.

The contributions of this work are summarized as follows. First, we release an MRI quality

control tool called MRIQC (described in The MRIQC tool) to extract a vector of 64 IQMs

(Table 2) per input image (Extracting the Image Quality Metrics). Second, MRIQC includes a

visual reporting system (described in the Reports for visual assessment section) to ease the

manual investigation of potential quality issues. These visual reports allow researchers to

quickly evaluate the cases flagged by the MRIQC classifier or visually identify potential images

to be excluded by looking at the group distributions of IQMs. Finally, we describe the results

of the pre-registered report corresponding to this study (see Software and data availability) on

Table 1. Summary table of the train and test datasets. The ABIDE dataset is publicly availablea, and contains images acquired at 17 sites, with a diverse

set of acquisition settings and parameters. This heterogeneity makes it a good candidate to train machine learning models that can generalize well to novel

samples from new sites. We selected DS030 [20] from OpenfMRIb as held-out dataset to evaluate the performance on data unrelated to the training set. A

comprehensive table showing the heterogeneity of parameters within the ABIDE dataset and also DS030 is provided in Block 2 of S1 File.

Dataset Site ID Scanner vendor & model

TR/TE/TIc [sec], FA [deg], PE dir.

Sized [voxels] Resolutiond [mm]

ABIDE

N = 1102

CALTECH Siemens Magnetom TrioTim, 1.59/2.73�10-3/0.8, 10, AP 176±80×256±32×256±32 1.00×1.00±0.03×1.00±0.03

CMU Siemens Magnetom Verio, 1.87/2.48�10-3/1.1, 8, AP 176±15×256±62×256±62 1.00×1.00×1.00

KKI Philips Achieva 3T, 8�10-3/3.70�10-3/0.8, 8, NA 256×200±30×256±30 1.00×1.00×1.00

LEUVEN Philips Intera 3T, 9.60�10-3/4.60�10-3/0.9, 8, RL 256×182×256 0.98×1.20×0.98

MAX_MUN Siemens Magnetom Verio, 1.8/3.06�10-3/0.9, 9, AP 160±16×240±16×256±16 1.00×1.00±0.02×1.00±0.02

NYU Siemens Magnetom Allegra, 2.53/3.25�10-3/1.1, 7, AP 128×256×256 1.33×1.00×1.00

OHSU Siemens Magnetom TrioTim, 2.3/3.58�10-3/0.9, 10, AP 160×239±1×200±1 1.10×1.00×1.00

OLIN Siemens Magnetom Allegra, 2.5/2.74�10-3/0.9, 8, RL 208±32×256×176 1.00×1.00×1.00

PITT Siemens Magnetom Allegra, 2.1/3.93�10-3/1.0, 7, AP 176×256×256 1.05×1.05×1.05

SBL Philips Intera 3T, 9�10-3/3.5�10-3/NA, 7, NA 256×256×170 1.00×1.00×1.00

SDSU General Electric Discovery MR750 3T, 11.1�10-3/4.30�10-3/0.6, 8,

NA

172×256×256 1.00×1.00×1.00

STANFORD General Electric Signa 3T, 8.4�10-3/1.80�10-3/NA, 15, NA, 256×132×256 0.86×1.50×0.86

TRINITY Philips Achieva 3T, 8.5�10-3/3.90�10-3/1.0, 8, AP 160×256±32×256±32 1.00×1.00±0.07×1.00±0.07

UCLA Siemens Magnetom TrioTim, 2.3/2.84�10-3/0.85, 9, AP 160±16×240±26×256±26 1.20±0.20×1.00±0.04×1.00

±0.04

UM General Electric Signa 3T, NA/1.80�10-3/ NA, 15, AP 256±154×256×124 1.02±0.38×1.02±0.16×1.20

±0.16

USM Siemens Magnetom Allegra, 2.1/3.93�10-3/1.0, 7, AP 160±96×480±224×512

±224

1.20±0.20×0.50±0.50×0.50

±0.50

YALE Siemens Magnetom TrioTim, 1.23/1.73�10-3/0.6, 9, AP 160±96×256×256 1.00×1.00×1.00

DS030

N = 265

BMC

CCN

Siemens Magnetom TrioTim, 2.53/3.31�10-3/1.1, 7, RL 176×256×256 1.00×1.00×1.00

a http://fcon_1000.projects.nitrc.org/indi/abide/.
b https://openfmri.org/dataset/ds000030/.
c Please note that each vendor reported a different definition for TR and TE, thus their values are not directly comparable.
d Sizes and resolutions are reported as follows: median value along each dimension ± the most extreme value from the median (either above or below).

https://doi.org/10.1371/journal.pone.0184661.t001
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the feasibility of automatic quality rating and the implications of the inter-site variability of

IQMs (sections Supervised classification and Results).

Materials and methods

Training and test datasets

A total of 1367 T1w scans are used as training (1102 from ABIDE) and test (265 from DS030)

samples. These datasets are intentionally selected for their heterogeneity to match the purpose

of the study. A brief summary illustrating the diversity of acquisition parameters is presented

in Table 1, and a full-detail table in Block 2 of S1 File.

