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Abstract 

Lipophilicity is a major determinant of ADMET properties and overall suitability of drug candidates. We have devel-
oped large-scale models to predict water–octanol distribution coefficient (logD) for chemical compounds, aiding 
drug discovery projects. Using ACD/logD data for 1.6 million compounds from the ChEMBL database, models are 
created and evaluated by a support-vector machine with a linear kernel using conformal prediction methodology, 
outputting prediction intervals at a specified confidence level. The resulting model shows a predictive ability of 
Q
2 = 0.973 and with the best performing nonconformity measure having median prediction interval of ± 0.39 log 

units at 80% confidence and ± 0.60 log units at 90% confidence. The model is available as an online service via an 
OpenAPI interface, a web page with a molecular editor, and we also publish predictive values at 90% confidence level 
for 91 M PubChem structures in RDF format for download and as an URI resolver service.
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Background
Lipophilicity plays a crucial role in determining the phar-
macokinetic behavior of drugs. Hydrophilic compounds 
are typically well-soluble but are likely to exhibit prob-
lems with membrane permeability and are more sus-
ceptible to renal clearance. Highly lipophilic compounds 
tend to have low solubility, high plasma protein binding, 
and they are also more vulnerable to CYP450 metabo-
lism. Furthermore, high lipophilicity has been shown to 
increase the likelihood of target promiscuity and gen-
eral toxicity as well as more specific toxicology issues of 
hERG inhibition, phospholipidosis and CYP450 inhibi-
tion [1–3].

From these considerations, it is suggested that optimal 
ADME properties and the lowest risk for adverse toxic-
ity outcomes are expected if a compound’s lipophilicity 
at pH = 7.4 lies in a logD range between about 1 and 3 
[2] or a logP between 2 and 4 [3]. Several studies indi-
cate that these ranges might be even narrower depending 

on molecular weight, acid/base properties and/on the 
desired mode of action of the drug. For example, statis-
tical analysis of AstraZeneca Caco-2 membrane per-
meability data suggests that the lower limit for passive 
diffusion is dependent on the molecular weight of com-
pounds: a logD > 1.7 being required for a 50% chance of 
high permeability for compounds with molecular weight 
above 350  Da, logD > 3.1 for compounds with molecu-
lar weight above 400 Da, and logD > 4.5 for compounds 
with MW above 500 Da [4].

Similarly, analysis of in-house data from Pfizer dem-
onstrates that most of the compounds satisfying both 
cell permeability and in vitro clearance criteria fall into a 
logD range between 0 and 3 [5]. This study also suggests 
that higher molecular weight compounds are more con-
strained in the range of acceptable logD values; the top of 
optimum region (referred to as “golden triangle”) peaking 
to logD of about 1.5 at MW of 500 Da.

Several studies have found that logD or logP of above 3 
gives rise to promiscuity and risk for adverse in vivo toxi-
cological outcomes [4, 6, 7].

Furthermore, toxicological liabilities such as hERG 
inhibition depend on the acid/base properties of a drug, 
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the risk being particularly high for lipophilic bases. For 
neutral drugs a 30% risk for problematically high levels 
of hERG inhibition is estimated at logD = 3.3 whereas for 
basic compounds such risk arises already at logD = 1.4 
[8].

In a study on CNS drug-likeness, Wager [9] concludes 
that the most desirable lipophilicity for blood–brain bar-
rier penetration is a logD ≤ 2. A logD above 4 is unlikely 
for a CNS drug.

Taken together, lipophilicity is one of the molecu-
lar properties to address in early stages of drug design, 
to increase chances of selection of compounds that 
would not fail in development because of poor ADMET 
characteristics.

Many computational methods to predict logP have 
been described. Benchmarking of 18 of these methods 
has shown reasonable results for many of them, with 
the root mean square error of prediction (RMSEP) for a 
Pfizer in-house dataset of 96,000 compounds being 0.95 
log units for consensus logP and slightly above 1 log unit 
for best individual algorithms [10]. Prediction of logD is, 
however, more difficult, as it involves both estimation of 
logP and estimation of acid and base pKa constants of the 
compounds, which may introduce further error. Never-
theless, AstraZeneca in-house algorithm AZlogD and the 
commercial ACD/logD algorithm of Advanced Chemis-
try Development, Inc. [11] on AstraZeneca an in-house 
dataset showed a very good RMSEP = 0.49 for AZlogD 
and a reasonable RMSEP = 1.3 for ACD/logD [4].

