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Abstract

Background: lllumina sequencing of a marker gene is popular in metagenomic studies. However, lllumina
paired-end (PE) reads sometimes cannot be merged into single reads for subsequent analysis. When
mergeable PE reads are limited, one can simply use only first reads for taxonomy annotation, but that wastes
information in the second reads. Presumably, including second reads should improve taxonomy annotation.
However, a rigorous investigation of how best to do this and how much can be gained has not been
reported.

Results: We evaluated two methods of joining as opposed to merging PE reads into single reads for
taxonomy annotation using simulated data with sequencing errors. Our rigorous evaluation involved several
top classifiers (RDP classifier, SINTAX, and two alignment-based methods) and realistic benchmark datasets. For
most classifiers, read joining ameliorated the impact of sequencing errors and improved the accuracy of
taxonomy predictions. For alignment-based top-hit classifiers, rearranging the reference sequences is
recommended to avoid improper alignments of joined reads. For word-counting classifiers, joined reads could
be compared to the original reference for classification. We also applied read joining to our own real MiSeq
PE data of nasal microbiota of asthmatic children. Before joining, trimming low quality bases was necessary
for optimizing taxonomy annotation and sequence clustering. We then showed that read joining increased
the amount of effective data for taxonomy annotation. Using these joined trimmed reads, we were able to
identify two promising bacterial genera that might be associated with asthma exacerbation.

Conclusions: When mergeable PE reads are limited, joining them into single reads for taxonomy annotation
is always recommended. Reference sequences may need to be rearranged accordingly depending on the
classifier. Read joining also relaxes the constraint on primer selection, and thus may unleash the full capacity
of lllumina PE data for taxonomy annotation. Our work provides guidance for fully utilizing PE data of a
marker gene when mergeable reads are limited.
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Background

Metagenomics has revolutionized microbiology as it by-
passes the cultivation of microbes [1, 2], allowing for a
comprehensive exploration of microbiota. The field has
been further boosted by next-generation sequencing
(NGS), which generates big data with a low cost [3].
With NGS, studying complex microbiota in various en-
vironments is now affordable for most laboratories.

Amplifying and sequencing phylogenetic marker genes,
e.g., 16S ribosomal RNA (rRNA) genes, is a popular meta-
genomic approach with several merits. First, targeting one
gene increases the sequencing depth, thus enables identifi-
cation of species that constitute only a small fraction of
the sample. Second, taxonomy annotation is facilitated by
a wealth of reference 16S sequences of known microbes in
public databases, e.g., RDP [4] and Greengenes [5].

For metagenomic studies, Illumina sequencers are
popular because of their higher throughput among NGS
platforms. However, Illumina reads are relatively short
(150-300bp) compared to the marker genes (e.g., ~
1500 bp of 16S rDNAs) [6]. Fortunately, Illumina offers
paired-end (PE) reads, which are sequences at the two
ends of DNA fragments. When a DNA fragment is
shorter than two times the read length, the paired reads
overlap and can be merged into a longer read. Ideally,
merged reads can reach almost two times the read
length, e.g., 590 bp for MiSeq reads of 300 bp with a 10
bp minimal overlap.

Merging Illumina PE reads of a marker gene, however,
can be hindered by sequencing errors. [llumina reads are
prone to errors at the tail, which may inhibit identifica-
tion of overlap between paired reads. For example, in
many studies including ours, the variable region V3-V5
of 16S rRNA genes was amplified and the products were
subjected to MiSeq 2 x 300 bp sequencing [7, 8]. For the
~570bp amplicons, the majority of the PE reads could
not be merged because of sequencing errors within the
~ 30 bp overlap.

For unmergeable PE reads, one can simply just use
first reads for taxonomy annotation [9]. However, this
likely wastes relevant information in the second reads.
To include more data, Rtax has been proposed to classify
paired reads separately and then combine the annota-
tions [10]. However, the tracking of read pairing is com-
plicated, thus slowing down analysis [11]. In addition,
the consensus strategy of Rtax has been shown to be in-
ferior for taxonomy annotation [12]. Separate analysis of
paired reads can also be done by Kraken2 [13]. However,
it is mainly designed to classify whole genome shotgun
data and its performance on classifying 16S data is not
clear. Currently Kraken2 does not allow users to build a
custom for classification. Besides separate analysis,
paired reads can be concatenated (also called joined)
into single reads for taxonomy annotation [14, 15]. In
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this work, we define “direct joining” as concatenating
the reverse complement of second read RevComp(R2) to
the first read (R1) with padded Ns in between (Fig. 1a).
This can be done using the fastq_join command of
USEARCH [16]. Another joining method is concatenat-
ing R1 to RevComp(R2), which was first proposed by
Werner et al. [11]. This method is called “inside-out” by
the authors as the low quality bases found in read tails
corresponding to the inside of the amplicons are now
placed at the two ends of the inside-out reads. Note that
the inside-out method in that work was used for con-
structing phylogenetic tree from non-overlapping PE
reads of 16S genes, not for taxonomy annotation.