Labeling protocol. Based on our experience and minimizing the time-cost of inspecting

each of the 1367 images, we designed an agile labeling protocol as follows. The experts visualize

Table 2. Summary table of IQMs. The 14 IQMs spawn a vector of 64 features per anatomical image on

which the classifier is learned and tested.

Measures based on noise measurements

CJV The coefficient of joint variation of GM and WM was proposed as objective function by Ganzetti

et al. [30] for the optimization of INU correction algorithms. Higher values are related to the

presence of heavy head motion and large INU artifacts.

CNR The contrast-to-noise ratio [31] is an extension of the SNR calculation to evaluate how

separated the tissue distributions of GM and WM are. Higher values indicate better quality.

SNR MRIQC includes the the signal-to-nose ratio calculation proposed by Dietrich et al. [32], using

the air background as noise reference. Additionally, for images that have undergone some

noise reduction processing, or the more complex noise realizations of current parallel

acquisitions, a simplified calculation using the within tissue variance is also provided.

QI2 The second quality index of [12] is a calculation of the goodness-of-fit of a χ2 distribution on the

air mask, once the artifactual intensities detected for computing the QI1 index have been

removed. The description of the QI1 is found below.

Measures based on information theory

EFC The entropy-focus criterion [33] uses the Shannon entropy of voxel intensities as an indication

of ghosting and blurring induced by head motion. Lower values are better.

FBER The foreground-background energy ratio [14] is calculated as the mean energy of image values

within the head relative the mean energy of image values in the air mask. Consequently, higher

values are better.

Measures targeting specific artifacts

INU MRIQC measures the location and spread of the bias field extracted estimated by the inu

correction. The smaller spreads located around 1.0 are better.

QI1 The first quality index of [12] measures the amount of artifactual intensities in the air

surrounding the head above the nasio-cerebellar axis. The smaller QI1, the better.

WM2MAX The white-matter to maximum intensity ratio is the median intensity within the WM mask over

the 95% percentile of the full intensity distribution, that captures the existence of long tails due

to hyper-intensity of the carotid vessels and fat. Values should be around the interval [0.6, 0.8].

Other measures

FWHM The full-width half-maximum [34] is an estimation of the blurriness of the image using AFNI’s

3dFWHMx. Smaller is better.

ICVs Estimation of the icv of each tissue calculated on the FSL FAST’s segmentation. Normative

values fall around 20%, 45% and 35% for cerebrospinal fluid (CSF), WM and GM, respectively.

rPVE The residual partial volume effect feature is a tissue-wise sum of partial volumes that fall in the

range [5%-95%] of the total volume of a pixel, computed on the partial volume maps generated

by FSL FAST. Smaller residual partial volume effects (rPVEs) are better.

SSTATs Several summary statistics (mean, standard deviation, percentiles 5% and 95%, and kurtosis)

are computed within the following regions of interest: background, CSF, WM, and GM.

TPMs Overlap of tissue probability maps estimated from the image and the corresponding maps from

the ICBM nonlinear-asymmetric 2009c template [35].

https://doi.org/10.1371/journal.pone.0184661.t002
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an animated GIF (graphics interchange format) video sequentially showing coronal slices (in

anterior to posterior ordering) of the image under assessment. Each animation has a duration

of around 20s (see Software and data availability). During the visualization, the rater assesses

the overall quality of the image. Raters were asked to assign a quality label (“exclude”, “doubt-

ful” or “accept”) based on their experience after inspection of each animation. The animation

is replayed in loop until the rater makes a decision.

The labeling process is aided by surface reconstructions, using the so-called white
(WM-GM interface) and the pial (delineating the outer interface of the cortex) surfaces as

visual cues for the rater. The white and pial contours are used as evaluation surrogates, given

that “exclude” images usually exhibit imperfections and inaccuracies on these surfaces. When

the expert finds general quality issues or the reconstructed surfaces reveal more specific arti-

facts, the “exclude” label is assigned and the rater notes a brief description, for example: “low

signal-to-nose ratio (SNR)”, “poor image contrast”, “ringing artifacts”, “head motion”, etc. We

utilize FreeSurfer 5.3.0 [21] to reconstruct the surfaces. FreeSurfer has been recently reported as

a good quality proxy to assess T1w images [22]. For run-time considerations, and to avoid cir-

cular evaluations of FreeSurfer, this tool is not used in the MRIQC workflow (see The MRIQC

tool section).

The first rater (MS) assessed 601 images of ABIDE, covering *55% of the dataset. The sec-

ond rater (DB) also assessed 601 images from the ABIDE dataset, and all the 265 images of the

DS030 dataset. Since both raters covered more than half of ABIDE, one hundred images of the

dataset were rated by both experts. Such overlap of assessments enables the characterization of

inter-rater variability (Fig 2) using those images with double ratings. For training, we randomly

draw fifty ratings of each expert (without replacement) from the one hundred data points

assessed twice. The images of the ABIDE dataset were randomized before splitting by rater.