In this study, we present a support-vector machine 
(SVM) model based on data from 1.6 million compounds 
in ChEMBL database with logD annotations from the 
ACD/logD algorithm. The model was distributed as a 
Docker container and made available as a publicly availa-
ble web service exposed with an OpenAPI definition. We 
evaluated the performance of the model and predicted 
91  M compounds from the PubChem database, and 
made these data available in semantic web format (RDF) 
for download.

Methods
Data set
ChEMBL is an open, large-scale chemical database con-
taining more than 1.7 million distinct compounds with 
bioactivity data extracted from the chemical literature 
and calculated molecular properties [12]. From ChEMBL 
version 23, we extracted all compounds having the cal-
culated property acd_logd (calculated logD) at pH = 7.4 , 
resulting in 1,679,912 compounds. Standardization of 
chemical structures was performed by ambitcli version 
3.0.2, which is part of AMBIT cheminformatics platform 
and relies on the CDK library [13–15].

Standardization was performed using default set-
tings except for the option ‘splitfragments’ that was 
set to TRUE. In this way, salt and solvent components 
were filtered away. After standardization and removal 
of duplicates the data set consisted of 1,592,127 chemi-
cal compounds. To evaluate the predictive ability of 
the developed models, we set aside a test set compris-
ing 100,000 compounds. To perform predictions on the 
developed model we downloaded 91,498,351 chemi-
cal compounds of PubChem database [16], which were 
standardized in the same way as the compounds from the 
ChEMBL database.

LogP and logD
The most commonly used measure of lipophilicity is logP, 
the log of the partition coefficient of a neutral (non-ion-
ized) molecule between two immiscible solvents, usu-
ally octanol and water. The distribution coefficient, logD, 
takes into account both the compound’s non-ionized and 
ionized forms and in the determination of logD the aque-
ous phase is adjusted to a specific pH. Most of the drugs 
and the majority of molecules under research for phar-
maceutical purposes do contain ionizable groups, and 
therefore logD should be used preferentially over logP 
as the descriptor for lipophilicity, especially when look-
ing at compounds that are likely to ionize in physiologi-
cal media. Of a particular interest is the logD at pH = 7.4 
(the physiological pH of blood serum).

Signature molecular descriptor
The compounds were encoded by the signature molecu-
lar descriptor [17], generated by CPSign [18]. A signature 
molecular descriptor constitutes a vector of occurrences 
of all atom signatures in the dataset, where an atom sig-
nature is a canonical representation of the atom’s envi-
ronment (i.e., neighboring and next-to neighboring 
atoms). Signatures distinguish between different atom 
and bond types, as well as between aromatic and ali-
phatic atoms in the atom’s environment. Presence of the 
same atom signature in several compounds thus indicates 
that these compounds share identical 2D structural frag-
ments. Atom signatures can be calculated up to a prede-
fined height (i.e., the number of bonds to the neighboring 
and next-to neighboring atoms that the signature spans). 
We here calculated atom signatures of heights one, two 
and three, which is a set of heights good both for mod-
eling as well as for visualization purposes [19, 20].

In total 1,068,830 different 2D structural fragments 
were found in the dataset. Of these, 675,996 fragments 
were present in at least two compounds, 251,278 in at 
least ten compounds, and 50,293 in at least one hundred 
compounds.
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QSPR modeling by SVM
To model the relationship of logD to the molecular 
descriptors, we used SVM, a machine learning algorithm 
that correlates independent variables to the dependent 
one by means of a linear or nonlinear kernel function. 
Kernel functions map the data into a high-dimensional 
space, where correlation is performed based on the struc-
tural risk minimization principle; i.e., aiming to increase 
the generalization ability of a model [21].

We elected to perform correlation by the linear ker-
nel using signature molecular descriptors comprised of 
a vector of 1,068,830 integers. This choice was also sup-
ported by results of our earlier, large-scale modeling 
study, where a linear kernel performed on par with the 
nonlinear but required dramatically less computational 
resources [22].