Although several approaches exist for handling
unmergeable PE reads, a rigorous evaluation of those ap-
proaches is still missing. Therefore, it is often not clear
whether an approach is the best practice for a piece of
unmergeable PE data. For example, one may suspect that
sequencing errors in second reads can offset the benefit
of including them because second reads usually contain
more errors than first reads. In addition, different classi-
fiers may favor different joining methods for PE reads.
For example, read joining is not expected to affect much
a word-counting classifier (e.g.,, RDP classifier [17] or
SINTAX [18]). An alignment-based classifier, however,
may not perform well on joined reads because of the
gaps between directly joined reads and the inverted
order of R1 and R2 for inside-out reads. Accordingly,
reference sequences may need to be rearranged to
optimize taxonomy annotation. However, to date a study
of these issues has not been reported.

Here, we conducted a rigorous evaluation of the two
joining methods using various simulated datasets with
sequencing errors. To facilitate the evaluation, we devel-
oped a computational pipeline called JTax (Joining
paired read for Taxonomy annotation). Using JTax, we
assessed the benefit of joining paired reads for classifica-
tion and compared the annotation accuracies by several
top classifiers: RDP classifier, SINTAX, and two methods
based on local and global alignment respectively. In
addition, we analyzed our real Illumina PE data using
various approaches to illustrate applicability of the join-
ing methods.

Our work provides guidance for utilizing PE reads of a
marker gene when the number of mergeable PE reads is
limited. In our analyses of simulated and real PE data,
read joining improved taxonomy annotation in general
and is thus always recommended. Read joining also lifted
the requirement of merging PE reads, which allows for
selection of better primer pairs, e.g., those that cover
more microbial species. In addition, different Illumina
sequencers that generate shorter but higher quality reads
may be considered. Analyzing joined reads of our real
MiSeq data, we identified two bacterial genera (ie.,
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Fig. 1 JTax workflow and reference rearrangement. a Given a pair of forward (blue) and reverse (red) primers, DNA samples are amplified and the
products are subjected to lllumina PE sequencing (left panel). Color gradient indicates 5' (dark; high quality) to 3" (light; low quality) end of a read.
Right and left arrows indicate reads on the plus and minus strand respectively. PE reads are then joined either directly or in an inside-out manner.
The right panel shows rearrangement of a reference sequence in the two joining methods (see main text for details). b Identification of primer
sites on a reference. Based on alignment between the main reference (blue) and a reference sequence (green), base positions on the reference
are converted into coordinates on the main reference (e, 12, 13, 14, 14, 15, ..., 34, 35, 37, 38, ...). Primer sites on the main reference (in
rectangles) are then obtained using USEARCH (command: search_oligo, option: —maxdiffs 3). At the forward primer site, JTax scans from the
reference start the first coordinate (ie, 12, in red) greater than the primer start (i.e, 10, in blue). To reach the primer start, it attempts to back
trace two bases on the reference. However, no bases are found on the left of the corresponding position, so two Ns are padded. For the reverse
primer site, the first coordinate smaller than the primer end (i.e, 36, in blue) is 35 when scanning from the reference end. JTax then extends one
base from the corresponding position (i.e., 57, in red) on the reference to 58 (in green). The resulting amplicon is “NNAGTCTTGA ... CGAGGTAA”"

Moraxella and Sphingomonas) that might be associated
with asthma exacerbation. The two genera are promising
candidates for future exploration.

Results

Merge of PE reads

This work was partly motivated by the low percentages
of our real PE reads that could be merged. To study re-
lationship between airway microbes and asthma exacer-
bation, we collected nasal samples from 12 asthmatic

children and explored the microbial communities
(Methods). Briefly, 16S segments were amplified using
the Human Microbiome Project primer pairs 27F/534R
and 357F/926R (Table 1), which probes the V1-V3 and
V3-V5 regions respectively for MiSeq 2 x 300 bp sequen-
cing. For the V1-V3 primer pair, only 1,739,397 of the 3,
559,206 PEs (48.9%) could be merged by USEARCH
with a 25% maximal mismatch rate within overlap
(Table S1). A majority of the unsuccessful merges could
be attributed to sequencing errors because most paired
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Table 1 Primer pairs used in this study and the covered variable regions

Primer pair Forward/ reverse sequence Covered variable region
27F/534R AGAGTTTGATCCTGGCTCAG/ ATTACCGCGGCTGCTGG V1-V3
357F/926R CCTACGGGAGGCAGCAG/ CCGTCAATTCMTTTRAGT V3-V5
341F/785R CCTACGGGNGGCWGCAG/ GACTACHVGGGTATCTAATCC V3-V4
341F/1062R CCTACGGGNGGCWGCAG/ CRRCACGAGCTGACGAC V3-V6
8F/785R AGRGTTYGATYMTGGCTCAG/ TACHVGGGTATCTAAKCC V1-v4
27F/1492R AGRGTTYGATYMTGGCTCAG/ RGYTACCTTGTTACGACTT V1-V9

Note that he primer coordinates are adapted from the original references, which might apply different coordinate systems

reads were expected to overlap by ~ 90 bp. For the V3-
V5 primer pair, only 48,925 of the 320,169 PEs (15.3%)
could be merged. This is reasonable as the longer ampli-
cons resulted in shorter overlaps and higher mismatch
rates within the overlaps.