Additionally, the participant identifier was blinded in the animations. Participants in both data-

sets were randomized before rating to avoid inducing site-specific class-noise. Finally, the

ABIDE rating process yielded a balance of 337/352/412 exclude/doubtful/accept data points

(31%/32%/37%, see Block 5 in S1 File). Balances for DS030 are 75/145/45 (28%/55%/17%).

Software instruments and calculation of the IQMs

The MRIQC tool. MRIQC is an open-source project, developed under the following soft-

ware engineering principles. 1) Modularity and integrability: MRIQC implements a nipype
[23] workflow (see Fig 4) to integrate modular sub-workflows that rely upon third party soft-

ware toolboxes such as FSL [24], ANTs [25] and AFNI [26]. 2) Minimal preprocessing: the

workflow should be as minimal as possible to estimate the IQMs. 3) Interoperability and stan-
dards: MRIQC is compatible with input data formatted according to the Brain Imaging Data

Structure (BIDS, [27]) standard, and the software itself follows the BIDS Apps [28] standard.

For more information on how to convert data to BIDS and run MRIQC, see Blocks 3 and 4 in

S1 File respectively. 4) Reliability and robustness: the software undergoes frequent vetting

sprints by testing its robustness against data variability (acquisition parameters, physiological

differences, etc.) using images from the OpenfMRI resource. Reliability is checked and tracked

with a continuous integration service.

Extracting the Image Quality Metrics. The final steps of MRIQC’s workflow compute

the different IQMs, and generate a summary JSON file per subject. The IQMs can be grouped

in four broad categories (see Table 2), providing a vector of 64 features per anatomical image.

Some measures characterize the impact of noise and/or evaluate the fitness of a noise model. A

second family of measures uses information theory and prescribed masks to evaluate the spa-

tial distribution of information. A third family of measures looks for the presence and impact
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of particular artifacts. Specifically, the INU artifact, and the signal leakage due to rapid motion

(e.g. eyes motion or blood vessel pulsation) are identified. Finally, some measures that do not

fit within the previous categories characterize the statistical properties of tissue distributions,

volume overlap of tissues with respect to the volumes projected from MNI space, the sharp-

ness/blurriness of the images, etc. The ABIDE and DS030 datasets are processed utilizing Sin-
gularity [29] (see Block 7 in S1 File).

Reports for visual assessment. In order to ease the screening process of individual

images, MRIQC generates individual reports with mosaic views of a number of cutting planes

and supporting information (for example, segmentation contours). The most straightforward

use-case is the visualization of those images flagged by the classifier. After the extraction of

IQMs from all images in the sample, a group report is generated (Fig 5). The group report

shows a scatter plot for each of the IQMs, so it is particularly easy to notice cases that are outli-

ers for each metric. The plots are interactive, such that clicking on any particular sample opens

up the corresponding individual report of that case. Examples of group and individual reports

for the ABIDE dataset are available online at mriqc.org.

Supervised classification

We propose a supervised classification framework using the ABIDE dataset as the training set

and DS030 as the held-out dataset. Both datasets are rated as described in Labeling protocol by

two experts. Labels are binarized mapping the “doubtful” and “accept” labels to a single

“accept” quality rating. We use cross-validation to evaluate the performance of the models.

Prior to model selection using cross-validation, we first investigate the appropriate cross-vali-

dation design most adequate to pick on the batch effects, avoiding an overly optimistic evalua-

tion of the performance (see What data split should be used in cross-validation?). We then

present a two-step approach to predicting the quality labels of the held-out dataset. First, we

perform a preliminary evaluation using nested cross-validation utilizing only the ABIDE data-

set (see Step 1: Tested models and selection) to choose the best performing model. Then, we

optimize it in a refined grid of hyper-parameters with a single-loop cross-validation on the

Fig 4. MRIQC’s processing data flow. Images undergo a minimal processing pipeline to obtain the necessary corrected images

and masks required for the computation of the IQMs.

https://doi.org/10.1371/journal.pone.0184661.g004
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Fig 5. Visual reports. MRIQC generates one individual report per subject in the input folder and one group report including all subjects. To visually assess

MRI samples, the first step (1) is opening the group report. This report shows boxplots and strip-plots for each of the IQMs. Looking at the distribution, it is

possible to find images that potentially show low-quality as they are generally reflected as outliers in one or more strip-plots. For instance, in (2) hovering a

suspicious sample within the coefficient of joint variation (CJV) plot, the subject identifier is presented (“sub-51296”). Clicking on that sample will open the

individual report for that specific subject (3). This particular example of individual report is available online at https://web.stanford.edu/group/poldracklab/

mriqc/reports/sub-51296_T1w.html.

https://doi.org/10.1371/journal.pone.0184661.g005
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ABIDE dataset. Finally, the model is evaluated using the held-out dataset (see Supervised clas-

sification). The cross-validation workflows are built upon scikit-learn [36] and run utilizing

Singularity [29] (see Block 7 in S1 File).