SVM with linear kernel requires fine-tuning of two 
parameters to obtain an optimal model, namely, the error 
penalty parameter cost and tolerance of termination cri-
terion epsilon. We found optimal cost and epsilon by per-
forming grid search with cost values ranging from 0.1 to 
10 and epsilon values from 0.1 to 10−5. SVM models were 
created by the LIBLINEAR software as accessed from 
CPSign [18, 23].

Conformal prediction
In the conformal prediction framework, conventional 
single value predictions are complemented with meas-
ures of their confidence. In the case of regression, the 
conformal prediction algorithm outputs a prediction 
interval around the single prediction point [24]. In QSPR 
modeling, the size of the prediction interval is deter-
mined by some measure of dissimilarity (nonconformity 
measure) of the new chemical compound to the com-
pounds used in the development of the prediction model. 
Thus, the compound that is “typical” for the data set 
would more likely be given a smaller interval than a com-
pound being in a less explored area or outside the mod-
eled chemical domain [25–27].

The size of intervals also depends on the desired con-
fidence level (also called validity) which is defined as the 
ratio of compounds for which the true value falls within 
the prediction interval. Validity can thus range from 0 to 
100%, where 0% means that none of the prediction inter-
vals include the true value and 100% means that all of 
them include the true value.

For inductive conformal prediction, the training set 
is split into a proper training set and a calibration set. 
The proper training set is used for creating a predic-
tion model and the calibration set is used for comparing 
new compounds to existing ones and to estimate sizes of 
intervals for a certain confidence level. The inductive set-
ting means that split and training is performed once and 

all subsequent predictions are done by the same model; 
splitting is typically done in such a way that size of cali-
bration set is smaller than the size of the proper training 
set [26].

In the present study, we applied a 10-fold cross-confor-
mal predictor (CCP) as described in [28]. In brief, this 
algorithm attempts to reduce the influence of the split 
into proper and calibration sets by performing multiple 
such splits, each resulting in an inductive conformal pre-
dictor, and aggregating the resulting predictions. Here we 
chose to use ten aggregated models, and performing the 
dataset splits in a folded fashion (the cross prefix refers 
to k-fold cross validation). The workflow of CCP is pre-
sented in Fig. 1.

Conformal predictors are always valid under the 
assumption of exchangeability, i.e., that predicted com-
pounds are drawn from the same distribution as com-
pounds used to develop the prediction model. The main 
criterion when comparing different nonconformity meas-
ures is therefore their efficiency, i.e., the sizes of predic-
tion intervals in case of regression. Intuitively, a smaller 
size of prediction intervals indicates a higher efficiency. 
In this work we evaluated three different nonconformity 
measures. The simplest measure tested here was based 
on the prediction error given by the endpoint model, 
where the nonconformity of compound i, denoted αi is 
calculated using Eq. 1. This measure, termed absolute dif-
ference, gives the same prediction interval size for all pre-
dictions for a given confidence level, but in turn does not 
require any error model to be fitted and can thus lessen 
the computational demands.

The second nonconformity measure used, termed nor-
malized, assigns larger prediction intervals to objects 
that are more different from objects used in the model 
development and hence are “harder” to predict, and 
smaller intervals to “easier” objects. Naturally, when 
using normalized nonconformity measures, we expect 
the median prediction interval to be smaller, i.e., the 
efficiency to be increased. One of the common ways to 
obtain a normalized nonconformity measure is by creat-
ing an error model, where the dependent variable is the 
absolute value of error in the endpoint prediction model. 
This is expected to provide a more efficient nonconform-
ity measure than absolute difference, provided that the 
error model is predictive. The normalized nonconform-
ity measure is defined following Eq. 5 in [26], here shown 
in Eq. 2, where |yi − ŷi| is the absolute value of error for 
object i in the endpoint prediction model and µ̂i is the 
prediction from an error model (note that both ŷi and µ̂i 
are calculated when the compound is placed in the cali-
bration set, i.e., is not present in the proper training set).

(1)αi = |yi − ŷi|
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The third nonconformity measure, termed log-normal-
ized, proposed in [25], instead of |yi − ŷi| uses ln |yi − ŷi| 
as dependent variable when fitting the error model. It 
also introduces a smoothing factor, β, that can be used for 
“smoothing” the interval sizes, making the small intervals 
a bit larger and the very large intervals a bit smaller, i.e., 
reducing the influence of µ̂i in calculating αi, Eq. 3. The 
smoothing might be advantageous as biological meas-
urements always include some measurement errors, pre-
cluding predictions with intervals close to 0. Very large 
intervals, on the other hand, can arise from badly pre-
dicted µ̂ in the error model. We here created models with 
β = 0 and β = 1.