The problem of unmergeable PE reads has occurred in
many projects [7, 8]. For example, on 2019 Nov 1, the
NCBI Sequence Read Archive (SRA) hold MiSeq PE data
of at least 2672 samples in 33 metagenomics projects
that probed the V3-V5 regions. For more than half of
the samples, we estimated that less than half of the PE
reads could be merged (Table S2). For those projects,
paired reads can be joined into single reads, e.g., using
JTax, for taxonomy annotation.

JTax workflow

The main task of JTax is rearranging reference se-
quences in a direct joining or inside-out manner (Fig. 1a)
for classifying the corresponding joined reads. Given a
primer pair and a reference database containing full-
length sequences of 16S or another marker gene, JTax
first extracts amplicons via identifying primer sites on
the references (see below). At the two ends of the ampli-
cons, segments of the corresponding read lengths are ex-
tracted respectively and joined directly or in the inside-
out manner as the rearranged references for several clas-
sifiers. JTax incorporates two word-counting classifiers,
the RDP classifier (v2.12) (RDP) and SINTAX (in
USEARCH v11.0.667), and two top-hit methods based
on global alignment by USEARCH (v11.0.667) (TOP)
and local alignment by BLAST (v2.9.0+) (BTOP) re-
spectively. JTax is designed to be modular and includes
a module to join PE reads. Before joining, JTax can trim
primer from reads and correct sequencing errors within
overlap of paired reads if some overlap is still expected.
The modular fashion of JTax facilitates comparison of
joined reads to a different reference database, e.g., ampli-
con sequences.

To identify primer sites on reference sequences, JTax
first selects a main reference. Specifically, reference se-
quences that contain a unique binding site of the for-
ward and reverse primers are identified. The reference
with the longest segments outside the binding sites is

selected as the main reference. JTax then aligns all refer-
ence sequences to the main reference, and converts base
positions on those sequences into coordinates on the
main reference (Fig. 1b) for identifying the correspond-
ing primer sites. If a reference does not extend to the
primer site, JTax pads Ns until reaching 5" end of the
primer. This saves reference sequences falling short at
the primer sites. Implementation details can be found in
the JTax codes.

Benefit of including second reads for taxonomy
annotation

We set out to examine whether joining unmergeable PE
reads could improve taxonomy annotation. Our evalu-
ation was inspired by the TAXXI paper [12], in which
the idea of cross-validation by identity was first intro-
duced. Briefly, it was observed that a majority of real
metagenomic 16S sequences did not have a highly simi-
lar counterpart (e.g., with an identity >99%) in the au-
thentic reference database. For more realistic
benchmarking, training and testing data should be pre-
pared such that the top-hit identities of the test se-
quences cover different values to mimic the trend of real
data. Please refer to the TAXXI paper for more details.
Along this line or reasoning, we designed a greedy algo-
rithm to split a reference database into a pair of training
and testing sets of sequences with a desired top-hit iden-
tity (e.g., 97%) for the V3-V5 primer pair (Methods).
The algorithm optimized the number of testing and
training sequences under the constraint of top-hit iden-
tity for better statistics. To build training and testing
datasets, we used the NCBI BLAST 16S rRNA
(BLAST16S) sequences from the TAXXI paper because
that data is from authoritatively isolated strains. From
the testing sequences, MiSeq 2 x 300 bp reads were sim-
ulated based on the quality profiles of our real MiSeq
data (Fig. S1).

The simulated first reads, directly joined reads, and
inside-out reads were then compared to the training se-
quences for annotation by two word-counting classifiers
(RDP and SINTAX) and two alignment-based top-hit
methods (TOP and BTOP). Those classifiers were se-
lected for their top performance in the TAXXI paper.
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Note that the training sequences were amplicons of the
V3-V5 primer pair. In addition to the amplicons, the
two types of joined reads were compared to the corres-
pondingly rearranged references respectively for tax-
onomy prediction. Classification accuracy at each top-hit
identity (100, 99, 97, 95, and 90%) and the mean value
were then calculated (Methods). The two word-counting
classifiers provide confidence score and two thresholds,
50 and 80%, were used for accuracy estimation.

For all classifiers, including second reads resulted in a
similar or higher genus level accuracy at all top-hit iden-
tities except for the TOP classification of inside-out
reads using amplicons as reference (Fig. 2). The overall
improvement indicates that sequencing errors in the
simulated second reads did not offset the benefit of in-
cluding them for taxonomy annotation.

TOP failed to classify all inside-out reads because the
reads could not be aligned well globally to the amplicons
due to the inverse order of R1 and R2. This serious fault
could be fully rescued via rearranging the training se-
quences in the inside-out manner. Such a problem was
less serious for local alignments by BTOP because still
half of the inside-out reads, i.e., either the first or second
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reads, would be aligned to the amplicons with the other
half omitted. The resulting performance was thus at
least as good as using first reads, but the advantage of
PE data could not be exploited (Fig. 2). Again, local
alignments of inside-out reads to the inside-out refer-
ences improved the mean accuracy from 53.1 to 54.9%
(Table 2) as the whole reads could be aligned. Thus, ref-
erence rearrangement clearly can affect the performance
of alignment-based classifiers. In contrast, the word-
counting classifiers were not affected by reference re-
arrangement for this primer pair. For RDP and SINTAX,
joined reads achieved higher true positive rates and
lower under-classification rates compared to first reads
in general (Fig. S2). But over-classification rates of joined
reads were higher using RDP for classification. For the
two top-hit classifiers, read joining also increased true
positive rates while lowering misclassification rates.