Step 1: Tested models and selection. Based on the number of features (64) and training

data available (*1100 data points), we compare two families of classifiers: SVCs and random

forests classifiers (RFCs). We evaluate several preprocessing alternatives to overcome the batch
effects. In order to deal with the class-imbalance, we also evaluate all models with and without

class weighting during resampling. When enabled, weighting is inversely proportional to class

frequencies in the input data.

The support-vector machine classifier (SVC). A support-vector machine [37] finds a

hyperplane in the high-dimensional space of the features that robustly separates the classes of

interest. The SVC then uses the hyperplane to decide the class that is assigned to new samples

in the space of features. Two hyper-parameters define the support-vector machine algorithm:

a kernel function that defines the similarity between data points to ultimately compute a dis-

tance to the hyperplane, and a regularization weight C. In particular, we analyzed here the lin-

ear SVC implementation (as of now, “SVC-lin”) and the one based on radial basis functions

(denoted by “SVC-rbf”). During model selection, we evaluated the regularization weight C of

both SVC and the γ parameter (kernel width) particular to the SVC-rbf.

The random forests classifier (RFC). Random forests [38] are a nonparametric ensemble

learning method that builds multiple decision trees. The RFC assigns to each new sample the

mode of the predicted classes of all decision trees in the ensemble. In this case, random forests

are driven by a larger number of hyper-parameters. Particularly, we analyze the number of

decision trees, the maximum tree-depth, the minimum number of samples per split, and the

minimum node size.

Objective function. The performance of each given model and parameter selection can

be quantified with different metrics. Given the imbalance of positive and negative cases –with

lower prevalence of “exclude” samples–, we select the area under the curve (AUC) of the

receiver-operator characteristic as objective score. Additionally, we report the classification

accuracy (ACC) as implemented in scikit-learn (see Eq 1 in S1 File).

Preprocessing. In order to address the batch effect and build models more robust to this

problem, we include three preprocessing steps in the framework. The first preprocessing step

is a site-wise normalization of features. For robustness, this normalization calculates a center

(as the median feature value) and a spread (as the interquartile range) per feature for demean-

ing and scaling data. This filter can center only, scale only or perform both centering and

scaling.

The second preprocessing step available is a dimensionality reduction filter excluding fea-

tures highly predictive of the site of origin of data points. To do so, we fit a classifier based on

extremely randomized trees [39], where the variables are the features and the responses are the

sites of acquisition. We iteratively fit the classifier and remove the feature most predictive of

the site at each step, until certain convergence criteria is met (either a maximum number of

features to remove is reached or the performance of the classifier is very low and thus the

remaining features do not predict the site at all).

Finally, a third preprocessing step implements the Winnow algorithm [40] using extremely

randomized trees in a similar way to the previous filter, but comparing features to a synthetic,

randomly-generated feature. This feature selection filter removes those IQMs below a certain

SNR level.

All the hyper-parameters (normalization centering and/or scaling and the two feature elim-

ination algorithms) can be switched on and off during model selection. Finally, they are opti-

mized in a cross-validation framework.
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Cross-validation and nested cross-validation. Cross-validation is a model selection and

validation technique that can be robust to data inhomogeneities [41] with the appropriate

choice of the data split scheme. We use nested cross-validation, which divides the process into

two validation loops: an inner loop for selecting the best model and hyper-parameters, and an

outer loop for evaluation. In cross-validation, data are split into a number of folds, each con-

taining a training and a test set. For each fold, the classifier is trained on the first set and evalu-

ated on the latter. When cross-validation is nested, the training set is split again into folds

within the inner loop, and training/evaluation are performed to optimize the model parame-

ters. Only the best performing model of the inner loop is then cross-validated in the outer

loop. Models and their hyper-parameters are evaluated within the inner loop, optimizing for

the best average AUC score.

Data split scheme. To prevent the inflation of evaluation scores due to batch effects, we

defined a leave-one-site-out (LoSo) partition strategy. The LoSo split leaves out a whole site as

test set at each cross-validation fold. Therefore, no knowledge of the test site is leaked into the

training set (the remaining N − 1 sites). In a preliminary experiment (What data split should

be used in cross-validation?) we justify the use of LoSo over a more standard repeated and

stratified 10-fold. If a batch effect exists it will result in over-fitting on the training data com-

pared to the unseen test data. The performance measured in the outer cross-validation loop on

the ABIDE dataset will be higher than that evaluating the classifier on the held-out dataset,

unrelated to ABIDE.

Feature ranking. One tool to improve the interpretability of the RFC is the calculation of

feature rankings [38] by means of variable importance or Gini importance. Since we use scikit-
learn, the implementation is based on Gini importance, defined for a single tree as the total

decrease in node impurity weighted by the probability of reaching that node. We finally report

the median feature importance over all trees of the ensemble.

Step 2: Validation on the held-out dataset. In the second step, we use the model selected

in step 1, and trained on the full ABIDE dataset to evaluate the performance on the held-out

dataset (DS030).