For each of the inductive conformal predictors, αi values 
are computed for all compounds in the calibration set 
and are then sorted in ascending order. When perform-
ing a prediction, the test compound is first predicted by 
the endpoint model to get the prediction midpoint, ŷ. 
To compute the prediction interval, the algorithm looks 
in the ordered set of nonconformity values to to get 
αconf .lev. , which is dependent on the desired confidence of 
the prediction. If, for example, we propose that an 80% 
confidence is required, the αconf .lev. is then the αi value 

(2)αi =
|yi − ŷi|

µ̂i

(3)αi =
|yi − ŷi|

eµ̂i + β
; β ≥ 0

found when traversing 80% of the list. If the nonconform-
ity value is dependent on an error model, an error pre-
diction, µi, is made. The size of the prediction interval is 
then calculated by rearranging the nonconformity meas-
ure to solve for |y− ŷ|, resulting in the final prediction 
interval (ŷ− |y− ŷ|, ŷ+ |y− ŷ|) for the single inductive 
predictor. The CCP prediction is then computed to be the 
median prediction midpoint and the median predicted 
interval size.

Molecule gradient for the prediction
CPSign allows the computation of a “prediction gradi-
ent”, as described in [29]. This is managed by altering 
the number of occurrences of each signature descriptor 
of the molecule, changing one descriptor at a time. For 
each alteration a new prediction is made, and the relative 
change in the prediction output is considered the gradi-
ent for that signature descriptor. If the gradient value for 
the descriptor is positive, the altered prediction has given 
a larger regression value, meaning that adding more of 
this descriptor would move the prediction to a higher 
response value, and vice-versa if the gradient value is 
negative. In CCP, each of the ten models produces its 
own gradient. The resulting gradient is computed as the 
median of the individual gradients. The per-descriptor 
contributions can then be transformed to the per-atom 
contribution, by summing up all contributions that each 
atom is part of.

Results and discussion
Development of CCP model
The data set was randomly split into a training set com-
prising 1,492,127 compounds and a test set comprising 
100,000 compounds. The training set was then used to 
develop SVM models and the test set was used to fine 
tune model parameters and assess their predictive per-
formance. Optimal model parameters were found by a 
grid search, starting with a low-complexity model with a 
low cost for errors, cost = 0.001, and a high tolerance for 
termination criterion, epsilon = 0.1. Note that the time 
required for model development and the model com-
plexity increase along with higher cost and lower epsi-
lon value. A too low value of cost and/or too high value 
of epsilon generally results in underfit models with low 
predictive ability. On the other hand, excessive cost and/
or insufficient epsilon not only make the computations 
overly time-consuming but also gives rise to a risk for 
overfitting, indicated by decreasing training set errors 
but suboptimal predictive performance. As could be 
expected, the initial model showed low predictive ability, 
the squared correlation coefficient between acd_logd val-
ues of test set compounds and the predicted values being 
Q2 = 0.501. The highest predictive ability of Q2 = 0.973 

Fig. 1 Workflow of 10-fold cross-conformal predictor. The train-
ing set is randomly permuted and split into ten, non-overlapping 
folds. An inductive conformal predictor (pink area) is trained for 
each split, using a single fold as its calibration set and the remaining 
nine folds as its proper training set. Proper training sets are used for 
fitting the endpoint and error models. Calibration sets are used to 
evaluate predictive ability of the model and to accumulate a list of 
α (compound nonconformity) values. For any new prediction, each 
inductive predictor will give an endpoint prediction (single-value 
prediction) and produce a prediction interval based on the predicted 
error, the desired confidence and the list of α values. The final predic-
tion is computed by aggregating the individual predictions using the 
median midpoint and median interval width
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was reached for model with cost = 1 and epsilon = 10−4 
(Table  1). As shown in the table, reducing epsilon (i.e., 
enabling more thorough model development) leads to 
major increase of predictive ability, whereas the influence 
of cost (penalizing large errors) is rather small at any epsi-
lon level.