We repeated the above analyses for the V1-V3 primer
pair (Table 1). Similar results were observed except for
the smaller improvement using SINTAX and the de-
clined performance using BTOP when inside-out reads
were compared to the inside-out references (Fig. 3,
Table 3, and Fig. S3). We found that many training

-
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Fig. 2 Accuracies (y-axis) of classifying different types of reads for the V3-V5 primer pair at various top-hit identities (x-axis). Three types of reads,
first (r1), directly joined (dj), and inside-out (io) reads, were classified to the genus level at different top-hit identities by six classification methods
using MiSeq 2 x 300 bp data. The directly joined and inside-out reads were also compared to the corresponding rearranged references (djref and
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Table 2 Mean accuracies of classifying different types of reads
for the V3-V5 primer pair
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Table 3 Mean accuracies of classifying different types of reads
for the V1-V3 primer pair

Read RDP50 ~ RDP80  SINTAX50  SINTAX80  TOP BTOP Read RDP50 ~ RDP80  SINTAX50  SINTAX80  TOP BTOP
r 55.1 49.34 54.12 439 5202 5202 r1 69.82 628 64.18 5336 679 67.14
dj 59.34 57.9 59.82 464 5508 5346 dj 7338 69.32 66.24 5378 7062 6798
djref 5932 5792 60.08 46.54 5494 5404 djref 7332 69 66.38 538 701 66.58
io 59.38 57.34 595 46.24 0 53.08 io 73.26 694 65.86 5344 0 67.98
joref 59.52 57.7 59.56 46.36 5494 5486 ioref 73.26 69.26 65.26 5212 69.86 59

Three types of reads, first (r1), directly joined (dj), and inside-out (io) reads,
were classified to the genus level by six classification methods using MiSeq
2 X% 300 bp data. The directly joined and inside-out reads were also compared
to the corresponding rearranged references (djref and ioref) respectively

for classification

sequences did not extend to the primer site 27F, which
resulted in padded Ns for the missing segments in the
middle of inside-out references, which might break the
local alignments. As a consequence, the references with
no or fewer padded Ns were favored for alignment, so
this bias may explain the lower accuracy. Padded Ns
were less of an issue for TOP because they could not
break global alignments. This explains the better per-
formance of TOP than BTOP in general. For the word-
counting classifiers, reference rearrangement again did
not make a difference in accuracy. Considering these

results, we recommended always joining unmergeable
PE reads for taxonomy annotation.

Toward full capacity of PE reads for taxonomy annotation
The effectiveness of read joining implies that the require-
ment of merging PE reads can be lifted. This motivated us
to study whether increasing non-redundant informative
bases via probing longer 16S segments could improve tax-
onomy annotation. To this end, we simulated PE reads for
two other primer pairs that covered the V3-V4 and V3-V6
regions respectively (Table 1). The V3-V4 primer pair was
recommended by Klindworth et al. [19] and the Illumina
company. The V3-V6 primer pair was also recommended
by Klindworth et al. for its higher bacterial coverage but
slightly lower phylum coverage compared to the V3-V4

RDP50 SINTAX50 TOP
100 A 100 100
80 80 80 A
60 60 - 60
-l -l -1l
40 di 40 3 40 g
—e— djref —e— djref —o— djref
207 —e— o 207 o o 207 —o— o
—o— ioref —o— ioref —o— ioref
o T T T T T o T T T T T 0 ? ? T T ?
100 99 97 95 90 100 99 97 95 90 100 99 97 95 90
RDP80 SINTAX80
100 - 100 ~ 100 -
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60 - 60 - 60 -
- rl
40 ) 40 - 40
- dj
—o— djref
204 —_o— io 20 A 20 A
—o— ioref
O T T T T T 0 T T T T T 0 T T T T T
100 99 97 95 90 100 99 97 95 90 100 99 97 95 90
Fig. 3 Accuracies (y-axis) of classifying different types of reads for the V1-V3 primer pair at various top-hit identities (x-axis)
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primer pair. For the V3-V4 primer pair, most (>99.9%) of
the simulated PE reads could be merged as the ~ 450 bp
amplicons led to an ~ 150 bp overlap for the 300 bp paired
reads, and sequencing errors within the overlaps could be
corrected. In contrast, none of the paired reads of the V3-
V6 amplicons (~725bp) overlapped. Therefore, all 600
bases in the PE reads provided non-redundant information
for taxonomy prediction, but sequencing errors in the reads
could not be corrected. Here, we compared merged reads
of the V3-V4 amplicons with the directly joined and inside-
out reads of the V3-V6 amplicons for taxonomy prediction.