Results

All images included in the selected datasets are processed with MRIQC. After extraction of the

IQMs from the ABIDE dataset, a total of 1101 images have both quality ratings and quality fea-

tures (one image of ABIDE is skull-stripped, thus it is not valid for the extraction of measures

with MRIQC and was excluded). In the case of DS030, all the 265 T1w images have the neces-

sary quality ratings and features.

What data split should be used in cross-validation?

Before fitting any particular model to the IQMs, we identify the cross-validation design most

appropriate for the application. We confirm that the batch effects are overlooked when using a

10-Fold cross-validation like [15], producing a biased estimation of the performance. To sup-

port that intuition we run four nested cross-validation experiments, with varying split strate-

gies for the inner and outer loops. First, the nested cross-validation is performed on the

ABIDE dataset. We use a randomized search (evaluating 50 models) for the inner loop. Sec-

ond, the cross-validated inner model is fitted onto the whole ABIDE dataset. The result in

Table 3 shows that the LoSo splitting has a closer train-test accuracy than 10-Fold cross-

validation.
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Model evaluation and selection

Once the LoSo cross-validation scheme is selected, we use nested cross-validation to compare

the three models investigated (SVC-lin, SVC-rbf, and RFC). Note that only the ABIDE dataset

is used, therefore the DS030 dataset is kept unseen during model selection. Again, the search

strategy implemented for the inner cross-validation loop is a randomized search of 50 models.

The best performing model is the RFC with all the optional preprocessing steps enabled.

Therefore, the model includes the robust site-wise normalizer (with centering and scaling), the

feature elimination based on predicting the site of origin and the Winnow-based feature selec-

tion. Fig 6 shows the AUC and acc scores obtained for the three models evaluated, for each

data split in the outer cross-validation loop.

Evaluation on held-out data

Finally, we run a non-nested cross-validation to find the best model and test it on the held-out

dataset. In this case, we use a grid search strategy to evaluate all possible combinations of

hyper-parameters (a total of 512 models). The specific grid we evaluate is available in the

GitHub repository (mriqc/data/classifier_settings.yml). In order to assess the

above-chance accuracy performance, we run a permutation test [42] shuffling labels of both

training and test sets at each repetition (1000 permutations). The evaluation on DS030 is sum-

marized on Table 4, and shows an AUC of 0.707, and ACC = 76% (p = 0.001). The perfor-

mance is slightly higher than that (AUC/ACC = 0.5/72%) of a naive classifier that labels all

data points “accept”. The model selected includes the robust normalization (with both center-

ing and scaling) and the site-prediction feature selection. The features finally selected are pre-

sented in the plot of feature importances of Fig 7 (panel A). The QI2 [12] is the most important

feature, followed by background and WM tissue statistics. The recall (Eq 2 in S1 File) is partic-

ularly low (0.28, Table 4) and indicates over-fitting to the training set. To understand the prob-

lem, we visualized the images in the test set that were predicted “accept” but rated “exclude” by

the expert, and found a signal ghost artifact in *18% of the images in the test set that was not

present in any image of the training set. Most of the images containing this artifact are rated as

“exclude” by the expert, when the ghost artifact overlapped the cortical sheet of the temporal

lobes. Some examples are reproduced in Fig 7B. To assess the performance in the absence of

the ghosting artifact on DS030, we run the classifier trained on ABIDE on the test set after

removing the images showing this artifact. The results of this exploratory analysis are pre-

sented in Block 6 of S1 File. Without the ghosting artifact, the performance improves to AUC/

ACC = 0.83/87%. The sensitivity to “exclude” images increases to 0.46. To ensure this increase

of sensitivity is a direct consequence of the removal of the ghosting artifact, we re-run the

nested cross-validation of the RFC model (see Model evaluation and selection) with a modifi-

cation to report the recall. We obtain a value of 0.48 (±0.3), consistent with the previous result

on the ghosting-free subsample of the DS030 dataset.

Table 3. Selecting the appropriate split strategy for cross-validation. The cross-validated area under the curve (AUC) and accuracy (ACC) scores calcu-

lated on the ABIDE dataset (train set) are less biased when LoSo is used to create the outer folds, as compares to the evaluation scores obtained in DS030

(held-out set).

ABIDE (train) DS030 (held-out) Bias (Δ)

Outer split Inner split AUC ACC (%) AUC ACC (%) AUC ACC

10-Fold 5-Fold .87±.04 83.75±3.6 .68 75.7 .19 7.0

LoSo .86±.04 81.93±3.5 .71 77.0 .15 5.0

LoSo 5-Fold .71±.15 75.96±16.8 .68 76.2 .03 -0.2

LoSo .71±.15 75.21±17.8 .68 76.6 .03 -1.4

https://doi.org/10.1371/journal.pone.0184661.t003
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Discussion

Quality control (QC) protocols identify faulty datasets that can bias analyses. We propose a

quantitative approach to the QC of T1w MRI acquisitions of the brain. Human brain images

can be degraded by various sources of artifacts related to the scanning device, session parame-

ters, or the participants, themselves. Automating the QC process is particularly necessary for