Prediction results are illustrated graphically in Fig.  2, 
showing good correlation over the whole range of logD 
values.

After finding optimal settings for the logD model, we 
developed CCP models with absolute difference, normal-
ized, and log-normalized (with β = 0 and β = 1) noncon-
formity measures. We elected to elaborate these models 
at three epsilon levels starting from 0.001. CPSign error 
models are necessarily created with the same settings as 
the endpoint model. However, intuitively it seems that 

the task of the error model of explaining mispredictions 
of logD model is quite difficult, taking into account that 
RMSEP = 0.41 is already comparable to errors in experi-
mental determinations of logD. Accordingly, the error 
model can be expected to be less predictive and more 
prone to overfit than the logD model.

The efficiency of the twelve developed CCP models 
are presented in Table  2. By comparing models based 
on absolute difference and the normalized nonconform-
ity measure, it is apparent that the later ones are superior 
at certain ranges of confidence levels—from 50 to 99% 
when epsilon is 0.001, and from 70 to 90% when epsilon 
is 10−4. However, the normalized model does not outper-
form the absolute difference model when epsilon is 10−5 . 
This finding confirms the assumption that error models 
may become overfitted if epsilon is very nonrestrictive.

Another result revealed by Table  2 is the very wide 
prediction intervals for normalized and log-normalized 
models at confidence level 99%, indicating that error 
model based approaches are not of practical use if one 
wants to achieve such a high confidence level. A some-
what surprising finding is that for low confidence lev-
els (up to 50%) log-normalized nonconformity measure 
based models outperform all other models, being how-
ever less efficient at higher confidence levels. For exam-
ple, if one could be satisfied with 20% confidence, then 
the median predictions interval width would be below 0.1 
log units. Predictions at such a low confidence, however, 
does not seem to be of any practical use.

The overall-best model at any confidence level is in 
Table  2 indicated by bolditalics. In most practical CP 
studies, the desired confidence level is in the range of 
80–90% [26, 27, 30–32]. Accordingly, for the prediction 
service we have selected a model that is most efficient for 
this range, and in fact, also shows very good efficiency at 
any other confidence level under 99%.

Service for logD prediction
The logD prediction model with normalized noncon-
formity measure is available as a REST service using 
Swagger UI at: https://cplogd.service.pharmb.io/. Swag-
ger [33] is a framework for making RESTful web based 
APIs available. It provides a standard for documentation, 
code generation as well as the Swagger UI, which is a web 
based interface where the endpoints of the API can be 
tested. The logD prediction model is made available with 
two endpoints:

  • /prediction provides a prediction for a given 
SMILES at a user selected confidence level.

  • /predictionImage provides images showing 
molecule gradient for the prediction.

Table 1 Predictive ability of models, expressed as squared 
correlation coefficient (Q2) between acd_logd val-
ues in ChEMBL database and predicted logD values 
for 100,000 test set compounds

Bolditalic values indicate models with the highest predictive ability

Epsilon Cost

0.001 0.01 0.1 1 10

10−1 0.509 0.509 0.510

10−2 0.820 0.821 0.821 0.821

10−3 0.918 0.943 0.949 0.952 0.952

10−4 0.923 0.958 0.970 0.973 0.973

10−5 0.958 0.971 0.973 0.972

Fig. 2 Predictive ability of the best model (Q2 = 0.973). Plotted are 
acd_logd values (x-axis) versus the predicted logD values (y-axis) for 
100,000 test set compounds. The root mean square error of predic-
tion (RMSEP) is 0.41 log units

https://cplogd.service.pharmb.io/
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Using the swagger service and the free molecule editor 
JSME  [34], we also created a web-based user interface 
where a prediction image is rendered continuously as a 
molecule is edited (http://predict-cplogd.os.pharmb.io/ 
[35]). The user interface also supports selecting a confi-
dence level using a slider which will render the prediction 
interval. Pulling the slider thus gives immediate response 
on the confidence effect on the prediction interval.

Application of the logD prediction
We will here exemplify prediction results using two ref-
erence datasets of experimentally determined logD data.