Figure 4 reveals that the V3-V6 joined reads achieved a
similar or better genus level accuracy compared to the V3-
V4 merged reads using RDP50, TOP, and BTOP for classi-
fication at all top-hit identities. For RDP80 and SINTAX,
the accuracies of the V3-V6 joined reads were higher than
the V3-V4 merged reads at the top-hit identities 100 and
99%, but lower when the testing data were less similar to
the training data. In terms of mean accuracy, the V3-V6
joined reads were comparable to or better than the V3-V4
merged reads for all classifiers except SINTAX80 (Table 4).
The lowest performance of SINTAX80 was consistent with
the TAXXI paper. Note that RDP50 achieved the highest
mean accuracy on the V3-V6 joined reads among all
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Table 4 Mean classification accuracy for the V3-V4 merged
reads and V3-V6 joined reads (MiSeq 2 x 300 bp)

Read RDP50  RDP80  SINTAX50  SINTAX80 TOP BTOP
v34_merge 57.96 5772 59.54 49 5432 535

v36_dj 61.3 5792 60.06 458 5894 5556
v36_djref 613 58.02 59.78 45.96 5908 5804
V36_io 61.22 57.64 59.96 4554 0 55.56
v36_ioref 6142 58.26 60.18 45.92 5896 5856

classifiers and data types. This indicates that additional in-
formative bases in the V3-V6 joined reads could compen-
sate the downside of sequencing errors and even improve
taxonomy prediction for some classifiers.

For the V3-V6 joined reads, the two joining methods
achieved a similar mean accuracy using RDP and SINTAX
for classification and reference rearrangement again did
not make a difference. For TOP and BTOP, the two types
of joined reads also achieved a similar accuracy when they
were compared to the corresponding rearranged refer-
ences. As expected, using amplicons as reference could
lower performance of the alignment-based classifiers. For
example, BTOP accuracies of the joined reads were lower

Fi
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100 100 7 100
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g. 4 Classification accuracy (y-axis) for the V3-V4 merged reads and V3-V6 joined reads (MiSeq 2 x 300 bp) at various top-hit identities (x-axis)
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when being compared to the amplicons because only half
of the reads were locally aligned.

Possibility of applying a different Illlumina platform

The benefit of increasing informative bases is expected
more obvious if sequencing error rate is lower. In other
words, with fewer sequencing errors, a smaller increase
of informative bases may achieve a similar degree of im-
provement on classification. To examine this hypothesis,
we obtained a real HiSeq 2 x250bp dataset, which
showed a higher quality than our MiSeq data (Fig. S1),
and repeated the above analyses.

For the V3-V4 region, most simulated PE reads of 250
bp were still long enough to be merged. The mean ac-
curacies of merged reads, however, remained similar
compared to the simulated MiSeq data (Table 5 and
Fig. 5). This suggests that error correction via overlap
between the MiSeq paired reads was already effective.
For the V3-V6 region, the joined HiSeq and MiSeq reads
achieved a similar mean accuracy for the two word-
counting classifiers. This confirms our presumption that
500 bp joined reads with a higher quality is enough to
improve the classification accuracy to the same degree
as done by the 600 bp joined reads with a lower quality.

Notably, the mean accuracy of classifying directly
joined V3-V6 reads by TOP dropped from 58.9%
(MiSeq) to 16.2% (HiSeq) when using amplicons as ref-
erence. This drop could be explained by larger gaps (~
225 bp) between the paired HiSeq reads of 250 bp. The
large gaps decreased identities of the global alignments
and disturbed the ranking significantly. This demon-
strates that classifying directly joined reads via global
alignment to the amplicons could be affected by read
length. Again, rearranging the reference sequences in
the direct joining manner restored the accuracy.

Analysis of our real MiSeq PE data

To demonstrate applicability of read joining, we analyzed
our MiSeq PE reads of nasal microbiota in the 12 asthmatic
children. For each child, nasal microbes were sampled dur-
ing asthma attack and in the recovery phase (Methods). Via
comparing microbiota in the two phases, we searched for
microbes correlated with asthma exacerbation. As men-
tioned above, more than half (55.2%) of the V1-V3 PE reads

Table 5 Mean classification accuracy for the V3-V4 merged
reads and V3-V6 joined reads (HiSeq 2 x 250 bp)

Read RDP50 RDP80  SINTAX50 SINTAX80 TOP  BTOP
v34_merge 57.96 58.18 59.7 4956 542 5346
v36_dj 61.52 5858 60.46 46.52 1618 538
v36_djref 61.36 58.7 60.6 46.82 5804 572
v36_io 6136 59 59.9 4632 0 53.8
v36_ioref 61.28 59.1 59.74 46.56 58.04 57.64
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could not be merged with a 25% maximal mismatch rate
(Table S1). We therefore joined the PE reads in both the
direct and inside-out methods for analysis. The V3-V5 data
were not analyzed because the amount was much smaller.

Before joining, both first and second reads were
trimmed to reduce the impact of sequencing errors. To
optimize classification, 20 bp were trimmed from tail for
all first reads gradually until the trimmed reads achieved
a maximal mean confidence score at the genus level by
RDP classifier using the RDP full-length 16S training se-
quences as reference. Similar optimization was done for
the second reads. The optimal lengths of trimmed first
and second reads were 260 bp and 160 bp respectively,
and most paired trimmed reads could not be merged.