Fig 6. Nested cross-validation for model selection. The plots on the left represent the scores (AUC on top, ACC below)

obtained in the outer loop of nested cross-validation, using the LoSo split. The plots show how certain sites are harder to predict

than others. On the right, the corresponding violin plots that summarize the overall performance. In both plots, the dashed lines

represent the averaged cross-validated performance for the three models: RFC (blue line, AUC = 0.73±0.15, ACC = 76.15%

±13.38%), SVC-lin (light orange, AUC = 0.68±0.18, ACC = 67.54%±20.82%), and SVC-rbf (dark orange, AUC = 0.64±0.17,

ACC = 69.05%±18.90%).

https://doi.org/10.1371/journal.pone.0184661.g006

Table 4. Evaluation on the held-out dataset. The model cross-validated on the ABIDE dataset performs with AUC = 0.707 and ACC = 76% on DS030. The

recall column shows the insensitivity of the classifier to the true “exclude” cases. The predicted group summarizes the confusion matrix corresponding to the

prediction experiment.

Performance scores Predicted Support

precision recall F1 score accept exclude

True accept 0.77 0.95 0.85 180 10 190

exclude 0.68 0.28 0.40 54 21 75

avg / total 0.74 0.76 0.72 234 31 265

https://doi.org/10.1371/journal.pone.0184661.t004
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large scale, multi-site studies such as the UK Biobank. Previous efforts [11, 12, 15, 43] in the

quantification of image quality are also based on no-reference IQMs, but did not attempt to

solve the generalization of prediction to unseen samples from new sites.

In this work, we investigate the prediction of binary quality labels from a set of IQMs. As

planned in the corresponding pre-registered report (see Software and data availability), we

focus specifically on the generalization of prediction to image sets acquired in sites unseen by

the classifier. Most of the IQMs used in this work and in previous literature [11, 12, 15, 43] are

highly dependent on the specific acquisition parameters and particular scanning settings of

each site. This inter-site variability is transfered into the IQMs producing batch effects [18] that

impede the generalization of predictions to new sites (or “batches”). For these reasons, we pre-

registered an experimental design based on a supervised learning framework using the ABIDE

dataset as training set for its heterogeneity (acquired in 17 different sites), and one OpenfMRI

dataset (DS030) as held-out dataset. We slightly deviate from the pre-registered design in

minor details, for instance we do not use Bayesian estimation of hyper-parameters [44] since

the use of grid search and randomized search are sufficient for the problem. Further deviations

Fig 7. Evaluation on the held-out dataset. A. A total of 50 features are selected by the preprocessing steps.

The features are ordered from highest median importance (the QI2 [12]) to lowest (percentile 5% of the

intensities within the GM mask). The boxplots represent the distribution of importances of a given feature

within all trees in the ensemble. B. (Left) Four different examples of false negatives of the DS030 dataset. The

red boxes indicate a ghosting artifact, present in more than 20% of the images. Only extreme cases where the

ghost overlaps the cortical GM layer of the occipital lobes are presented. (Right) Two examples of false

positives. The two examples are borderline cases that were rated as “doubtful”. Due to the intra- and inter-

rater variabilities, some data points with poorer overall quality are rated just “doubtful”. These images

demonstrate the effects of the noise in the quality labels.

https://doi.org/10.1371/journal.pone.0184661.g007
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from the pre-registration are the increment on the number of IQMs used (we proposed 34,

and use 64 here) and the final implementation of the MRIQC workflow. We also diverged in

the finally applied Labeling protocol, since two different experts (instead of only one) manually

rate a total of 1367 T1w images, and they did not revisit the “exclude” and “doubtful” cases

using freeview. One expert evaluated 601 images belonging to the ABIDE dataset, and the

second expert rated 601 images of ABIDE plus the full DS030 (265 images). Thus, one hundred

images of ABIDE selected randomly are rated by both experts. We utilize these overlapping

ratings to investigate the inter-observer reliability using the Cohen’s Kappa (κ = 0.39, “fair”

agreement [16]). When the ratings are binarized, κ increases to 0.51 (“moderate” [16]). This

“fair” to “moderate” agreement unveils a second source of variance alongside the batch effects:
the class-noise (or the variability in the assigned labels).

We use cross-validation and nested cross-validation for model selection and evaluation.

Before addressing the question of quality prediction, we first investigate the appropriate design

of data splits for datasets showing batch effects. In section What data split should be used in

cross-validation? we show that LoSo is a less optimistic and less biased design than a standard

10-fold split as in Pizarro et al. [15]. Once the cross-validation scheme is defined, we select the

RFC model over two variants of the SVC in a nested cross-validation scheme using only the

ABIDE dataset. Finally, we select the final model and hyper-parameters in a non-nested cross-

validation, train the model on the ABIDE dataset, and evaluate its performance on the held-

out dataset (DS030). We obtain an AUC score of *0.71 and an ACC score of *76%. We

ensure the classifier is capturing the structure of quality labels from the data running a permu-

tation test (p = 0.001, 1000 permutations). The ultimately selected model includes the normali-

zation of features (with both centering and scaling), and the feature elimination based on the

site prediction (which removed 14 features highly correlated with the site of origin).