The 29 compounds selected by Low et al. [36] represent 
those typically encountered in drug discovery programs, 
with MW up to 530 and polar surface area up to 114 Å2 . 
A set of 72 compounds collected by Alelynas  et  al.  [37] 
shows a broader chemical diversity and range of logD 
values. In both studies, the literature data is used to vali-
date results of newly-developed methods of logD meas-
urement and the correlation is reported as R2 of 0.982 
and 0.997, respectively, which confirms accuracy of the 
data. Notably, in ten cases, there is a disagreement of 
more than one log unit between values reported in [37] 
and ACD/LogD calculation results, which indicates that 
affording accurate logD predictions and narrow predic-
tion intervals for this dataset is a challenging task.

The prediction results at 80% confidence level are 
presented graphically in Fig.  3. The prediction is con-
sidered correct if the interval includes the true value 
(i.e., crosses the red-colored identity line). Note the 
variation in widths of prediction intervals, which for 
most compounds ranges 0.1–0.8 log units. Among the 
depicted set of compounds, the two widest intervals are 
given to strychnine (logD = 0.93; prediction midpoint 
−0.10 and interval from −1.70 to 1.49) and furosemide 
(logD = −1.02; prediction midpoint −0.46 and interval 
from −1.44 to 0.51). In both cases, the predictions are 
correct. If predictions were performed by absolute differ-
ence nonconformity measure, the size of interval for any 
compound would be 0.843 log units (see Table 2). In this 
case, prediction intervals for the two “hard to predict” 

Table 2 Median prediction interval width at confidence levels from 10 to 99%

Shown are MPI at confidence levels (validity) from 10 to 99%. Note that a smaller median prediction interval indicates higher efficiency of a nonconformity measure. 
Shown are results for models with cost = 1 and epsilon values 10−3, 10−4 and 10−5. Italicized are results for the best model at each epsilon value and confidence level. 
Marked by bolditalics are results for overall best models at each confidence level

Epsilon Nonconformity measure Confidence level

10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

10−3 Abs-diff 0.109 0.221 0.336 0.462 0.604 0.771 0.986 1.284 1.813 2.237 3.841

Normalized 0.122 0.243 0.362 0.478 0.595 0.718 0.854 1.027 1.319 1.649 2.892

Log-normalized, β = 0 0.071 0.155 0.257 0.387 0.560 0.801 1.171 1.812 3.291 5.273 10.879

Log-normalized, β = 1 0.074 0.159 0.260 0.384 0.545 0.763 1.080 1.599 2.689 4.031 7.676

10−4 Abs-diff 0.069 0.139 0.211 0.288 0.378 0.486 0.629 0.843 1.245 1.695 3.006

Normalized 0.079 0.157 0.233 0.311 0.395 0.491 0.610 0.789 1.200 1.918 7.194

Log-normalized, β = 0 0.042 0.094 0.159 0.243 0.352 0.519 0.772 1.223 2.311 3.918 10.157

Log-normalized, β = 1 0.044 0.097 0.163 0.245 0.356 0.509 0.741 1.137 2.030 3.233 7.204

10−5 Abs-diff 0.065 0.132 0.201 0.270 0.354 0.459 0.600 0.813 1.217 1.680 3.024

Normalized 0.075 0.148 0.220 0.293 0.376 0.474 0.605 0.824 1.445 2.664 12.199

Log-normalized, β = 0 0.041 0.092 0.155 0.234 0.341 0.495 0.738 1.171 2.205 3.747 10.007

Log-normalized, β = 1 0.042 0.095 0.158 0.235 0.339 0.486 0.710 1.095 1.963 3.156 7.247

Fig. 3 Example of prediction intervals. Shown are intervals at 80% 
confidence level for 29 reference compounds from [36] and 72 
compounds from [37]. Grey arrows mark the compounds exemplified 
in Fig. 4

http://predict-cplogd.os.pharmb.io/
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compounds, strychnine and furosemide, would not 
include the true value.

Molecule gradients for the prediction are illustrated in 
Fig. 4. The red-colored parts of the molecule contribute 
towards a prediction of higher logD and the blue parts 
contribute towards a prediction of lower logD. Note that 
the two hydrophilic compounds, atenolol and sotalol, are 
predominantly colored blue, except the phenyl rings that 
are colored light red and thus are predicted to increase 
lipophilicity. Note also that the propan-2-ylamino groups 
present in both compounds have similar but not exactly 
the same coloring. This is because each atoms is assessed 
in its environment of up to a three-bond distance (i.e., 
from all signatures of height one to three that include the 
given atom). In contrast to hydrophilic compounds at the 
top of the figure, the two highly lipophilic compounds at 

the bottom are predominantly colored red, except for the 
amine and ketone groups that are expected to decrease 
logD.