We analyzed four types of data: the 3,559,206 trimmed
first reads, the two types of joined trimmed reads, and the
original 1,738,393 merged reads longer than 290 bp. For
each data type, reads were first clustered into operational
taxonomic units (OTUs) (Methods) and the OTU repre-
sentative sequences were annotated by RDP classifier. This
procedure was efficient and helped correct sequencing er-
rors; the obtained OTUs also facilitated community ana-
lysis. Note that the OTU analysis failed to cluster joined
reads without trimming (see Discussion).

The three types of trimmed reads resulted in more
OTUs than the merged reads (Table 6). In terms of data
usage, more joined reads were used for inferring OTU
abundance compared to the merged data. For example,
2,479,548 of the directly joined reads could be mapped
to the corresponding OTUs while only 1,526,567 merged
reads could be mapped. We considered the mapped
reads belonging to confident OTUs (genus level confi-
dence score >0.8) as effective, and found that more
joined reads were effective than other two types of data.
These indicate that read joining made better use of the
real PE data for taxonomy annotation. In the following
analyses, directly joined reads were used.

To investigate whether asthma status affected micro-
biota, we compared the asthma attack and recovery sam-
ples using UniFrac [20] (Methods). Principal coordinate
analysis revealed that asthma status was not a major fac-
tor for shaping the community structure (Fig. S4). In
addition, the weighted UniFrac distances between two
samples of the same individuals were significantly
smaller than distances between samples of different indi-
viduals (T test p-value 0.027). This suggests individual
difference and that the asthma attack and recovery sam-
ples of the same individuals should be compared. Specif-
ically, we looked for OTUs that showed a higher or
lower proportion (by 23%) during asthma attack and the
number of cases in one direction was greater by at least
three fold and three compared to the other direction.
This criterion identified two OTUs (Otu2 and Otu?)
and the corresponding genera were Moraxella and
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Fig. 5 Classification accuracy (y-axis) for the V3-V4 merged reads and V3-V6 joined reads (HiSeq 2 x 250 bp) at various top-hit identities (x-axis)

Sphingomonas respectively (Table S3). The two OTUs
showed a higher proportion in the noses of four and
three patients and lower in none respectively. Interest-
ingly, those two genera have been associated with child
asthma (see Discussion), and therefore are promising for
further experimental investigation.

Repeating the above analysis for the trimmed first reads
failed to identify any differential OTU. For the merged
reads, only Moraxella but not Sphingomonas was identi-
fied. This demonstrates the benefit of joining PE reads
when their merges are limited, as in 16S studies.

Discussion

Correction of sequencing errors

Our simulation demonstrated that joining unmergeable PE
reads could improve taxonomy annotation. The estimated

benefit is conservative because we did not consider the pos-
sibility of correcting sequencing errors. In 16S studies, se-
quencing errors can be corrected via referring to other
sequences in the data [21, 22]. For example, clustering se-
quences into OTUs is also an act of error correction and
the OTU representative sequences are usually highly accur-
ate, which should enhance the benefit of read joining. In-
deed, we repeated the simulated comparison of the V3-V4
merged reads and V3-V6 joined reads using error-free
MiSeq 2 x 300 bp reads, and found a greater improvement
in taxonomy prediction (Fig. S5 and Table S4).

Although error correction is possible, we emphasize the
importance of trimming low quality bases when analyzing
real data. In our data, for example, if the whole first and
second reads were joined directly, almost all joined reads
would fail to pass the filtering step of OTU clustering,

Table 6 Statistics of clustering different types of our real MiSeq data into OTUs

No. of reads No. of OTUs No. of reads mapped to OTUs No. of confident OTUs No. of reads in confident OTUs
Merged 1,738,393 153 1,526,567 103 1,431,993
Trimmed first 3,559,206 395 2,542,518 268 2,327,060
Trimmed DJ 3,559,206 344 2,479,548 250 2,459,159
Trimmed 10 3,559,206 309 2430418 232 2411575

Abbreviations: DJ Direct-joining, /O Inside-out
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which keeps only reads with less than one expected error.
We tried increasing the threshold to ten, but almost all
reads passing the filter are singletons, which seriously de-
teriorated the OTU clustering (only ten OTUs were ob-
tained). Therefore, trimming low quality bases is
necessary to ensure an appropriate OTU clustering. Note
that we suggest trimming reads to a fixed length instead
of quality trimming for OTU clustering. Quality trimming
usually results in trimmed reads of different lengths,
which biases the clustering procedure [21].

Full-length sequences and amplicons as reference

Confining reference sequences to the amplicon region
has been shown to improve taxonomy annotation [23].
For our real data, limiting references to the amplicon re-
gion indeed gave more confident OTUs at the genus
level, e.g., from 250 to 255 with the directly joined reads.
Although the improvement is not large, using amplicons
as reference is usually favored. To extract amplicons,
identifying primer sites via aligning primer to reference
will fail if the reference sequences do not extend to the
primer site. For example, among the 13,212 training se-
quences in the RDP 16S database, only 3113 covered the
27F primer site. JTax addresses this issue via selecting a
long sequence that covers both primer sites as the main
reference and extracting amplicon based on pairwise
alignment between each reference sequence and the
main reference. For the V1-V3 primer pair, JTax output
13,206 amplicons and missed only six sequences because
the bases did not make up at least half of the amplicons.