Intrigued by the poor sensitivity to positive (“exclude”) data points, we discover that DS030
shows a systematic ghosting artifact in a substantial number of the images that is not present

in any of the training examples (Fig 7B). Most of the images showing that artifact (except for a

few where the ghost was present but did not overlap the cortical layer) are rated as “exclude”

by the expert. In a subsequent exploratory analysis where we remove the data points presenting

the artifact, we find that sensitivity to “exclude” cases rises from 0.28 to 0.46, and AUC/ACC

improve from 0.71/76% to 0.83/87%. Therefore, the performance improves, albeit moderately.

The sensitivity to “exclude” data points on the ghost-free test set is consistent to that estimated

by means of nested cross-validation. On one hand, we argue that DS030 is not a representative

held-out dataset due to this structured artifact. On the other hand, it is likely that many scan-

ning sites show idiosyncratic artifacts that are not present in our training set (ABIDE). We dis-

cuss this limitation with some others below.

We propose LoSo as cross-validation scheme in datasets showing batch effects. In the partic-

ular problem at hand, RFC outperforms SVC and requires site-wise normalization of features

to handle the heterogeneity of sites. The model selected in cross-validation also includes the

feature selection by removing those features that best predicted the site of origin of samples.

We interpret these results as a modest confirmation of the initial hypothesis, since the classifier

captures the quality structure of features and it predicts the quality of the held-out dataset with

above-chance accuracy. The performance we report is relatively low (even though not too far

from recent studies using single-site data [15]), and we can hypothesize that it is easy to find a

new sample that confuses the classifier just looking for particular artifacts not present in

ABIDE and DS030. Therefore, the intent of generalization to new sites made in our initial

hypothesis is only weakly confirmed at best.

One clear limitation of the presented classifier is the need for additional labeled data,

acquired in new sites with scanners (vendor, model, software versions) and scanning
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parameters under-represented in the ABIDE dataset. Moreover, the images distributed under

the ABIDE dataset have undergone a realignment process through resampling, that slightly

modified the original intensity distributions and smoothed the images. One additional route

to enhance the predictive power of the classifier is reducing the class-noise by refining the rat-

ings done by the experts. Along the same lines, the ABIDE dataset could be augmented with

images from new sites for which we correct MRIQC’s predictions a posteriori, and including

these fixed data points within the training set. A similar approach to adding new sites to the

training set would use techniques like label propagation [45], where only a random subset of

the sample is manually rated and the labels are propagated to the remaining samples through

an unsupervised clustering procedure. One more alternative to boost the prediction perfor-

mance leverages the property of RFC of assigning a continuous score in the [0.0, 1.0] range to

each data point. Thus, the decision threshold (which is at 0.5 by default) can be calibrated for

samples from new sites using a small subset of manually rated data points. We can support this

claim on the observation that the predicted “probability” of the RFC was close but below the

default threshold of 0.5 (in the binary classification problem) for many of the misclassified

data points of the held-out set DS030.

A second limitation of this work is the vague definition of MRI quality in our pre-registered

report, which is closely related to the lack of agreement on how to grade the quality of images

within the neuroimaging community. Instructing the experts with more detailed information

on how to rate the images would have likely reduced the inter-rater variability and conse-

quently the class-noise level. The labeling protocol presented here is very fast for the experts to

visualize many images, but it is prone to class-noise as demonstrated by a fairly high inter-rater

variability. In the early version of this manuscript, we used a quality assessment of ABIDE done

by one of our experts with a different protocol. The change of protocol severely impacted the

ratings (see Block 5 in S1 File) and the performance evaluated on the held-out set due to the

inconsistency of labeling protocols. An additional limitation of our labeling protocol is the use

of reconstructed surfaces to aid raters. This approach introduces a bias in their judgment that

would turn the general quality assessment into an evaluation of the particular tool used in the

reconstruction (FreeSurfer). Therefore, the labeling protocol could be improved adding more

resources to the rating settings (like the possibility of toggling the visualization of surfaces on

and off, or the addition of visual reports generated from other processing tools or MRIQC

itself). The raters do not pinpoint localized surface errors when no general defect is identified

as their cause, in order not to bias their rating towards the evaluation of the reconstruction out-

comes instead of the overall quality. Along the same lines, MRIQC does not include FreeSurfer
in the extraction of IQMs to prevent leaking its performance into the features.

The spatial distribution of artifacts versus the global quality rating is another future line of

research and current limitation. For example, the local motion of the eyes typically generates

signal leakage through the phase-encoding axis. If the phase-encoding axis is anterior-poste-

rior as opposed to left-right, the degradation is substantially more troublesome since the

spillover will affect the lower regions of the occipital lobes (see Block 1 in S1 File). Future

extensions of MRIQC should include the regional localization of the current IQMs. The feasi-

bility of this approach is probably limited by the design principle of minimal preprocessing.