Figure  5 illustrates a molecular gradient for a com-
pound with a wide prediction interval, rendered in the 
user interface of prediction service at http://predict-
cplogd.os.pharmb.io/. For this polycyclic alkaloid, the 
model has created quite a complex molecule gradient. In 
the upper panel of the interface a user can interactively 
modify molecule to inspect quantitative contribution of 
any modified atom(s) to the prediction of logD and to the 
width of the prediction interval.

Dataset publication as RDF
The dataset of 91,498,351 compounds from PubChem 
with predicted logD values at 90% confidence level is 

Fig. 4 Examples of molecule gradients for the prediction of logD. Shown are gradients for four compounds indicated by arrows in Fig. 3. Upper 
row: atenolol (logD = − 1.82) and sotalol (logD = − 1.52). Lower row: tolnaftate (logD = 5.4) and amiodarone (logD = 6.1)

http://predict-cplogd.os.pharmb.io/
http://predict-cplogd.os.pharmb.io/
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in W3C RDF format [38]. It is available for download 
as data dumps in the Turtle RDF serialization format 
[39] and the indexed, binary RDF HDT format [40, 41] 
at https://doi.org/10.5281/zenodo.1091111 [42]. A URI 
resolver service is available at https://rdf.pharmb.io [43]. 
The URI resolver resolves the URIs of the new triples cre-
ated for this dataset. It does so by providing all the tri-
ples linked to the resolved URI in N-Triples format [44] 
when accessing the URI via HTTP GET (the same as vis-
iting the URL in a web browser). Newly created URIs for 
descriptors and compounds were minted off of the base 

URL of the URI resolver service. Annotation of descrip-
tors is done using predicates from the Semantic Science 
Integrated Ontology [45]. Compounds are linked with 
owl:sameAs predicates to their corresponding URIs in the 
PubChem RDF service [46] data format. The data model 
provides descriptor nodes for each logD value from 
which the concrete values are linked. These descriptor 
nodes also contain other data, such as (OWL) class infor-
mation. This allows the addition of further annotations 
and metadata either directly on the descriptor node or on 
its class node. For the URI publication service, a simple 

Fig. 5 Example of a compound with large prediction interval as seen in the prediction service user interface. One compound which gives rise to a 
large prediction interval in Fig. 3 is strychnine (logD = 0.93; prediction interval from −1.704 to 1.498). Here it is drawn using the prediction service 
available at http://predict-cplogd.os.pharmb.io/

https://doi.org/10.5281/zenodo.1091111
https://rdf.pharmb.io
http://predict-cplogd.os.pharmb.io/
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URI resolver software called urisolve was developed. The 
urisolve software resolves URI:s in a dataset based on an 
RDF HDT file or a SPARQL endpoint [47]. This software 
is available as open source at https://github.com/pharm-
bio/urisolve [48]. The urisolve software makes use of the 
RDF library for Go by Petter Goksøyr Åsen [49] for RDF 
serialization and the C++ HDT tools [50] for accessing 
the RDF HDT file.

Conclusions
We have developed a confidence predictor for chemical 
compound lipophlicity (logD) using molecular signature 
descriptors and a support-vector machine. Unlike con-
ventional regression, confidence predictor produces pre-
diction intervals that satisfy a required confidence level. 
With normalized nonconformity measure, individual 
intervals are calculated for each compound. Model vali-
dation shows that the median prediction intervals (± 0.39 
log units at 80% confidence and ± 0.60 log units at 90% 
confidence) are tight enough to be useful in discovery.

The model is available as an online service via an 
OpenAPI interface and a web page with a molecular editor. 
Molecular signature descriptors allow interactive modifi-
cation of molecules and visual interpretation of prediction 
results by highlighting chemical substructures contribut-
ing to the increase/decrease of the predicted logD.

We have also published predictive values at 90% confi-
dence level for 91 million compounds of PubChem database 
in RDF format for download and as an URI resolver service.
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