Potential microbes associated with asthma exacerbation
We identified Moraxella and Sphingomonas as candidate
bacterial genera associated with asthma exacerbation in
children. Consistently, those bacteria have been implicated
in childhood asthma. For example, in acute respiratory ill-
ness, which is mainly caused by viral infection, Moraxella
was also found to be more abundant in the nasopharynx
of patients [24]. In fact, the causal effect of Moraxella in
asthma exacerbation has recently been shown via animal
experiments [25]. This suggests that the Moraxella species
in the noses of some patients likely triggered the asthma
exacerbation. The genus Sphingomonas has been reported
to be enriched in the house dust of children with asthma
[26]. This may explain the enrichment of Sphingomonas
in the noses of some asthmatic children during asthmatic
attack. In bronchial microbiome studies of asthmatic pa-
tients, the family Sphingomonodaceae has also been
shown to be enriched [27] and highly correlated with the
degree of bronchial hyper-responsiveness [28]. These cor-
roboraing reports support validity of our experimental
and analytical procedures.
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Conclusions

In metagenomic studies involving a marker gene, Illu-
mina PE reads sometimes cannot be merged for tax-
onomy annotation. Face with this problem, it is often
not clear how to use the PE data effectively because a
detailed evaluation of different approaches has been
missing. Here, we rigorously evaluated procedures to
utilize unmergeable PE data for classification by various
top classifiers. Based on our results we make several sug-
gestions. First, joining PE reads into single reads is al-
ways recommended as read joining improved the
classification accuracy in most of our investigations with
simulated sequencing errors. Second, trimming reads to
a fixed length before joining is suggested to optimize
OTU clustering and classification. Third, the joining
method (direct joining or inside-out) can affect perform-
ance of alignment-based classifiers, but not word-
counting classifiers. For alignment-based classifiers, re-
arranging reference is recommended to avoid problems
caused by gaps between or the inverse order of paired
reads. In general, a classifier based on global alignment
is favored over one based on local alignment because the
whole joined reads (i.e., all available information) are
used in global alignment. For word-counting classifiers,
rearranging the reference sequences did not make a dif-
ference in classification accuracy. Therefore, joined reads
can be directly compared to the original reference data-
base. To further improve classification, amplicons in-
stead of full-length sequences can be used as reference,
although the improvement may be minor. Amplicon ex-
traction will fail when reference sequences do not extend
to the primer site, but this can be rescued by JTax. To
join PE reads, direct joining using fastq join in
USEARCH is recommended if no primer removal or
error correction is desired. Otherwise, JTax can be used.
These recommendations should be useful for properly
utilizing unmergeable PE data of a marker gene in meta-
genomic studies. JTax is written in Perl and is freely
available in Github (https://github.com/TLlab/JTax).

Methods

Data for evaluating taxonomy prediction

Full-length 16S sequences with known taxonomy (i.e.,
the file ten_16s.100) were obtained from the TAXXI
[12] benchmark data. The reference sequences were a
subset of the NCBI BLAST 16S rRNA database (July 1,
2017), in which at most ten sequences per genus were
randomly selected and kept. This alleviated the concern
of unbalanced reference for performance evaluation.

To implement the idea of cross-validation by identity,
we designed a greedy algorithm to partition the TAXXI
reference into training and testing datasets such that the
alignment identity between each testing sequence and
the best hit in the training data was within a certain
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range, e.g., 97 £ 0.5%. Readers are suggested to consult
Fig. 1 of the TAXXI paper first to understand cross-
validation by identity before going through the following
procedure, which employs similar notations.

Given reference sequences and a primer pair, the cor-
responding amplicons were first extracted using JTax as
confined references. All pairs of amplicons were then
aligned globally using USEARCH [16] (v11.0.667) and
the alignment identities were obtained.

With the confined references (R), our greedy algorithm
attempted to optimize the number of references in the
testing (S) set, which also determined the top hits (T) that
were within the specified range of identity d + 8%. Follow-
ing the TAXXI paper, we used & = 0.5 for d = 99,97,95 and
6 =1.0 for d =90. For d = 100, a natural choice was to use
R as both the training and testing datasets. For d < 100, we
first defined the hits of a reference r with an identity
greater and within the specified range as z(r) and t(r) re-
spectively. If a reference r was assigned to S, then z(r)
should be excluded from the training set (A) and assigned
to the excluding set (Z) while those with an identity <d-&
(defined as in the set W) could stay in A, which is there-
fore union of T and W. As optimizing S and A was similar
to minimizing Z, a reference r should be assigned to S or
A earlier if it excluded fewer sequences. Moreover, exist-
ing references in A limit the chance for an r to be added
to S because some references in A might have an identity
to r greater than d + 8. Therefore, it was better to increase
A slowly. Based on these ideas, for each reference r we de-
fined tz(r) as the union of z(t) where t represented the top
hits of r within the identity range. We then sorted the ref-
erences by z(r) and tz(r) from small to large.