Alternatively, the presented unsupervised framework could be replaced by a deep learning

solution where the feature extraction is part of the design, and localization of quality features

can be trained. We will also explore the integration of different modalities (e.g. T2-weighted).

For instance, Alexander-Bloch et al. [4] propose the use of head motion estimated on same-

subject, functional MRI time series as a proxy measure for motion during the T1w acquisition.

The quantitative assessment of quality using the RFC is the central piece of the three-fold

contribution of this paper. The first outcome of this study is the MRIQC toolbox, a set of
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open-source tools which compute quality features. Second, MRIQC generates interactive

visual reports that allow further interpretation of the decisions made by the classifier. Finally

we propose the automated quality control tool described above to generate include/exclude

decisions. We publicly release all the source code, the Singularity images and two classifiers to

ensure the repeatability and transparency our experiments (see Software and data availability).

Along with the tool, we release the quality ratings and all artifacts derived from training and

testing the classifier to allow researchers to build upon our results or develop their own alter-

natives. For example, the quality ratings will allow MRI practitioners to train the model on a

subset of their images and use a version of it customized for their site.

The MRIQC toolbox is a fork of the Quality Assessment Protocol (QAP). Since MRIQC

was started as a standalone project, the implementation of most of the IQMs has been revised,

and some are supported with unit tests. As with QAP, MRIQC also implements a functional

MRI (fMRI) workflow to extract IQMs and generate their corresponding visual reports. Some

new IQMs have been added (for instance, the CJV, those features measuring the INU artifacts,

or the rPVEs). The group and individual reports for structural and functional data are also

new contributions to MRIQC with respect to the fork from QAP. The last diverging feature of

MRIQC with respect to QAP is the automated QC framework.

MRIQC is one effort to standardize methodologies that make data-driven and objective QC

decisions. Automated QC can provide unbiased exclusion criteria for neuroimaging studies,

helping avoid “cherry-picking” of data. A second potential application is the use of automated

QC predictions as data descriptors to support the recently born “data papers” track of many

journals and public databases like OpenfMRI [46]. For instance, MRIQC is currently available

in the OpenNeuro [47] platform. The ultimate goal of the proposed classifier is its inclusion in

automatic QC protocols, before image processing and analysis. Ideally, minimizing the run

time of MRIQC, the extraction and classification process could be streamlined in the acquisi-

tion, allowing for the immediate repetition of ruled out scans. Integrating MRIQC in our

research workflow allowed us to adjust reconstruction methodologies, tweak the instructions

given to the participant during scanning, and minimize the time required to visually assess one

image with the visual reports.

Conclusion

The automatic quality control of MRI scans and the implementation of tools to assist the visual

assessment of individual images are in high demand for neuroimaging research. This paper

partially confirmed a pre-registered hypothesis about the feasibility of automated binary classi-

fication (“exclude”/“accept”) of the overall quality of MRI images. We trained a random forests

classifier on a dataset acquired at 17 sites, and evaluated its performance on a held-out dataset

from two unseen scanning centers. Classification performed similarly to previous works con-

ducted on single-site samples. The hypothesis was not fully confirmed because we found that

the classifier is still affected by a certain level of over-fitting to the sites used in training. Strate-

gies aimed at combating site effects such as within-site normalization and feature removal

helped, but did not fully mitigate the problem. It is likely that adding labeled data from new

sites will eventually ease this problem. We release all the tools open-source, along with the

labels used in training and evaluation, the best performing classifier and all the derivatives of

this work to allow researchers to improve its prediction and build alternative models upon this

work.

Software and data availability

The pre-registered report is available online at https://osf.io/haf97/.
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MRIQC is available under the BSD 3-clause license. Source code is publicly accessible

through GitHub (https://github.com/poldracklab/mriqc). We provide four different installa-

tion options: 1) using the source code downloaded from the GitHub repository; 2) using the

PyPI distribution system of Python; 3) using the poldracklab/mriqcDocker image; or 4)

using BIDS-Apps [28]. For detailed information on installation and the user guide, please

access http://mriqc.rtfd.io.

Two distributable classifiers are released. The first classifier was trained on ABIDE only,

and it is the result of the experiment presented in Model evaluation and selection. The second

classifier was trained on all the available data (including the full-ABIDE and the DS030 data-

sets) for prediction on new datasets. Along with the tool, we release the quality ratings and all

artifacts derived from training and testing the classifier. The animations used by the experts to

rate the images are available at the pre-registration website. The Singularity images utilized in

all the experiments presented here have been deposited to the Stanford Digital Repository

(https://purl.stanford.edu/fr894kt7780).

The ABIDE dataset is available at http://fcon_1000.projects.nitrc.org/indi/abide/. The

DS030 dataset is available at https://openfmri.org/dataset/ds000030/.

MRIQC can be run via a web interface without the need to install any software using Open-

Neuro [47].

Supporting information

S1 File. Supporting information. All supporting information has been included in one file.

(PDF)
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