Starting with empty S, A, and Z, the first reference r was
assigned to S, and the t(r) and z(r) were assigned to A and
Z respectively. For the next reference r, if at least one of
the t(r) had not been assigned to S or Z, r was assigned to
S and the non-assigned t(r) were assigned to A. Otherwise,
r was assigned to A if it had not been assigned to Z. To in-
crease A slowly, the number of references assigned to A
was limited to no more than three in each run. This pro-
cedure was repeated for all references. At the end, all ref-
erence r’s that had not been assigned to any set (i.e., no hit
above or within the identity range) were assigned to A.
The resulting A and S served as the training and testing
datasets for evaluating taxonomy prediction. Note that for
the V1-V3 primer pair, some references did not extend to
the primer site 27F, thus could only serve as training data
but not testing data.

For each testing dataset, we simulated MiSeq 2 x 300
bp or HiSeq 2 x 250 bp reads using ART (MountRainier-
2016-06-05) [29]. The simulation used quality profiles
built from our real MiSeq dataset and one HiSeq dataset
from NCBI SRA (SRP136977). For each testing se-
quence, three PEs were simulated.
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Performance metrics of taxonomy prediction

We followed the TAXXI paper to evaluate performance
of taxonomy prediction. For the hierarchical nature of
taxonomy annotation, we calculated three types of er-
rors: over-classification (OC), under-classification (UC),
and misclassification (MC) rates at different taxonomy
levels. At a level, an OC error occurred when the pre-
dicted rank did not exist in the training data. An UC
error occurred when the test sequence’s rank that also
existed in the training data was not predicted. Let TP be
the number of test sequences whose rank was correctly
predicted, K be the number of test sequences whose
rank existed in the training data, and OC also be the
number of OC errors, accuracy of prediction was defined
as TP/(K+ OC). For cross-validation by identity, mean
accuracy of the five top-hit identities was also calculated.
Please refer to the TAXXI paper for definitions of other
performance metrics. The metrics were calculated using
scripts from the TAXXI paper.

Patient recruitment and study design for the role of
airway microbes and asthma exacerbation

Asthmatic children aged 5 to 12years with recurrent
wheeze were recruited. Exacerbated asthma without
fever was defined as self-reported and physician-
diagnosed current asthma presenting with a chief com-
plaint of shortness of breath with an encounter diagnosis
and need acute reliever treatment of asthma exacerba-
tion. Non-exacerbated asthma was defined as self-
reported and physician-diagnosed current asthma pre-
senting for routine, non-urgent, asthma follow-up care.

Sample collection and processing

We collected samples in duplicate using sterile cotton
swabs from anterior nares of nasal cavities and retro-
pharyngeal space of 12 asthmatic children at both acute
asthma exacerbation and recovery phase (2-week apart).
Swabbed samples were kept in 1.5 ml sterile saline buffer
for microbiome analysis.

DNA extraction

All of the swab samples were transported to the core fa-
cility with ice packs within 1 h after collection. Samples
were vortexed for 30 s at room temperature in 1 ml ster-
ile saline solution. After centrifugation at 12000 rpm for
10 min, the supernatant was discarded and the pellet re-
suspended in 50ul RNAlater. From the nasal cavity and
throat suspensions, DNAs were extracted by QIAamp
DNA Microbiome Kit (Qiagen). The DNA extraction
was performed according to the manufacturer’s instruc-
tions. All extracted DNA samples were stored at — 80 °C
until further processing.
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Amplification of the 16S region

The polymerase chain reaction (PCR) amplifications
were performed under the following conditions: initial
denaturation at 95 °C for 3 min, followed by 40 cycles of
denaturation at 95 °C for 30 s, annealing at 55 °C for sec-
onds, and extension at 72 °C for seconds, final extension
at 72 °C for 5 min. Quantity and quality of the extracted
DNA were analyzed by spectrophotometry using Nano-
Drop 2000 Spectrophotometer (Thermo Scientific) and
by agarose gel electrophoresis. PCR clean-up used
AMPure XP beads to purify the 16S amplicons to re-
move free primers and primer dimmers.

Library preparation and sequencing

Sequencing libraries were generated using TruSeq” DNA
PCR-Free Sample Preparation Kit (Illumina, USA) follow-
ing manufacturer’s recommendations. Index codes were
added to Illumina sequencing adapters and dual-index
barcodes to the amplicon target. The library quality was
assessed on Qubit 2.0 Fluorometer (Thermo Scientific)
and Agilent 2100 Bioanalyzer system. The products were
then subjected to 2 x 300 bp PE sequencing on MiSeq.

OTU analyses

Clustering of 16S reads was done by UPARSE [21] in
USEARCH (v11.0.667) as follows. First, low quality reads
of all samples were filtered (command: fastq_filter, op-
tion: -fastq_maxee 1.0). Filtered reads were then de-
duplicated into unique reads (command: fastx_uniques),
which were clustered into OTUs (command: cluster_otu,
option: -minsize 2) with a 97% identity. Against the
OTU representative sequences, all reads were aligned
using the usearch_global command with an identity cut-
off 0.97. Based on the resulting OTU table, frequencies
of all OTUs in each sample were calculated. To analyze
beta diversity, a distance matrix of the OTU representa-
tive sequences was calculated (command: calc_distmx,
option: -maxdist 1.0) for constructing a phylogenetic
tree using the command cluster_aggd with average link-
age. With the tree and OTU table, beta diversity was cal-
culated using the python script “beta_diversity_through_
plots.py” in QIIME [30] (v1.9), which applied the Uni-
Frac [20] metrics for measuring distance between
samples.
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